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This workshop is about hydrodynamics 

To understand hydrodynamics, first understand 
thermodynamics



System in external time-independent gμν, Aμ  

Compute  

Local correlations  ⟹ 

Near-uniform fields  ⟹  expand          in derivatives of g,A 

Leading order  ⟹ 

W [g,A] =

Z
d

d+1
x

p
�g F(g,A)

F(g,A)

F(g,A) = P +O(@)

W = �i lnZ[gµ⌫ , Aµ]

Thermodynamics
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Timelike Killing vector Vμ, e.g. Vμ =(1,0) for matter “at rest”

T =
1

�0

p
�V 2

, uµ =
V µ

p
�V 2

, µ =
V µAµ + ⇤Vp

�V 2

Fµ⌫ = uµE⌫ � u⌫Eµ � ✏µ⌫⇢�u
⇢B�

Definition of electric and magnetic fields:

Thermodynamic variables
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Equilibrium relations

E↵ � T�↵�@�
⇣ µ

T

⌘
= 0

a� = �@�T/T

u�@�µ = 0u�@�T = 0 , things don’t depend on time

gravitational potential induces 
temperature gradient

electric field induces charge  
gradient: this is electric  
screening

This has implication for derivative counting. For “weak” electric fields Eλ ∼ O(∂), the

gradients of T and µ are O(∂) as well. For “strong” electric fields Eλ ∼ O(1), there will be

an O(1) gradient of µ/T . How exactly this gradient is achieved depends on the nature of the

microscopic degrees of freedom. Given that the chemical potential determines the number

of charge carriers, we take “strong” electric fields to mean that both E and ∂µ are O(1),

while ∂T is still O(∂), so that ∂µ
µ ≫ ∂T

T . In the generating functional, the derivatives of the

chemical potential may then be traded for the electric field.

Similarly, the derivative of the velocity can be decomposed in equilibrium as

d = 1 : ∇µuν = −uµaν , (2.8a)

d = 2 : ∇µuν = −uµaν − 1
2ϵµνα u

αΩ , (2.8b)

d = 3 : ∇µuν = −uµaν − 1
2ϵµναβ u

αΩβ , (2.8c)

The vorticity is Ω ≡ −ϵµνλuµ∇νuλ for d = 2, and Ωµ ≡ ϵµναβuν∇αuβ for d = 3. This

velocity decomposition implies that both the expansion ∇µuµ and the shear tensor σµν ≡
(∆µα∆νβ +∆να∆µβ − 2

d∆
µν∆αβ)∇αuβ (where ∆µν = gµν + uµuν is the transverse projector)

vanish in equilibrium. This is as it should be: out of equilibrium, the expansion would

contribute to dissipation through bulk viscosity, and the shear tensor would contribute to

dissipation through shear viscosity.

Combined with the electromagnetic “Bianchi identity” ϵµναβ∇νFαβ = 0 in 3+1 dimen-

sions, the velocity decomposition (2.8) implies

∇·B = B·a− E·Ω ,

uµϵ
µνρσ∇ρEσ = uµϵ

µνρσEρaσ .

These are the covariant versions of the familiar flat-space equilibrium relations ∇·B = 0 and

∇×E = 0. More generally, for the electric field in equilibrium we have

d = 2 : ϵµαβ∇αEβ = ϵµαβEαaβ , (2.9a)

d = 3 : ϵµνρσ∇ρEσ = ϵµνρσEρaσ , (2.9b)

as a consequence of £V Eα = 0 and Eαuα = 0.

2.4 Polarization ambiguities

The electromagnetic Bianchi identity also implies that there is an ambiguity in the definition

of the polarization tensor: in 3+1 dimensions, one can always add to the generating functional

an identically vanishing term W∅ = 1
2

∫√
−g Cµ ϵµναβ∇νFαβ , where Cµ can be a function of

the field strength and its derivatives. Such a term shifts the polarization tensor by

Mαβ → Mαβ + ϵαβµν∇µCν . (2.10)
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The surface terms Js, Πa
s , Πs, Ma

s depend on how the equilibrium is set up, and what the

boundary conditions on ∂M are, as determined by the nature of the phase separation at ∂M.

In all the above variations, we assume that the regionM occupied by matter is unchanged.

One could also consider the response of the generating functional to changing the shape of

∂M, however this will not be needed for our purposes. See Ref. [11] for a recent discussion

of surface terms in the Euclidean generating functional.

The polarization tensor contains both electric and magnetic components. We define the

electric field as Eµ ≡ Fµνuν , the magnetic field as B ≡ −1
2ϵ

µαβuµFαβ for d = 2, and Bµ ≡
1
2ϵ

µναβuνFαβ for d = 3. In 1+1 dimensions, we define the “magnetic field” as B ≡ 1
2ϵ

µνFµν ,

so that Fµν = −Bϵµν . The Levi-Civita tensor is ϵµναβ = εµναβ/
√
−g, with ε0123 = 1, and

similarly in other dimensions. Both Eµ and Bµ are spacelike and orthogonal to uµ. We have

the following decomposition of the field strength:

d = 1 : Fµν = uµEν − uνEµ ,

d = 2 : Fµν = uµEν − uνEµ − ϵµνρu
ρB ,

d = 3 : Fµν = uµEν − uνEµ − ϵµνρσu
ρBσ .

The electric polarization vector pα and the magnetization vector mα (for d=3) are defined

by rewriting the integrand in (2.5) as 1
2M

µνδFµν = pαδEα +mαδBα. For d=2, the variation

is 1
2M

µνδFµν = pαδEα+mδB, which defines the magnetization m. The decomposition of the

polarization tensor into the electric and magnetic parts is then

d = 1 : Mµν = mϵµν , (2.6a)

d = 2 : Mµν = pµuν − pνuµ − ϵµνρu
ρm, (2.6b)

d = 3 : Mµν = pµuν − pνuµ − ϵµνρσu
ρmσ , (2.6c)

where pµ ≡ uλMλµ, mµ ≡ 1
2ϵ

µναβuνMαβ (for d = 3), and m ≡ −1
2ϵ

µαβuµMαβ (for d = 2).

Both pα and mα are transverse to uα.

2.3 Equilibrium relations

The equilibrium definitions (2.1) together with £V (. . . ) = 0 give

∂λT = −Taλ , ∂λµ = Eλ − µaλ , (2.7)

where aµ ≡ uλ∇λuµ is the acceleration vector, uµaµ = 0. These relations imply that

T∂λ(µ/T ) − Eλ vanishes in equilibrium. In other words, a system subject to an external

electric field will develop a gradient of µ/T in order to compensate the applied field and

ensure that the equilibrium is maintained.

– 6 –



Bound charges and bound currents

Here the acceleration is aµ ⌘ u�r
�

uµ, the projector �µ⌫ ⌘ gµ⌫ + uµu⌫ projects onto the

space orthogonal to uµ, the shear tensor is �µ⌫ ⌘ �µ↵�⌫�(r
↵

u
�

+r
�

u
↵

� 2
3�↵�

r·u), and the

electric field is E
µ

⌘ F
µ⌫

u⌫ . The first equation in (6) says that T and µ are time-independent

in equilibrium. The second equation in (6) says that the gravitational potential induces a

temperature gradient. This is a consequence of Tolman’s law. The third equation in (6)

says that the electric field induces a charge gradient. This is a formal way to express the

phenomenon of electric screening. Alternatively, if eq. (6c) were not true, there would be

entropy production due to the electrical conductivity. The last equation in (6) says that the

expansion and shear must vanish in equilibrium. If it were not so, there would be entropy

production due to the bulk and shear viscosities.

Electromagnetic polarization tensor

We will find it convenient in what follows to use the electromagnetic polarization tensor. As

the density F [g, A] is local and gauge-invariant, one can formally consider it to be a function

of A
µ

and the field strength F
µ⌫

. We then have

�
A,F

W =

Z
dd+1x

p
�g

⇥
Jµ

f �Aµ

+ 1
2M

µ⌫�F
µ⌫

⇤
,

which defines the current Jµ

f and the anti-symmetric polarization tensor Mµ⌫ . Of course,

the exact way how one chooses to consider W [A] as a function of A
µ

and F
µ⌫

is ambiguous.

This ambiguity is the ambiguity of separating the charge/current into the components cor-

responding to “bound charges” and “free charges”. While Jµ

f and Mµ⌫ are ambiguous, the

total current Jµ defined by (4) is not, and is given by

Jµ = Jµ

f �r
�

M�µ .

The first term can be called the current of free charges, and the second term the current of

bound charges. A convenient choice of fixing the ambiguity in the definition of Jµ

f is to use

eq. (6c) to trade the derivatives of the chemical potential in the density F [g, A] for the electric

field. This gives Jµ

f = ⇢uµ, where ⇢ ⌘ @F/@µ defines the density of free charges. Then

Jµ = ⇢uµ �r
�

M�µ , (7)

to all orders in the derivative expansion. Note that Mµ⌫ = �M ⌫µ, and the bound current

does not contribute to the conservation equation (5b). See ref. [18] for more details about the

electric and magnetic contributions to Mµ⌫ .

Derivative expansion

We next specify the derivative counting. We choose the counting scheme in which the metric

is g
µ⌫

⇠ O(1), so that the Riemann tensor is O(@2). Similarly, the temperature is T ⇠ O(1).

5
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Define charge density 
and spatial current:

Jµ = Nuµ + J µ

charge density spatial current,  
orthogonal to uμ 

N = ⇢�rµ p
µ + pµaµ �mµ⌦

µ

J µ = ✏µ⌫⇢�u⌫r⇢m� + ✏µ⌫⇢�u⌫a⇢m�

Bound charges and bound currents

aμ = acceleration 
Ωμ = vorticity

Polarization vectors:
Mµ⌫ = pµu⌫ � p⌫uµ � ✏µ⌫⇢�u

⇢m�



Define charge density 
and spatial current:

Jµ = Nuµ + J µ

charge density spatial current,  
orthogonal to uμ 

Bound charges and bound currents

J = r⇥m+m⇥rT/T

n = ⇢�r·p� p·rT/T � 2m·!

Polarization vectors:
Mµ⌫ = pµu⌫ � p⌫uµ � ✏µ⌫⇢�u

⇢m�



These were equilibrium charges and currents. 

Now need to find equilibrium Tμν. 

For that, need the derivative expansion.



Derivative expansion

W [g,A] =

Z p
�g p+O(@)

How do we count derivatives? 

Clearly, gμν,T~O(1) 

In equilibrium,  

So if μ~O(1), then E~O(∂). This is screening. 

No similar constraint on B, can take B~O(∂) or B~O(1)

E↵ � T�↵�@�
⇣ µ

T

⌘
= 0



Derivative expansion

W [g,A] =

Z p
�g p+O(@)

Weak E, B: p=p(T, μ) 

Insulator in strong E, B fields: p=p(T, E2, B2, E∙B) 

Conductor in strong B-field: p=p(T, μ, B2)



Example: P-invariant conductor in strong B field

Free energy:    ℱ(g,A) = p(T,μ,B2) + MΩ(T,μ,B2) B∙Ω + O(∂2)

W [g,A] =

Z
d

d+1
x

p
�g F(g,A)Vary                                               to find Tμν, Jμ 

In constant B-field:                                , Tµ⌫
s = Qµ

su
⌫ +Q⌫

su
µ Q↵

s = M⌦✏
↵µ⌫⇢uµB⌫n⇢

Angular momentum: 

L

V
= 2M⌦B



System at rest 
in flat space, 
constant B-field:  

L

V
= 2M⌦B

System rotating 
in flat space, 
no B-field:  

m = 2M⌦ !

Example: P-invariant conductor in strong B field



Fluid with a global U(1)

If the matter in question has degrees of freedom that carry “electric” charges (as would be in

a conductor), the chemical potential is also µ ⇠ O(1). The equilibrium condition (6c) then

requires that the electric field is E
µ

⇠ O(@). In an insulator, on the other hand, µ is not

a relevant thermodynamic variable, and one can take E
µ

⇠ O(1). We will be considering

conducting matter without macroscopic O(1) magnetic fields, and will take A
µ

⇠ O(1).

At zeroth order in derivatives we then have only two invariants, T and µ, thus the gener-

ating functional is

W [g, A] =

Z
dd+1x

p
�g p(T, µ) + . . . ,

where p(T, µ) some function of T and µ (which is in fact the pressure), and the dots denote

the terms of order O(@) and higher. The functional form of p(T, µ) is to be determined from

the microscopic theory. The energy-momentum tensor and the current which follow from the

definitions (4) are

T µ⌫ = ✏uµu⌫ + p�µ⌫ + . . . ,

Jµ = nuµ + . . . ,

where ✏ ⌘ �p + T@p/@T + µ@p/@µ is the energy density, n ⌘ @p/@µ is the charge density,

and again the dots denote the terms of order O(@) and higher. The conservation laws (5) are

satisfied identically, simply because the above T µ⌫ and Jµ were obtained from a gauge- and

di↵eomorphism-invariant generating functional.

Let us specialize to 3+1 dimensions for definiteness. Then at order O(@), there are no

invariants that could appear in the generating functional. At order O(@2), we will write the

generating functional as

W [g, A] =

Z
d4x

p
�g

"
p(T, µ) +

X

n

f
n

(T, µ)s(2)
n

#
+ . . . , (8)

where the dots denote the terms of order O(@3) and higher. The coe�cients f
n

(T, µ) are

the second-order thermodynamic susceptibilities (sometimes called thermodynamic transport

coe�cients) which need to be determined from the microscopic theory, just like the pressure.

[[Do we know anything about positivity of f
n

?]] Finally, s(2)
n

are the two-derivative invariants

made out of the metric, the gauge field, and the quantities in eq. (1), such as r2T , a
µ

aµ, R,

F
µ⌫

F µ⌫ etc. The invariants must be such that they do not vanish in equilibrium. We will find

it convenient to write the invariants in terms of the magnetic field Bµ ⌘ 1
2✏

µ⌫↵�u
⌫

F
↵�

and

the vorticity vector ⌦µ ⌘ ✏µ⌫↵�u
⌫

r
↵

u
�

. [Convention: ✏µ⌫⇢� = "µ⌫⇢�/
p
�g, "0123 = 1.] The

covariant versions of the flat-space identities @
i

B
i

= 0 and @
i

⌦
i

= 0 are

r·B � B·a+ E·⌦ = 0 , (9a)

r·⌦� 2⌦·a = 0 . (9b)
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n 1 2 3 4 5 6 7 8 9

s
(2)
n

R a2 ⌦2 B2 B·⌦ E2 E·a B·E B·a

P + + + + + + + � �

C + + + + � + � + �

T + + + + + + + � �

W n/a n/a 2 4 3 4 n/a 4 n/a

Table 1: Independent O(@2) equilibrium invariants in 3+1 dimensions. The rows labeled P,

C, T indicate the eigenvalue of the corresponding invariant under parity, charge conjugation,

and time-reversal, respectively. The row labeled W indicates the conformal weight w of the

corresponding invariant. The invariants labeled “n/a” do not transform homogeneously under

the Weyl rescaling of the metric. The first invariant is the Ricci scalar, the other invariants

are formed out of the vectors defined in the text.

These are also true out of equilibrium. The vorticity tensor !µ⌫ ⌘ 1
2�

µ↵�⌫�(r
↵

u
�

� r
�

u
↵

)

is related to the vorticity vector by !µ⌫ = �1
2✏

µ⌫⇢�u
⇢

⌦
�

, so that !
µ⌫

!µ⌫ = 1
2⌦

2.

Not all invariants are independent: for example, eq. (9b) shows that the ⌦·a term in

the generating functional may be absorbed into the E·⌦ term after an integration by parts

and a redefinition of the f
n

coe�cients.2 Similarly, eq. (9a) shows that the E·⌦ term in the

generating functional may be absorbed into the B·a and B·E terms after an integration by

parts and a redefinition of the f
n

coe�cients. Further, in equilibrium we have

r·a = uµR
µ⌫

u⌫ � 1
2⌦

2 , (10)

where R
µ⌫

is the Ricci tensor. As a result, the uµR
µ⌫

u⌫ term in the generating functional may

be absorbed into the ⌦2, a2, and E·a terms after an integration by parts and a redefinition
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n
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n

(T, µ) in the generating

functional (8).

The table also lists the conformal weights w of the invariants under the Weyl rescaling of

the metric g
µ⌫

! g̃
µ⌫

= e�2'g
µ⌫

. The quantity � has conformal weight w if under the Weyl

rescaling � ! �̃ = ew'�. The zeroth-order invariants T and µ have w = 1. The acceleration

2
For uncharged matter, the ⌦·a term in the generating functional only gives a boundary contribution.
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Nine thermodynamic susceptibilities fn(T,μ), have to be 
computed from the microscopics, just like p(T,μ)



Fluid with a global U(1)
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where p(T, µ) some function of T and µ (which is in fact the pressure), and the dots denote
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+ . . . , (8)

where the dots denote the terms of order O(@3) and higher. The coe�cients f
n

(T, µ) are

the second-order thermodynamic susceptibilities (sometimes called thermodynamic transport

coe�cients) which need to be determined from the microscopic theory, just like the pressure.

[[Do we know anything about positivity of f
n

?]] Finally, s(2)
n

are the two-derivative invariants

made out of the metric, the gauge field, and the quantities in eq. (1), such as r2T , a
µ

aµ, R,

F
µ⌫

F µ⌫ etc. The invariants must be such that they do not vanish in equilibrium. We will find

it convenient to write the invariants in terms of the magnetic field Bµ ⌘ 1
2✏

µ⌫↵�u
⌫

F
↵�

and

the vorticity vector ⌦µ ⌘ ✏µ⌫↵�u
⌫

r
↵

u
�

. [Convention: ✏µ⌫⇢� = "µ⌫⇢�/
p
�g, "0123 = 1.] The

covariant versions of the flat-space identities @
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B
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f1 : T- and μ-dependent Newton’s constant 

f2 : pressure response to (∇T)2 [talk by FB earlier today]  

f3 : pressure response to (vorticity)2  

f4,6,8 : magnetic, electric, and magneto-electric suseptibilities 

f5 : magneto-vortical susceptibility, determines L~B, m~ω  

f7,9 : pressure response to E∙∇T,  B∙∇T



QCD with μB≠0: vary W[g,A], get Tμν and Jμ in terms of five 
susceptibilities fn(T,μ), n=1,2,3,5,7 besides the pressure p(T,μ) 

CFT with μ≠0: vary W[g,A], get Tμν and Jμ in terms of three 
susceptibilities fn(T,μ), n=1,3,5 besides the pressure p(T,μ)

Example: no external E,B fields

Various combinations of fn(T,μ) and their derivatives in Tμν, Jμ 
are often called “thermodynamic transport coefficients”. 

Can be computed perturbatively, on the lattice, or in AdS/CFT 
BRSSS 0712.2451, Romatschke, Son 0903.3946, Moore, Sohrabi 1007.5333, 1210.3340, Arnold, 
Vaman, Wu, Xiao 1105.4645, Philipsen, Schäfer 1311.6618, Megias, Valle 1408.0165, Finazzo, 
Rougemont, Marrochio, Noronha 1412.2968, Buzzegoli, Grossi, Becattini 1704.02808 

https://arxiv.org/abs/0712.2451
https://arxiv.org/abs/0903.3946
https://arxiv.org/abs/1007.5333
https://arxiv.org/abs/1210.3340
https://arxiv.org/abs/1105.4645
https://arxiv.org/abs/1311.6618
https://arxiv.org/abs/1408.0165
https://arxiv.org/abs/1412.2968
https://arxiv.org/abs/1704.02808


If you really want to see the expressions

tensor) up to second order in derivatives, we will ignore these contributions (see Ref. [21] for

a general discussion in an arbitrary number of dimensions). The electromagnetic contribution

in Eq. (12) is, however, second order in derivatives, and must emerge from the generating

functional. This can be accounted for if the coe�cients f4 and f6 are not themselves Weyl-

invariant. In fact, the trace anomaly places constraints on the form of these coe�cients.

Indeed, consider the “4,6” part of the generating functional, W4,6 =
Rp

�g (f4B2+ f6E
2).

For the corresponding energy-momentum tensor T µ⌫

4,6 one finds

g
µ⌫

T µ⌫

4,6 = �f 0
4B

2 � f 0
6E

2 ,

where f 0
n

⌘ Tf
n,T

+µf
n,µ

, and the comma denotes the derivative with respect to the argument

that follows. By the trace anomaly, this has to match �b0
1
4F

2
µ⌫

= b0
1
2(E

2 � B2), which gives

f 0
4 = �f 0

6 =
b0
2 . This is solved by

f4 =
b0
2
ln

T

M
+ C4(µ/T ) , f6 = �b0

2
ln

T

M
+ C6(µ/T ) , (13)

where the integration constant M can be interpreted as the renormalization scale. This

explicitly shows that f4 and f6 shift under the Weyl rescaling, due to the lnT terms. The

total “electromagnetic” part of the generating functional is then

W
EM

⌘
Z p

�g

✓
f4B

2 + f6E
2 � 1

4e2
F 2
µ⌫

◆

= �1

4

Z p
�g


1

e2(M)
+ b0 ln

M

T

�
F 2
µ⌫

+

Z p
�g

�
F4B

2 + F6E
2
�
,

where e2(M) is the renormalized coupling, and F4(µ/T ), F6(µ/T ) are the renormalized sus-

ceptibilities. The renormalization-group equation for 1/e2(M) ensures that M d

dM

W
EM

= 0,

i.e. the generating functional does not depend on the renormalization scale, as it should be.

The energy-momentum tensor and the current

Let us now write down the energy-momentum tensor that follows from the generating func-

tional (8). This was done in refs. [5, 6] for neutral matter, and in ref. [16] for charged matter,

in a dimensionally reduced Euclidean formulation. Here we will write the energy-momentum

tensor in the covariant form, decomposing T µ⌫ with respect to the fluid velocity uµ as

T µ⌫ = Euµu⌫ + P�µ⌫ +Qµu⌫ +Q⌫uµ + T µ⌫ . (14)

The energy density is E ⌘ u
µ

T µ⌫u
⌫

, the pressure is P ⌘ 1
3�µ⌫

T µ⌫ , the energy flux Q
µ

⌘
��

µ↵

T ↵�u
�

is transverse to uµ, and the stress T µ⌫ ⌘ T hµ⌫i is transverse to u
µ

, symmetric,

and traceless. The angular brackets denote the symmetric transverse traceless part of a tensor,

Xhµ⌫i ⌘ 1
2(�µ↵

�
⌫�

+�
⌫↵

�
µ�

� 2
3�µ⌫

�
↵�

)X↵�. Similarly, the U(1) current can be written as

Jµ = Nuµ + J µ , (15)
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tensor) up to second order in derivatives, we will ignore these contributions (see Ref. [21] for

a general discussion in an arbitrary number of dimensions). The electromagnetic contribution

in Eq. (12) is, however, second order in derivatives, and must emerge from the generating

functional. This can be accounted for if the coe�cients f4 and f6 are not themselves Weyl-

invariant. In fact, the trace anomaly places constraints on the form of these coe�cients.

Indeed, consider the “4,6” part of the generating functional, W4,6 =
Rp

�g (f4B2+ f6E
2).

For the corresponding energy-momentum tensor T µ⌫

4,6 one finds

g
µ⌫

T µ⌫

4,6 = �f 0
4B

2 � f 0
6E

2 ,

where f 0
n

⌘ Tf
n,T

+µf
n,µ

, and the comma denotes the derivative with respect to the argument

that follows. By the trace anomaly, this has to match �b0
1
4F

2
µ⌫

= b0
1
2(E

2 � B2), which gives

f 0
4 = �f 0

6 =
b0
2 . This is solved by

f4 =
b0
2
ln

T

M
+ C4(µ/T ) , f6 = �b0

2
ln

T

M
+ C6(µ/T ) , (13)

where the integration constant M can be interpreted as the renormalization scale. This

explicitly shows that f4 and f6 shift under the Weyl rescaling, due to the lnT terms. The

total “electromagnetic” part of the generating functional is then

W
EM

⌘
Z p

�g

✓
f4B

2 + f6E
2 � 1

4e2
F 2
µ⌫

◆
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4
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�g


1
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M
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F 2
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+

Z p
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F4B

2 + F6E
2
�
,

where e2(M) is the renormalized coupling, and F4(µ/T ), F6(µ/T ) are the renormalized sus-

ceptibilities. The renormalization-group equation for 1/e2(M) ensures that M d

dM

W
EM

= 0,

i.e. the generating functional does not depend on the renormalization scale, as it should be.

The energy-momentum tensor and the current

Let us now write down the energy-momentum tensor that follows from the generating func-

tional (8). This was done in refs. [5, 6] for neutral matter, and in ref. [16] for charged matter,

in a dimensionally reduced Euclidean formulation. Here we will write the energy-momentum

tensor in the covariant form, decomposing T µ⌫ with respect to the fluid velocity uµ as

T µ⌫ = Euµu⌫ + P�µ⌫ +Qµu⌫ +Q⌫uµ + T µ⌫ . (14)

The energy density is E ⌘ u
µ

T µ⌫u
⌫

, the pressure is P ⌘ 1
3�µ⌫

T µ⌫ , the energy flux Q
µ

⌘
��

µ↵

T ↵�u
�

is transverse to uµ, and the stress T µ⌫ ⌘ T hµ⌫i is transverse to u
µ

, symmetric,

and traceless. The angular brackets denote the symmetric transverse traceless part of a tensor,

Xhµ⌫i ⌘ 1
2(�µ↵

�
⌫�

+�
⌫↵

�
µ�

� 2
3�µ⌫

�
↵�

)X↵�. Similarly, the U(1) current can be written as

Jµ = Nuµ + J µ , (15)
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where N ⌘ �u
µ

Jµ is the charge density, and J µ ⌘ �µ

⌫

J⌫ is the spatial current. Comparing

with Eq. (7), we find [18]

N = ⇢�r·p+ p·a�m·⌦ , (16a)

J µ = ✏µ⌫⇢�u
⌫

(r
⇢

+ a
⇢

)m
�

, (16b)

where pµ ⌘ u
⌫

M ⌫µ is the electric polarization vector, mµ ⌘ 1
2✏

µ⌫⇢�u
⌫

M
⇢�

is the magnetic

polarization vector, and ⇢ = @F/@µ is the density of free charges.

As an example, consider matter that has a global U(1) charge (so that one can introduce

the corresponding chemical potential), but which is not subject to any external electric and

magnetic fields coupled to that U(1) current. An example is QCD at finite (or zero) baryon

number chemical potential. A straightforward (and tedious) calculation gives the coe�cients

of the energy-momentum tensor (14) in terms of the three susceptibulities f
n

(T, µ) as

E = ✏+ (f 0
1 � f1)R + (4f 0

1 + 2f 00
1 � f2 � f 0

2)a
2

+ (f 0
1 � f2 � 3f3 + f 0

3)⌦
2 � 2(f1 + f 0

1 � f2) u
↵R

↵�

u� , (17a)

P = p+ 1
3f1R� 1

3(2f
0
1 + f3)⌦

2 � 1
3(2f

0
1 + 4f 00

1 � f2)a
2 + 2

3(2f
0
1 � f1) u

↵R
↵�

u� , (17b)

Q
µ

= (f 0
1 + 2f 0

3) ✏µ�⇢�a
�u⇢⌦� + (2f1 + 4f3)�

⇢

µ

R
⇢�

u� , (17c)

T
µ⌫

= (4f 0
1 + 2f 00

1 � 2f2)ahµa⌫i � 1
2(f

0
1 � 4f3)⌦hµ⌦⌫i + 2f 0

1 u
↵R

↵hµ⌫i�u
� � 2f1Rhµ⌫i . (17d)

where again f 0
n

⌘ Tf
n,T

+µf
n,µ

, f 00
n

⌘ T 2f
n,T,T

+2µTf
n,T,µ

+µ2f
n,µ,µ

, and the comma subscript

denotes the partial derivative with respect to the argument that follows. The leading-order

energy density is ✏ = �p + Tp
,T

+ µp
,µ

, as before. Equations (14) and (17) give the energy-

momentum tensor of a relativistic fluid in hydrostatic equilibrium, up to O(@2) terms beyond

the perfect fluid approximation. This generalizes the result of [6] to non-zero µ.

The polarization vectors which determine the equilibrium current (16) are

p↵ = 2f6 E
↵ + f7 a

↵ + f8 B
↵ , (18a)

m↵ = 2f4 B
↵ + f5 ⌦

↵ + f8 E
↵ + f9 a

↵ . (18b)

As an example, consider parity-invariant matter that has a global U(1) charge (so that one

can introduce the corresponding chemical potential), but which is not subject to any external

electric and magnetic fields coupled to that U(1) current. Again, QCD at finite (or zero)

baryon number chemical potential would be an example. The charge density and the spatial

current in Eq. (15) are then

N = n+ f1,µR + (f2,µ + f7 + f 0
7)a

2 +
�
f3,µ � f5 +

1
2f7

�
⌦2 � f7 u

↵R
↵�

u� , (19a)

J µ = �(f5 + f 0
5)✏

µ⌫⇢�u
⌫

a
⇢

⌦
�

+ 2f5�
µ⇢R

⇢�

u� , (19b)
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Kubo formulas

Makes sense to write Kubo formulas for susceptibilities 
fn(T,μ) rather than for thermodynamic transport coefficients 

The above Tμν and Jμ  in terms of fn(T,μ) are automatically 
conserved in equilibrium, no need to solve any hydro eqs 

Response to a time-independent source gives zero-
frequency correlation functions 

Know Tμν[g,A] and Jμ[g,A], take the variations w.r.t. gαβ, Aα, 
get Kubo formulas



Kubo formulas

All seven parity-even susceptibilities are given by 2-point 
functions of Tμν and Jμ. 

Only need 3-point functions in parity-breaking theories. 

Calculate all parity-even susceptibilities on the lattice or in 
holography? 



If you really want to see the expressions

where n ⌘ @p/@µ is the zeroth-order charge density.

We see that the thermodynamics of QCD with a baryon number chemical potential is

specified by the pressure p(T, µ) at zeroth order in derivatives, as well as by the five suscep-

tibilities f
i

(T, µ), with i = 1, 2, 3, 5, 7 at second order in derivatives. For a conformal theory,

f2 = 6f1, f7 = �6@f1/@µ, f9 = 0, hence one only needs three susceptibilities f1, f3, and f5

to specify the two-derivative thermodynamics of conformal matter not subject to external

electromagnetic fields.

Kubo formulas

The above equilibrium expressions for T µ⌫ [g] and Jµ[g, A] allow for a straightforward compu-

tation of equilibrium (zero frequency) correlation functions of the corresponding operators.

In order to write down the correlation functions for matter at rest in flat space, we choose
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The locality of the derivative expansion implies that the two-point functions are at most

quadratic in k, with the coe�cients of the O(k2) terms determined by the susceptibilities f
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.

The energy-momentum tensor (14), (17) implies the following Kubo formulas in terms of the
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There are of course other ways to write the Kubo formulas for f1,2,3 which follow from the

rotation invariance of the two-point functions.4 Similarly, the equilibrium current (15), (16),

4
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As expected, in a conformal theory with Tµ
µ = 0 one recovers the constraints f1 = T 2F (µ/T ), f2 = 6f1.
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(18) gives the following Kubo formulas
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xx) . (27)

Thus all seven parity-preserving thermodynamic susceptibilities admit Kubo formulas in terms

of equilibrium two-point functions in flat space without external fields. The parity-breaking

susceptibilities f8 and f9 do not appear in the above linearized analysis, but can be expressed

in terms of equilibrium three-point functions in flat space without external fields.

In order to find the three-point functions, we expand the equilibrium T µ⌫ and Jµ to

quadratic order in small fluctuations h
↵�

(x), A
�

(x). For example, let us take h
tt

(z) and

h
tx

(y) as the only non-vanishing perturbations. We then find

J t = p
,µ
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tt

, h00
tt

)� 1
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0
tt

(z)h0
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h00
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tt

h00
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tt

�
.

As another example, let us take h
tt

(z) and A
x

(y) as the only non-vanishing perturbations.

We then find

J t = p
,µ

+O(h
tt

, h00
tt

) + 1
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tt

(z)A0
x

(y)(f 0
8 + f9,µ) +O
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A02
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, h
tt

h00
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, h02
tt

, h2
tt

�
.

[[Do we want to define the three-point functions and write down the Kubo formulas for f8,

f9 in terms of 3-point functions explicitly a la Moore-Sohrabi?]]

[[Do we want to write down f2, f3 in terms of 3-point functions as well, to compare our

Kubo formulas with Moore-Sohrabi?]]

3 Free fields

Let us now use the above Kubo formulas to evaluate the thermodynamic susceptibilities for

non-interacting quantum fields in 3+1 dimensions. The energy-momentum tensor and the

current are quadratic in the fields, hence the two-point functions can be evaluated from the

diagrams schematically shown in Figure 1. The diagrams can be evaluated by the standard

methods of equilibrium thermal field theory in flat space [22, 23]. The integration over

the intermediate momenta in the loop will give rise to ultraviolet divergences which can

be regulated by introducing a high-momentum cuto↵ scale ⇤. We will assume that the cuto↵
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�
A02

x

, h
tt

h00
tt

, h02
tt

, h2
tt

�
.

[[Do we want to define the three-point functions and write down the Kubo formulas for f8,

f9 in terms of 3-point functions explicitly a la Moore-Sohrabi?]] [[Something like

f 0
8 + f9,µ = lim

k!0

@2

@p
y

@k
z

G
J

t

J

x

T

tt(p, k) , f9 = � lim
k!0

@2

@p
y

@k
z

G
J

t

T

tx

T

tt(p, k) ,

but need to check the sign and the overall factor]] [[Do we want to write down f2, f3 in terms

of 3-point functions as well, to compare our Kubo formulas with Moore-Sohrabi?]]

3 Free fields

Let us now use the above Kubo formulas to evaluate the thermodynamic susceptibilities for

non-interacting quantum fields in 3+1 dimensions. The energy-momentum tensor and the

current are quadratic in the fields, hence the two-point functions can be evaluated from the

diagrams schematically shown in Figure 1. The diagrams can be evaluated by the standard
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(18) gives the following Kubo formulas

f4 =
1
4 lim
k!0

@2

@k2
z

G
J

x

J

x , (24)

f5 = � lim
k!0

@2

@k
z

@k
x

G
J

z

T

tx , (25)

f6 =
1
4 lim
k!0

@2

@k2
z

G
J

t

J

t , (26)

f7 = �1
2 lim
k!0

@2

@k2
z

(G
J

t

T

tt +G
J

t

T

xx) . (27)

Thus all seven parity-preserving thermodynamic susceptibilities admit Kubo formulas in terms

of equilibrium two-point functions in flat space without external fields. The parity-breaking

susceptibilities f8 and f9 do not appear in the above linearized analysis, but can be expressed

in terms of equilibrium three-point functions in flat space without external fields.

In order to find the three-point functions, we expand the equilibrium T µ⌫ and Jµ to

quadratic order in small fluctuations h
↵�

(x), A
�

(x). For example, let us take h
tt

(z) and

h
tx

(y) as the only non-vanishing perturbations. We then find

J t = p
,µ

+O(h
tt

, h00
tt

)� 1
2f9h

0
tt

(z)h0
tx

(y) +O
�
h
tx

h00
tx

, h02
tx

, h
tt

h00
tt

, h02
tt

, h2
tt

�
.

As another example, let us take h
tt

(z) and A
x

(y) as the only non-vanishing perturbations.

We then find

J t = p
,µ

+O(h
tt

, h00
tt

) + 1
2h

0
tt

(z)A0
x

(y)(f 0
8 + f9,µ) +O
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A02
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tt

h00
tt

, h02
tt

, h2
tt

�
.

[[Do we want to define the three-point functions and write down the Kubo formulas for f8,

f9 in terms of 3-point functions explicitly a la Moore-Sohrabi?]] [[Something like

f 0
8 + f9,µ = lim

k!0
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@k
z

G
J

t

J

x

T

tt(p, k) , f9 = � lim
k!0

@2

@p
y

@k
z

G
J

t

T

tx

T

tt(p, k) ,

but need to check the sign and the overall factor]] [[Do we want to write down f2, f3 in terms

of 3-point functions as well, to compare our Kubo formulas with Moore-Sohrabi?]]

3 Free fields

Let us now use the above Kubo formulas to evaluate the thermodynamic susceptibilities for

non-interacting quantum fields in 3+1 dimensions. The energy-momentum tensor and the

current are quadratic in the fields, hence the two-point functions can be evaluated from the

diagrams schematically shown in Figure 1. The diagrams can be evaluated by the standard
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Example: free fields

Free massless real scalar:

functions upon taking the metric variation. Schematically,

T̂ µ⌫ = O
�
g(@�)2

�
+O

�
g @2�2

�
+O

�
@g@�2

�
+O

�
�2@2g

�
.

We will be computing two-point correlation functions of T̂ µ⌫ in flat space, by taking the metric

as g
µ⌫

= ⌘
µ⌫

+ �g
µ⌫

. In this case h�2i does not vary in space, and @h�2i vanishes. The term

h(@�)2i contributes to the internal energy of the scalar field in equilibrium, and gives a constant

momentum-independent contribution to the two-point function. Thus for the purpose of

computing the thermodynamic susceptibilities (which appear as O(k2) contributions to the

two-point function), the only relevant contact term arises from h�2i@2g. The variation can be

written as

�

�g
↵�

(y)

p
�g T̂ µ⌫(x) = Aµ⌫,↵��(x� y) + Bµ⌫,↵�,⇢@

⇢

�(x� y) + Cµ⌫,↵�,⇢�@
⇢

@
�

�(x� y) ,

with the coe�cients A,B,C that are local functions of the field �. Expanding the Einstein

tensor, we find Cµ⌫,↵�,⇢� = 1
2⇠�

2P µ⌫,↵�,⇢�, with

P µ⌫,↵�,⇢� = ⌘µ(↵⌘�)(�⌘⇢)⌫ + ⌘µ(⇢⌘�)(�⌘↵)⌫ � ⌘µ(↵⌘�)⌫⌘⇢�

� ⌘µ(⇢⌘�)⌫⌘↵� � ⌘µ⌫⌘↵(⇢⌘�)� + ⌘µ⌫⌘⇢�⌘↵� ,

where the parentheses denote symmetrization (with the 1/2). Note that P µ⌫,↵�,⇢� = P↵�,µ⌫,⇢�.

The “variational” two-point function G
T

µ⌫

T

↵� defined by (20) is then related to the standard

“operator” two-point function hT̂ µ⌫T̂ ↵�i by5

G
T

µ⌫

T

↵�(k) = hT̂ µ⌫T̂ ↵�i(k)� ⇠h�2iP µ⌫,↵�,⇢�k
⇢

k
�

. (28)

The terms in the right-hand side of Eq. (28) may be evaluated diagrammatically by the

standard rules of equilibrium thermal field theory in flat space in the Matsubara formalism. As

the real field is uncharged, the chemical potential µ is not relevant. The Euclidean propagator

is D(i!
n

,k) = [�(i!
n

)2 + k

2]�1, where !
n

= 2⇡nT , with integer n.

The contact term contributes a simple “bubble” diagram with

h�2i = T 2

12
.

The susceptibilities f1, f2, f3 may be computed from the Kubo formulas (21), (22), (23), using

the diagrams schematically shown in Fig. 1. Performing the integral over the intermediate

momenta, we find for the temperature-dependent contributions

f1 =
T 2

144
(1� 6⇠) , f2 = 0 , f3 = � T 2

144
. (29)

5
To see how this relation arises, one can start with the Euclidean functional integral representation, with

the action iS[g]t!�i⌧,g00!�gE
00,g0k!igE

0k,gkl

!gE
kl

= �SE[gE
]. The Euclidean energy-momentum tensor is defined

by �SE = � 1
2

Rp
gE T

µ⌫
E �gE

µ⌫ , so that �gµ⌫Tµ⌫
= �gE

µ⌫T
µ⌫
E , e.g. T 00|t!�i⌧,g00!�gE

00,g0k!igE
0k,gkl

!gE
kl

= �T 00
E .
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Evaluate the one-loop diagram: Tμν Tαβ

Free massless Dirac fermion at μ=0:

where the right-hand side may be evaluated with the flat-space energy-momentum tensor

(31) by the standard rules of equilibrium thermal field theory in the Matsubara formalism.

The Euclidean propagator is D(i!
n

,k) = /k[�(i!
n

)2 + k

2]�1, with /k = ��4!n

+ �·k, and
!
n

= (2n+1)⇡T , with n integer. [[Define �4. Also, I’m not sure about the overall sign of the

propagator. Metric conventions... argh!]]

f1 = � T 2

144
, f2 = �T 2

24
, f3 = � T 2

288
.

4 Discussion

[[Thermodynamic frame is better than the Landau frame]]

[[Compare our answers for free fields with what’s in the literature]]

[[Would be nice to check the Kubo formula of Moore and Sohrabi in terms of 3-point

functions as well.]]
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Application: Einstein equations in matter

Equilibrium generating functional W[gμν] =  
                                       Equilibrium effective action S[gμν]

Usual case:

T =
T0p
�g00

, µ =
µ0p
�g00

Se↵ [g] =

Z
d

d+1
x

p
�g


p(T, µ) +

1

16⇡G
R

�

δgSeff = 0 ⟹ Einstein equations: Tμν=0. Get e.g. Tolman-
Oppenheimer-Volkoff equations



Application: Einstein equations in matter

Equilibrium generating functional W[gμν] =  
                                       Equilibrium effective action S[gμν]

Actually have:

Se↵ [g] =

Z
d

d+1
x

p
�g

⇥
p(T, µ) + f1(T, µ)R+ f2(T, µ)a

2 + f3(T, µ)⌦
2
⇤

δgSeff = 0 ⟹ Einstein equations: Tμν=0. Get e.g. modified 
Tolman-Oppenheimer-Volkoff equations due to the pressure 
response to curvature, modified mass-radius relation

f1 =
1

16⇡G
+O(T 2, µ2)



∇μTμν = FνλJλ  

∇μ Jμ = 0

Tμν = Tμνeq+ Tμνnon-eq ,     Jμ = Jμeq+ Jμnon-eq     

get from equilibrium W[g,A]=∫p + O(∂) 
e.g. Jμeq = ρuμ - ∇λMλμ  

Application: hydro with O(1) external magnetic field

diffeomorphism invariance

gauge invariance



∇μTμν = FνλJλ  

∇μ Jμ = 0

Tμν = Tμνeq+ Tμνnon-eq ,     Jμ = Jμeq+ Jμnon-eq     

vanish in equilibrium, depend on ∂μ, Bμ, Eμ, η, ζ, …

Application: hydro with O(1) external magnetic field

diffeomorphism invariance

gauge invariance



For P-invariant conducting fluid in 3+1dim: 

  - one thermodynamic susceptibility MΩ = f5  
  - two shear viscosities (⟂ and || to B) 
  - three bulk viscosities 
  - two electrical conductivities (⟂ and || to B) 
  - two Hall viscosities (⟂ and || to B) 
  - one Hall conductivity 

Eleven coefficients total: 
  1 thermodynamic, non-dissipative 
  3 non-equilibrium, non-dissipative 
  7 non-equilibrium, dissipative

Application: hydro with O(1) external magnetic field



where �µ⌫

⌘ gµ⌫ + uµu⌫ is the transverse projector, Q

µ is transverse to u
µ

, and T

µ⌫ is

transverse to u
µ

, symmetric, and traceless. Explicitly, the coe�cients are E ⌘ u
µ

u
⌫

T µ⌫ ,

P ⌘

1
3
�

µ⌫

T µ⌫ , Q
µ

⌘ ��
µ↵

u
�

T ↵� and T

µ⌫

⌘

1
2
(�

µ↵

�
⌫�

+�
⌫↵

�
µ�

�

2
3
�

µ⌫

�
↵�

)T ↵�. Similarly,

we will write the current as

Jµ = Nuµ + J

µ (9)

where the charge density is N ⌘ �u
µ

Jµ, and the spatial current is J
µ

⌘ �
µ�

J�.

Using the equilibrium free energy (7), one can isolate O(1) and O(@) contributions to the

energy-momentum tensor and the current:

E = ✏(T, µ,B2) + fE ,

P = ⇧(T, µ,B2) + fP ,

N = n(T, µ,B2) + fN ,

T

µ⌫ = ↵
BB

(T, µ,B2)
�
BµB⌫

�

1
3
�µ⌫B2

�
+ fµ⌫

T ,

where ✏ = �p + T (@p/@T ) + µ(@p/@µ), ⇧ = p �

2
3
↵

BB

B2, n = @p/@µ, and the magnetic

susceptibility is ↵
BB

= 2@p/@B2. The terms fE , fP , fN , fµ⌫

T , Qµ, and J

µ are all O(@), and

contain both equilibrium and non-equilibrium contributions, fE = f̄E + fnon-eq.
E etc, where the

bar denotes O(@) contributions coming from the variation of W
s

.

3.2 Field redefinitions

Out of equilibrium, the variables T , u↵, and µ may be redefined. Such a redefinition is

often referred to as a choice of “frame”. Consider changing the hydrodynamic variables to

T 0 = T + �T , u0↵ = u↵ + �u↵, µ0 = µ + �µ, where �T , �u↵, and �µ are O(@). The same

energy-momentum tensor and the current may be expressed either in terms of T , u↵, µ, or

in terms of T 0, u0↵, µ0 (note that B2 = B02 + O(@2)). Physical transport coe�cients must

be derived from O(@) quantities which are invariant under such changes of hydrodynamic

variables. A direct evaluation shows that the following combinations are invariant under

“frame” transformations:

f ⌘ fP �

✓
@⇧

@✏

◆

n

fE �

✓
@⇧

@n

◆

✏

fN , (10a)

` ⌘
B↵

B

✓
J

↵

�

n

✏+ p
Q

↵

◆
, (10b)

`µ? ⌘ Bµ↵

✓
J

↵

�

n

✏+ p� ↵
BB

B2
Q

↵

◆
, (10c)

tµ⌫ ⌘ fµ⌫

T �

�
BµB⌫

�

1
3
�µ⌫B2

� ✓@↵
BB

@✏

◆

n

fE +

✓
@↵

BB

@n

◆

✏

fN

�
. (10d)
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(primed variables) by redefinitions of T , µ, and u↵ that give

E

0 = ✏(T 0, µ0, B02) + f̄E , (14a)

N

0 = n(T 0, µ0, B02) + f̄N , (14b)

Q

0
↵

= Q̄

↵

. (14c)

In other words, in this thermodynamic frame the coe�cients E , N , and Q

↵

in the decompo-

sitions (8), (9) take their equilibrium values, derived from the equilibrium generating func-

tional W
s

. The other coe�cients take the following form in the thermodynamic frame:

P

0 = ⇧(T 0, µ0, B02) + f̄P + fnon-eq. , (14d)

J

0µ = J̄

µ + `µ?non-eq. +
B0µ

B0 `non-eq. , (14e)

T

0µ⌫ = ↵
BB

(T 0, µ0, B02)
�
B0µB0⌫

�

1
3
�0µ⌫B02�+ f̄µ⌫

T + tµ⌫non-eq. . (14f)

3.4 Non-equilibrium contributions

With the equilibrium contributions out of the way, the next task is to find the non-equilibrium

terms in the constitutive relations (13). This amounts to finding one-derivative scalars, vectors

(orthogonal both to B
µ

and to u
µ

), and transverse traceless symmetric tensors that vanish

in equilibrium. Note that non-equilibrium contributions (those that vanish in equilibrium)

are not the same as dissipative contributions (those that contribute to hydrodynamic entropy

production). Every dissipative contribution is non-equilibrium, but not every non-equilibrium

contribution is dissipative.

The six independent non-equilibrium one-derivative scalars are given in Table 3. The

scalar u�@
�

B2 is not independent as a consequence of the electromagnetic Bianchi identity,

and can be expressed as a combination of r·u and BµB⌫

r

µ

u
⌫

. Three scalar equations of

motion r

µ

Jµ = 0, u
⌫

r

µ

T µ⌫ + E
µ

Jµ = 0, and B
⌫

r

µ

T µ⌫ + (E·B)(u·J) = 0 taken at zeroth

order provide three relations among the scalars. We choose to eliminate s(1)

1 non-eq., s
(1)

2 non-eq.,

and s(1)

6 non-eq. and write the scalar and pseudo-scalar constitutive relations as

fnon-eq. = c1s
(1)

3 non-eq. + c2s
(1)

4 non-eq. + c3s
(1)

5 non-eq. ,

`non-eq. = c4s
(1)

3 non-eq. + c5s
(1)

4 non-eq. + c6s
(1)

5 non-eq. ,

with some undetermined transport coe�cients c
n

.

The independent non-equilibrium transverse one-derivative vectors are given in Table 3,

where the shear tensor is �µ⌫

⌘ �µ↵�⌫�(r
↵

u
�

+ r

�

u
↵

�

2
3
�

↵�

r·u). We use the vector

9

n 1 2 3 4 5 6

s(1)

n non-eq. u�@
�

T u�@
�

µ r·u BµB⌫

r

µ

u
⌫

E·B � TB↵@
↵

(µ/T ) B·a+B↵@
↵

T/T

P + + + + � �

n 1 2 3

v(1)µ

n non-eq. Eµ

� T�µ⌫@
⌫

(µ/T ) aµ +�µ⌫@
⌫

T/T �µ⌫B
⌫

P � � +

Table 3: Non-equilibrium scalars and transverse non-equilibrium vectors at O(@). In addition

to the vectors listed in the table, there are corresponding transverse non-equilibrium vectors

ṽ(1)µ

non-eq. ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v(1)

non-eq.�/B. The table also shows the parity of non-equilibrium scalars

and vectors. Under time-reversal, the scalars s(1)

n non-eq. are T-odd, the vectors v(1)µ

n non-eq. are

T-even, and the vectors ṽ(1)µ

n non-eq. are T-odd.

equation of motion (2a) projected with Bµ⌫ at zeroth order to eliminate one of the vectors,1

and write the vector constitutive relation as

`µ?non-eq. = c7 Bµ

⌫

v(1)⌫

1 non-eq. + c8 Bµ

⌫

v(1)⌫

3 non-eq. + c9 ṽ
(1)µ

1 non-eq. + c10 ṽ
(1)µ

3 non-eq. ,

The tilded vectors are defined as ṽµ ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v
�

/B.

There is a number of symmetric transverse traceless non-equilibrium one-derivative tensors

besides the shear tensor �µ⌫ . One such tensor is

�̃µ⌫

⌘

1

2B

�
✏µ�↵�u

�

B
↵

� ⌫

�

+ ✏⌫�↵�u
�

B
↵

� µ

�

�
.

Other tensors can be formed by BhµB⌫is(1)

n non-eq., or by symmetrizing Bµ with a transverse

non-equilibrium vector. Again, we eliminate three scalars and one vector by the zeroth order

equations of motion and write the tensor constitutive relation as

tµ⌫non-eq. = c11�
µ⌫ +BhµB⌫i �c12s(1)

3 non-eq. + c13s
(1)

4 non-eq. + c14s
(1)

5 non-eq.

�

+ c15B
hµv(1)⌫i

1 non-eq. + c16B
hµv(1)⌫i

3 non-eq. + c17B
hµṽ(1)⌫i

1 non-eq. + c18B
hµṽ(1)⌫i

3 non-eq. + c19 �̃
µ⌫ ,

with some undetermined transport coe�cients c
n

. Thus there are five equilibrium func-

tions M
n

(T, µ,B2), and nineteen non-equilibrium functions c
n

(T, µ,B2) that determine one-

derivative contributions to the energy-momentum tensor and the current in strong magnetic

1 Namely, using the equation of motion (2a) with the constitutive relations for Tµ⌫ and Jµ derived from

the generating functional W =
R
p

�g p(T, µ,B2) + O(@). The relation among the vectors that one finds is

v(1)µ
2 non-eq.

= v(1)µ
1 non-eq.

n/(✏+ p) +O(@2).
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n non-eq. u�@
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T u�@
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µ r·u BµB⌫
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u
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↵

(µ/T ) B·a+B↵@
↵

T/T

P + + + + � �

n 1 2 3

v(1)µ

n non-eq. Eµ

� T�µ⌫@
⌫

(µ/T ) aµ +�µ⌫@
⌫

T/T �µ⌫B
⌫

P � � +

Table 3: Non-equilibrium scalars and transverse non-equilibrium vectors at O(@). In addition

to the vectors listed in the table, there are corresponding transverse non-equilibrium vectors

ṽ(1)µ

non-eq. ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v(1)

non-eq.�/B. The table also shows the parity of non-equilibrium scalars

and vectors. Under time-reversal, the scalars s(1)

n non-eq. are T-odd, the vectors v(1)µ

n non-eq. are

T-even, and the vectors ṽ(1)µ

n non-eq. are T-odd.

equation of motion (2a) projected with Bµ⌫ at zeroth order to eliminate one of the vectors,1

and write the vector constitutive relation as

`µ?non-eq. = c7 Bµ

⌫

v(1)⌫

1 non-eq. + c8 Bµ

⌫

v(1)⌫

3 non-eq. + c9 ṽ
(1)µ

1 non-eq. + c10 ṽ
(1)µ

3 non-eq. ,

The tilded vectors are defined as ṽµ ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v
�

/B.

There is a number of symmetric transverse traceless non-equilibrium one-derivative tensors

besides the shear tensor �µ⌫ . One such tensor is

�̃µ⌫

⌘

1

2B

�
✏µ�↵�u

�

B
↵

� ⌫

�

+ ✏⌫�↵�u
�

B
↵

� µ

�

�
.

Other tensors can be formed by BhµB⌫is(1)

n non-eq., or by symmetrizing Bµ with a transverse

non-equilibrium vector. Again, we eliminate three scalars and one vector by the zeroth order

equations of motion and write the tensor constitutive relation as

tµ⌫non-eq. = c11�
µ⌫ +BhµB⌫i �c12s(1)

3 non-eq. + c13s
(1)

4 non-eq. + c14s
(1)

5 non-eq.

�

+ c15B
hµv(1)⌫i

1 non-eq. + c16B
hµv(1)⌫i

3 non-eq. + c17B
hµṽ(1)⌫i

1 non-eq. + c18B
hµṽ(1)⌫i

3 non-eq. + c19 �̃
µ⌫ ,

with some undetermined transport coe�cients c
n

. Thus there are five equilibrium func-

tions M
n

(T, µ,B2), and nineteen non-equilibrium functions c
n

(T, µ,B2) that determine one-

derivative contributions to the energy-momentum tensor and the current in strong magnetic

1 Namely, using the equation of motion (2a) with the constitutive relations for Tµ⌫ and Jµ derived from

the generating functional W =
R
p

�g p(T, µ,B2) + O(@). The relation among the vectors that one finds is

v(1)µ
2 non-eq.

= v(1)µ
1 non-eq.

n/(✏+ p) +O(@2).
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where �µ⌫

⌘ gµ⌫ + uµu⌫ is the transverse projector, Q

µ is transverse to u
µ

, and T

µ⌫ is

transverse to u
µ

, symmetric, and traceless. Explicitly, the coe�cients are E ⌘ u
µ

u
⌫

T µ⌫ ,

P ⌘

1
3
�

µ⌫

T µ⌫ , Q
µ

⌘ ��
µ↵

u
�

T ↵� and T

µ⌫

⌘

1
2
(�

µ↵

�
⌫�

+�
⌫↵

�
µ�

�

2
3
�

µ⌫

�
↵�

)T ↵�. Similarly,

we will write the current as

Jµ = Nuµ + J

µ (9)

where the charge density is N ⌘ �u
µ

Jµ, and the spatial current is J
µ

⌘ �
µ�

J�.

Using the equilibrium free energy (7), one can isolate O(1) and O(@) contributions to the

energy-momentum tensor and the current:

E = ✏(T, µ,B2) + fE ,

P = ⇧(T, µ,B2) + fP ,

N = n(T, µ,B2) + fN ,

T

µ⌫ = ↵
BB

(T, µ,B2)
�
BµB⌫

�

1
3
�µ⌫B2

�
+ fµ⌫

T ,

where ✏ = �p + T (@p/@T ) + µ(@p/@µ), ⇧ = p �

2
3
↵

BB

B2, n = @p/@µ, and the magnetic

susceptibility is ↵
BB

= 2@p/@B2. The terms fE , fP , fN , fµ⌫

T , Qµ, and J

µ are all O(@), and

contain both equilibrium and non-equilibrium contributions, fE = f̄E + fnon-eq.
E etc, where the

bar denotes O(@) contributions coming from the variation of W
s

.

3.2 Field redefinitions

Out of equilibrium, the variables T , u↵, and µ may be redefined. Such a redefinition is

often referred to as a choice of “frame”. Consider changing the hydrodynamic variables to

T 0 = T + �T , u0↵ = u↵ + �u↵, µ0 = µ + �µ, where �T , �u↵, and �µ are O(@). The same

energy-momentum tensor and the current may be expressed either in terms of T , u↵, µ, or

in terms of T 0, u0↵, µ0 (note that B2 = B02 + O(@2)). Physical transport coe�cients must

be derived from O(@) quantities which are invariant under such changes of hydrodynamic

variables. A direct evaluation shows that the following combinations are invariant under

“frame” transformations:

f ⌘ fP �

✓
@⇧

@✏

◆

n

fE �

✓
@⇧

@n

◆

✏

fN , (10a)

` ⌘
B↵

B

✓
J

↵

�

n

✏+ p
Q

↵

◆
, (10b)

`µ? ⌘ Bµ↵

✓
J

↵

�

n

✏+ p� ↵
BB

B2
Q

↵

◆
, (10c)

tµ⌫ ⌘ fµ⌫

T �

�
BµB⌫

�

1
3
�µ⌫B2

� ✓@↵
BB

@✏

◆

n

fE +

✓
@↵

BB

@n

◆

✏

fN

�
. (10d)
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similarly M4 may be termed magneto-vortical susceptibility. For the rest of the paper, we

will adopt the derivative counting B ⇠ O(1) and E ⇠ O(@), as is appropriate for MHD.

As an example, consider a parity-invariant theory in magnetic field. The only O(@) ther-

modynamic coe�cient is the magneto-vortical susceptibility M4, which a↵ects hT µ⌫

i and hJµ

i

when there is non-zero vorticity, and higher-point equilibrium correlation functions of T µ⌫

and Jµ when there is no vorticity. We define static (zero frequency) correlation functions

of T µ⌫ and Jµ by varying the generating functional (1) with respect to g
µ⌫

and A
µ

in the

standard fashion. For example, in flat space at constant temperature T0, constant chemical

potential µ0, and constant magnetic field B0 in the z-direction, static correlation functions at

small momentum such as

hT txJz

i = �k
x

k
z

M4 , hT txT yz

i = �iB0kzM4 ,

may in principle be used to evaluate the magneto-vortical susceptibility M4 in a given theory.

3 Hydrodynamics with external electromagnetic fields

3.1 Constitutive relations

Hydrodynamics is conventionally formulated as an extension of thermodynamics, in the sense

that hydrodynamic variables are inherited from the thermodynamic parameters. This is a

strong assumption, and we expect the hydrodynamic description only to be valid for B ⌧ T 2,

otherwise new non-hydrodynamic degrees of freedom (such as those associated with Landau

levels) must be taken into account. Let us start by taking E and B fields as external and non-

dynamical. In hydrodynamics, the thermodynamic variables T , u↵, and µ are promoted to

time-dependent quantities. Out of equilibrium, they no longer have a microscopic definition,

but are merely auxiliary variables used to build the non-equilibrium energy-momentum tensor

and the current. The expressions of T µ⌫ and Jµ in terms of the auxiliary variables T , u↵, and

µ are called constitutive relations; they contain both thermodynamic contributions (coming

from the variation of F), and non-equilibrium contributions (such as the viscosity). It is worth

noting that thermodynamic contributions and non-equilibrium contributions to the constitu-

tive relations may appear at the same order in the derivative expansion. The constitutive

relations are then used together with the conservation laws (2) to find the energy-momentum

tensor and the current. While in thermodynamics Eqs. (2) are mere identities reflecting the

symmetries of W
s

, solving Eqs. (2) in hydrodynamics can be a challenging endeavour leading

to rich physics.

We will write the energy-momentum tensor using the decomposition with respect to the

timelike velocity vector uµ,

T µ⌫ = Euµu⌫ + P�µ⌫ +Q

µu⌫ +Q

⌫uµ + T

µ⌫ , (8)

5

* In thermodynamic frame, up to O(∂)

and the current is given by Eq. (9) with the following coe�cients:

N = p
,µ

+M4,µB·⌦�m·⌦ , (16a)

J

µ = ✏µ⌫⇢�u
⌫

r

⇢

m
�

+ ✏µ⌫⇢�u
⌫

a
⇢

m
�

+

✓
�?Bµ⌫ + �k

BµB⌫

B2

◆
V
⌫

+ �̃ Ṽ µ . (16b)

The current is written in terms of the magnetic polarization vector

mµ = (2 p
,B

2 + 2M4,B2B·⌦)Bµ +M4⌦
µ ,

while the electric polarization vector vanishes at leading order in a parity-invariant system.

The comma subscript denotes the derivative with respect to the argument that follows. Note

that we are keeping O(@2) thermodynamic terms in the constitutive relations (coming from

the variation of M4s
(1)

4 ) that are needed to ensure that the conservation laws (2) are satisfied

identically for time-independent background fields. In writing down the constitutive relations

(15), (16), we have relabeled the non-equilibrium transport coe�cients as ⇣1 ⌘ �c1, ⇣2 ⌘

�B2c2, �k ⌘ Bc6, �? ⌘ c7, �̃ ⌘ c9, ⌘ ⌘ �c11, ⌘1 ⌘ �B2c12, ⌘2 ⌘ �B4c13, ⌘3 ⌘ �B2c16,

⌘̃3 ⌘ �B2c18, ⌘̃ ⌘ �c19 and defined V µ

⌘ Eµ

�T�µ⌫@
⌫

(µ/T ), W µ

⌘ �µ⌫B
⌫

. The coe�cient ⌘

is the usual shear viscosity, ⌘̃ is the Hall viscosity, �? and �k are the transverse and longitudinal

conductivities, and �̃ is the Hall conductivity.

3.5 Eigenmodes

As a simple application of the hydrodynamic equations (2) together with the constitutive re-

lations (15), (16), one can study the eigenmodes of small oscillations about the thermal equi-

librium state. We set the external sources to zero, and linearize the hydrodynamic equations

near the flat-space equilibrium state with constant T = T0, µ = µ0, u↵ = (1,0), and B↵ =

(0, 0, 0, B0). Taking the fluctuating hydrodynamic variables proportional to exp(�i!t+ ik·x),

the source-free system admits five eigenmodes, two gapped (!(k!0) 6= 0), and three gapless

(!(k!0) = 0). The frequencies of the gapped eigenmodes are

! = ±

B0n0

w0

�

iB2
0

w0

(�? ± i�̃) +O(k2) , (17)

where w0 ⌘ ✏0 + p0 is the equilibrium enthalpy density, and we have taken ↵
BB

B2
0 ⌧ w0,

M4,µB2
0 ⌧ w0 in the hydrodynamic regime B0 ⌧ T 2

0 . As the imaginary part of the eigenfre-

quency must be negative for stability, this implies �? > 0. The analogous mode in 2+1 dimen-

sional hydrodynamics was christened the hydrodynamic cyclotron mode in Ref. [12], which

also explored its implications for transport near two-dimensional quantum critical points.

For momenta k k B0, the three gapless eigenmodes are the two sound waves, and one

12

and the current is given by eq. (3.2) with the following coe�cients:

N = p,µ +M⌦,µB·⌦�m·⌦ , (3.12a)

J

µ = ✏µ⌫⇢�u⌫r⇢m� + ✏µ⌫⇢�u⌫a⇢m� +

✓
�?Bµ⌫ + �k

BµB⌫

B2

◆
V⌫ + �̃ Ṽ µ . (3.12b)

The current is written in terms of the magnetic polarization vector

mµ =
�
2 p,B2 + 2M⌦,B2B·⌦

�
Bµ +M⌦⌦

µ , (3.13)

while the electric polarization vector vanishes at leading order in a parity-invariant system.

The comma subscript denotes the derivative with respect to the argument that follows. Note

that we are keeping O(@2) thermodynamic terms in the constitutive relations (coming from

the variation ofM
4

s(1)

4

) that are needed to ensure that the conservation laws (2.2) are satisfied

identically for time-independent background fields. In writing down the constitutive relations

(3.11), (3.12), we have relabeled the non-equilibrium transport coe�cients as ⇣
1

⌘ �c
1

,

⇣
2

⌘ �c
2

, �k ⌘ c
6

, �? ⌘ c
7

, �̃ ⌘ c
9

, ⌘? ⌘ �c
11

, ⌘k ⌘ �c
11

� c
16

, ⌘
1

⌘ �c
12

+ 1

2

c
11

+ 2

3

c
16

,

⌘
2

⌘ �c
13

�

3

2

c
11

� 2c
16

, ⌘̃k ⌘ �c
18

�

1

2

c
19

, ⌘̃? ⌘ �c
19

, and defined V µ
⌘ Eµ

�T�µ⌫@⌫(µ/T ).

The coe�cients �?, �k are the transverse and longitudinal conductivities, and ⌘?, ⌘k are the

transverse and longitudinal shear viscosities. The coe�cients ⇣
1

, ⇣
2

, ⌘
1

and ⌘
2

may all be

called “bulk viscosities”, of which only three are independent due to the Onsager relation.

The coe�cients ⌘̃?, ⌘̃k are the two Hall viscosities, and �̃ is the Hall conductivity.3

When the external electromagnetic field vanishes, the system becomes isotropic, and we

expect to recover the constitutive relations of the standard isotropic hydrodynamics, with

shear viscosity ⌘, bulk viscosity ⇣, and electrical conductivity �. Thus as B ! 0 we expect

⌘? = ⌘k = �2⌘
1

= 2

3

⌘
2

= ⌘, ⌘̃? = ⌘̃k = 0, ⇣
1

= ⇣, ⇣
2

= 0, �? = �k = �, �̃ = 0.

3.5 Eigenmodes

As a simple application of the hydrodynamic equations (2.2) together with the constitutive

relations (3.11), (3.12), one can study the eigenmodes of small oscillations about the thermal

equilibrium state. We set the external sources to zero, and linearize the hydrodynamic

equations near the flat-space equilibrium state with constant T = T
0

, µ = µ
0

, u↵ = (1,0), and

B↵ = (0, 0, 0, B
0

). Taking the fluctuating hydrodynamic variables proportional to exp(�i!t+

ik·x), the source-free system admits five eigenmodes, two gapped (!(k!0) 6= 0), and three

gapless (!(k!0) = 0). The frequencies of the gapped eigenmodes are

! = ±

B
0

n
0

w
0

�

iB2

0

w
0

(�? ± i�̃)� iDck
2 , (3.14)

3 The actual Hall conductivity, measured as a response to external electric field, must be obtained after

the hydrodynamic equations with the constitutive relations (3.11), (3.12) have been solved. Doing so in a

state with constant charge density n
0

and magnetic field B
0

gives the Hall conductivity n
0

/B
0

, as expected

from elementary considerations of boosting the state in the plane transverse to B
0

. See eq. (3.24c) below.
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state with constant charge density n
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gives the Hall conductivity n
0
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, as expected

from elementary considerations of boosting the state in the plane transverse to B
0
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and eight “viscosities” c
1

, c
2

, c
11

, c
12

, c
13

, c
16

, c
18

, and c
19

. We will see later that the On-

sager relations impose a relation between c
2

, c
12

, and c
13

, plus four more relations among

the parity-violating coe�cients. This leaves eleven transport coe�cients (one thermody-

namic and ten non-equilibrium) for a conducting parity-invariant system in magnetic field in

3+1 dimensions. In a conformal theory, the tracelessness condition2 will in addition impose

c
1

= c
2

= 0.

The constitutive relations may be simplified further if we note that the shear tensor can

be decomposed with respect to the magnetic field as

�µ⌫ = �µ⌫
? + (bµ⌃⌫ + b⌫⌃µ) + 1

2

bhµb⌫i (3S
4

� S
3

) . (3.9)

Here �µ⌫
? ⌘

1

2

�
Bµ↵B⌫� + B⌫↵Bµ�

� Bµ⌫B↵�
�
�↵� is traceless, ⌃µ

⌘ Bµ���⇢b⇢, and both are

orthogonal to the magnetic field Bµ. The scalars are S
3

⌘ r·u and S
4

⌘ bµb⌫rµu⌫ . The

tensor (3.8) then becomes

�̃µ⌫ = �̃µ⌫
? + 1

2

⇣
bµ⌃̃⌫ + b⌫⌃̃µ

⌘
, (3.10)

where �̃µ⌫
? is transverse to both uµ and Bµ, symmetric, and traceless.

For completeness, let us summarize the constitutive relations for a parity-invariant theory

in the thermodynamic frame. Defining M⌦ ⌘ M
4

, the energy-momentum tensor is given by

eq. (3.1) with the following coe�cients:

E = �p+ T p,T + µ p,µ +
�
TM⌦,T + µM⌦,µ � 2M⌦

�
B·⌦ , (3.11a)

P = p� 4

3

p,B2B2

�

1

3

(M⌦ + 4M⌦,B2B2)B·⌦� ⇣
1

r·u� ⇣
2

bµb⌫rµu⌫ , (3.11b)

Q

µ = �M⌦✏
µ⌫⇢�u⌫@�B⇢ + (2M⌦ � TM⌦,T � µM⌦,µ)✏

µ⌫⇢�u⌫B⇢@�T/T

�M⌦,B2✏µ⌫⇢�u⌫B⇢@�B
2 + (�2p,B2 +M⌦,µ � 2M⌦,B2B·⌦)✏µ⌫⇢�u⌫E⇢B�

+M⌦✏
µ⌫⇢�⌦⌫E⇢u� , (3.11c)

T

µ⌫ = 2p,B2

�
BµB⌫

�

1

3

�µ⌫B2

�
+M⌦,B2BhµB⌫iB·⌦+M⌦B

hµ⌦⌫i

� ⌘?�
µ⌫
? � ⌘k(b

µ⌃⌫ + b⌫⌃µ)� bhµb⌫i
�
⌘
1

r·u+ ⌘
2

b↵b�r↵u�

�

� ⌘̃?�̃
µ⌫
? � ⌘̃k(b

µ⌃̃⌫ + b⌫⌃̃µ) , (3.11d)

2 In a conformal theory subject to external fields gµ⌫ and Aµ, the trace of the energy-momentum tensor

receives an anomalous contribution Tµ
µ = F 2 +O(@4), where  is a theory-dependent constant that counts

the number of charged degrees of freedom, and the terms O(@4) are due to curvature invariants. It was

shown in ref. [19] that the conformal anomaly may be captured by a certain local term in the hydrostatic

generating functional, which for our purposes amounts to a term in p(T, µ,B2) proportional to .
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bµ ⌘ Bµ/B
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, (3.10)
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? is transverse to both uµ and Bµ, symmetric, and traceless.

For completeness, let us summarize the constitutive relations for a parity-invariant theory

in the thermodynamic frame. Defining M⌦ ⌘ M
4

, the energy-momentum tensor is given by

eq. (3.1) with the following coe�cients:

E = �p+ T p,T + µ p,µ +
�
TM⌦,T + µM⌦,µ � 2M⌦

�
B·⌦ , (3.11a)

P = p� 4

3

p,B2B2

�

1

3

(M⌦ + 4M⌦,B2B2)B·⌦� ⇣
1

r·u� ⇣
2

bµb⌫rµu⌫ , (3.11b)

Q

µ = �M⌦✏
µ⌫⇢�u⌫@�B⇢ + (2M⌦ � TM⌦,T � µM⌦,µ)✏

µ⌫⇢�u⌫B⇢@�T/T

�M⌦,B2✏µ⌫⇢�u⌫B⇢@�B
2 + (�2p,B2 +M⌦,µ � 2M⌦,B2B·⌦)✏µ⌫⇢�u⌫E⇢B�

+M⌦✏
µ⌫⇢�⌦⌫E⇢u� , (3.11c)

T

µ⌫ = 2p,B2

�
BµB⌫

�

1

3

�µ⌫B2

�
+M⌦,B2BhµB⌫iB·⌦+M⌦B

hµ⌦⌫i

� ⌘?�
µ⌫
? � ⌘k(b

µ⌃⌫ + b⌫⌃µ)� bhµb⌫i
�
⌘
1

r·u+ ⌘
2

b↵b�r↵u�

�

� ⌘̃?�̃
µ⌫
? � ⌘̃k(b

µ⌃̃⌫ + b⌫⌃̃µ) , (3.11d)

2 In a conformal theory subject to external fields gµ⌫ and Aµ, the trace of the energy-momentum tensor

receives an anomalous contribution Tµ
µ = F 2 +O(@4), where  is a theory-dependent constant that counts

the number of charged degrees of freedom, and the terms O(@4) are due to curvature invariants. It was

shown in ref. [19] that the conformal anomaly may be captured by a certain local term in the hydrostatic

generating functional, which for our purposes amounts to a term in p(T, µ,B2) proportional to .
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Application: hydro with O(1) external magnetic field



Inequality constraints on η’s, ζ’s, σ’s from 2-nd law 

Equality constraints on η’s, ζ’s, σ’s from Onsager relations 

Eigenmodes: collective cyclotron modes, sound, diffusion,… 

Express η’s, ζ’s, σ’s in terms of ⟨TμνTαβ⟩, ⟨TμνJα⟩, ⟨JμJα⟩ 

Transport coefficients for P-violating fluids
Hernandez, PK 1703.08757

Application: hydro with O(1) external magnetic field

Huang, Sedrakian, Rischke 1108.0602

Finazzo, Rougemont, Marrochio, Noronha 1412.2968

http://arxiv.org/abs/1703.08757
https://arxiv.org/abs/1108.0602
https://arxiv.org/abs/1412.2968


Application: Maxwell equations in matter

Equilibrium generating functional W[gμν,Aμ] =  
                                       Equilibrium effective action S[gμν,Aμ]

In the vacuum:

δASeff = 0 ⟹ Maxwell equations: Jμ=0, or ∇νFμν = 0. 

Se↵ [g,A] =

Z
d

d+1
x

p
�g


�1

4
F

2
µ⌫

�



Application: Maxwell equations in matter

Equilibrium generating functional W[gμν,Aμ] =  
                                       Equilibrium effective action S[gμν,Aμ]

In matter:

δASeff = 0 ⟹ Maxwell equations: Jμ=0, or ∇νHμν = nuμ.

where Hµ⌫
⌘ F µ⌫

�Mµ⌫
m . This is the desired equation that must be satisfied by electromag-

netic fields in equilibrium. Following the standard hydrodynamic lore and assuming that

eq. (4.4) also holds for small departures away from equilibrium, one obtains hydrodynamics

of “perfect fluids”, now with dynamical electric and magnetic fields. For these perfect fluids,

equations (4.4) have to be solved together with the stress tensor (non)-conservation (4.2),

where T µ⌫ is derived from the e↵ective action (4.3).

In fact, eq. (4.4) is nothing but the standard Maxwell’s equations in matter. The polar-

ization tensor Mµ⌫
m defines electric and magnetic polarization vectors P µ and Mµ through

the decomposition

Mµ⌫
m = P µu⌫

� P ⌫uµ
� ✏µ⌫⇢�u⇢M� . (4.5)

The antisymmetric tensor Hµ⌫ can be decomposed in the same way as the field strength Fµ⌫ ,

Hµ⌫ = uµD⌫ � u⌫Dµ � ✏µ⌫⇢�u
⇢H� ,

which defines Dµ ⌘ Hµ⌫u⌫ and Hµ
⌘

1

2

✏µ⌫↵�u⌫H↵�, so that

Dµ = Eµ + P µ ,

Hµ = Bµ
�Mµ .

It is then clear that eq. (4.4) is the covariant form of Maxwell’s equations in matter: the

currents of ‘free charges’ are in the right-hand side, while the e↵ects of polarization appear

in the left-hand side through the substitution Eµ
! Dµ, Bµ

! Hµ in the vacuum Maxwell’s

equations. Action (4.3) is the action for Maxwell’s equations in matter.

As an example, consider the following “matter” contribution: Fm = pm(T, µ, E2, B2, E·B),

where pm is the “matter” pressure. The polarization tensor is then Mµ⌫
m = 2@pm/@Fµ⌫ , and

the polarization vectors are

P µ = �EEE
µ + �EBB

µ , (4.6a)

Mµ = �EBE
µ + �BBB

µ , (4.6b)

where the susceptibilities �EE ⌘ 2@pm/@E2, �EB ⌘ @pm/@(E·B), and �BB ⌘ 2@pm/@B2 all

depend on T , µ, E2, B2, and E·B. This gives the standard constitutive relations, expressing

D and B in terms of E and H,

Dµ = "mE
µ + �mH

µ ,

Bµ = �mE
µ + µmH

µ ,

where "m ⌘ 1+�EE+�2

EB/(1��BB) is the electric permittivity, µm ⌘ 1/(1��BB) is the magnetic

permeability, and �m ⌘ �EB/(1��BB). We will also use "e ⌘ 1+�EE, which coincides with the

electric permittivity if �EB = 0.
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Di↵eomorphism invariance of W [g, J
ext

] implies rµhT µ⌫
i = hF �⌫

iJ
ext� . In what follows,

we will omit the angular brackets, writing the (non)-conservation of the energy-momentum

tensor simply as

rµT
µ⌫ = F �⌫J

ext� . (4.2)

In the standard hydrodynamic approach, T µ⌫ and Fµ⌫ will then be taken as dynamical

variables in the classical hydrodynamic theory. Note that the sign in the right-hand side of

eq. (4.2) is opposite compared to eq. (2.2a), owing to the fact that the current, rather than

the gauge field, is now external. In order to proceed with hydrodynamics, we need to specify

a) the constitutive relations for the energy-momentum tensor to be used in eq. (4.2), and b)

the equations which determine the evolution of the dynamical gauge field Fµ⌫ .

4.2 Maxwell’s equations in matter

Classical equations specifying the dynamics of electric and magnetic fields are usually referred

to as Maxwell’s equations in matter. While we don’t have a recipe of deriving them in a

most general form in a model-independent way, a useful starting point is provided by matter

in thermal equilibrium. Maxwell’s equations for equilibrium matter may be then amended

to include the non-equilibrium and dissipative e↵ects, such as the electrical conductivity. To

this end, as advocated in [20], we take the static generating functional Ws[g, A] to be the

e↵ective action for gauge fields in equilibrium,

S
e↵

[g, A] =

Z
d4x

p

�gF , (4.3)

where F is a local gauge-invariant function of the sources gµ⌫ and Aµ, and we have ignored

the surface terms. To leading order in the derivative expansion, F is simply the pressure. We

can always write F = �

1

4

Fµ⌫F µ⌫ +Fm, where the vacuum action is �1

4

Fµ⌫F µ⌫ = 1

2

(E2

�B2),

and Fm is the “matter” contribution. The isolation of the vacuum term is arbitrary, but it

will allow us to make contact with the textbook form of Maxwell’s equations in matter. Our

(equilibrium) e↵ective theory is then given by the partition function (4.1), with S replaced

by S
e↵

, and the total action is

S
tot

[A,'] = Ws[g, A] +

Z
p

�g (Aµ�@µ')J
µ
ext

.

The current derived by varying the total action with respect to Aµ is Jµ
tot

= Jµ + Jµ
ext

, or

Jµ
tot

= �r⌫(F
µ⌫

�Mµ⌫
m ) + nuµ + Jµ

ext

,

where the polarization tensor Mµ⌫
m is defined by �F

R
d4x

p

�gFm = 1

2

R
d4x

p

�gMµ⌫
m �Fµ⌫ ,

and the density of “free” charges is n ⌘ @Fm/@µ. The equation of motion for the gauge field

follows from �AStot

= 0, or equivalently Jµ
tot

= 0, and becomes

r⌫H
µ⌫ = nuµ + Jµ

ext

, (4.4)
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Se↵ [g,A] =

Z
d

d+1
x

p
�g


�1

4
F

2
µ⌫ + Fm[T, µ,E

2
, B

2
, B·⌦, . . . ]

�



Application: Maxwell equations in matter

Equilibrium generating functional W[gμν,Aμ] =  
                                       Equilibrium effective action S[gμν,Aμ]

Equations to solve:

4.3 Hydrodynamics

We take the MHD equations to be as follows:

rµT
µ⌫ = F �⌫J

ext� , (4.7a)

Jµ + Jµ
ext

= 0 , (4.7b)

✏µ⌫↵�r⌫F↵� = 0 . (4.7c)

The last equation is the electromagnetic “Bianchi identity”, expressing the fact that the

electric and magnetic fields are derived from the vector potential Aµ. The second equation

(Maxwell’s equations in matter) can be rewritten asr⌫(F µ⌫
�Mµ⌫

m ) = Jµ
free

+Jµ
ext

which defines

Jµ
free

, the current of “free charges”. While eqs. (4.7a) and (4.7c) are true microscopically,

the Maxwell’s equations in matter (4.7b) are written based on the above intuition of the

equilibrium e↵ective action. Note that rµJ
µ
free

= 0 is a consequence of (4.7b), and is not

an independent equation. The hydrodynamic variables are T , u↵, µ, as well as the electric

and magnetic fields which satisfy u↵E↵ = 0, u↵B↵ = 0. Hydrodynamic equations (4.7)

must be supplemented by constitutive relations, which express T µ⌫ , Jµ (or Jµ
free

and Mµ⌫
m ) in

terms of the hydrodynamic variables. These constitutive relations will contain equilibrium

contributions coming from the equilibrium e↵ective action (4.3). In addition, the constitutive

relations will contain non-equilibrium contributions, such as the electrical conductivity and

the shear viscosity.

Taking the divergence of eq. (4.7b) and using Jµ
ext

= �Jµ gives

rµT
µ⌫ = F ⌫�J� ,

rµJ
µ = 0 ,

which shows that the variables T , u↵, and µ satisfy exactly the same equations (2.2) as they

did in the theory with a non-dynamical, external Aµ. Thus in order to “solve” the MHD

theory (4.7) one can i) solve the hydrodynamic equations with an external gauge field (4.7)

to find T [A, g], u↵[A, g], µ[A, g], and ii) solve Jµ[T [A, g], u↵[A, g], µ[A, g], A, g] + Jµ
ext

= 0 in

order to find Aµ[Jext, g], and iii) use the constitutive relations to find the energy-momentum

tensor T µ⌫ [J
ext

, g] = T µ⌫ [T [A[J
ext

, g], g], u↵[A[J
ext

, g], g], µ[A[J
ext

, g], g], A[J
ext

, g], g]. MHD

correlation functions may then be obtained through variations with respect to the external

sources J�
ext

and gµ⌫ .

An equivalent way to understand the classical e↵ective theory (4.7) is to promote the

real-time generating functional to the non-equilibrium e↵ective action [20], i.e. to write

S
tot

[A,'] = Wr[A, g] +

Z
p

�g (Aµ�@µ')J
µ
ext

,

where Wr[A, g] is low-energy, real-time generating functional for retarded correlation func-

tions in the theory with a non-dynamical Aµ. The functional Wr[g, A] is non-local due to
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This is relativistic MHD, with 11 transport coefficients



MHD vs hydro in external B-field

   - MHD has the same 11 transport coef-s (7 are dissipative) 

   - MHD has the same entropy current 

   - MHD has the same Kubo formulas for viscosities 

   - MHD has different Kubo formulas for conductivities

1

!
ImGret.

E
x

E
x

(!,k=0) = ⇢?

1

!
ImGret.

E
x

E
y

(!,k=0) = �⇢̃?sign(B0)

1

!
ImGret.

EzEz
(!,k=0) = ⇢k

⇢k ⌘ 1/�k

(��1)ab = ⇢?�ab + ⇢̃?✏ab

�ab ⌘ �?�ab + �̃✏ab

   - MHD has different eigenmodes (e.g. Alfven waves)
Hernandez, PK arXiv:1703.08757

http://arxiv.org/abs/1703.08757


Questions

Can get all 2-nd order thermodynamic transport coef-s  
in QCD from Euclidean 2-point functions. Lattice & AdS? 

Well-posedness of MHD a la Israel-Stewart? [See Dirk’s talk 
on Friday.]  

Transport coef-s in B-field at weak vs strong coupling? 
Physical implications? 

Statistical fluctuations, aggravated by the B-field? 

There is a “dual” formulation of MHD in terms of the magne- 
tic flux. Relation to “conventional” MHD underexplored.

DHMMNNRW 1804.05210

Grozdanov, Hofman, Iqbal 1610.07392

https://arxiv.org/abs/1804.05210
https://arxiv.org/abs/1610.07392


Thank you!


