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Phase structure at strong coupling

Systems at strong coupling exhibit various phase structures

Pure gluon system −→ 1st order phase transition (left)

Gluons + quarks −→ smooth crossover (right)
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Phase structure at strong coupling

Lattice methods do not reach real time dynamics easily

Use other methods to model strongly coupled phase transitions

Compute the spectrum of linearized perturbations

Compute transport coe�cients and non-hydrodynamic modes

Compute the non-linear time evolution

Investigate the dynamical appearance of diverse phases

Check linear and non-linear stability

Method:

Use a string theory based approach to formulate models at strong
coupling.
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Questions

Does spinodal instability appear for a holographic system with
a 1st order phase transition?

Does the phase separation e�ect appear dynamically?

Are there black hole solution with inhomogeneous horizons?

How do non-hydrodynamic degrees of freedom behave in the
critical region?

Do di�usive modes appear?

Method:

Use a string theory based approach to formulate models at strong
coupling.
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Holography and Quantum Field Theory

Holographic principle
Quantum gravity in d
dimensions must have a
number of DOF which
scales like that of QFT in
d − 1 dimensions
't Hooft and Susskind '93

String Theory realization: AdS/CFT correspondence
Theory is conformal and supersymmetric Maldacena '97

Extensions to non-supersymmetric and non-conformal �eld
theories are possible

Applications: elementary particle physics and condensed
matter physics
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Non-conformal holographic plasma

Top-down construction

N = 4 broken to N = 2∗ SUSY theory. Known, but
complicated dual gravity description
A. Buchel, S. Deakin, P. Kerner, J. T. Liu, Nucl. Phys. B 784, 72 (2007)

Bottom-up construction

Assuming AdS/CFT dictionary, try to model gravity+matter
background to approach as closely as possible to your favourite
physics

U. Gürsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Holographic bottom-up construction

Boundary: add a source for an operator Oφ in a CFTd

L = LCFT + Λd−∆Oφ

Bulk: a gravity-scalar system in D = d + 1

S =
1

2κ2D

∫
M

dDx
√
−g
[
R − 1

2
(∂φ)2 − V (φ)

]
+ SGH + Sct

with the potential

V (φ) = 2ΛC (1 + aφ2)1/4 cosh(γ φ) + b2 φ
2 + b4 φ

4 + b6 φ
6

ΛC = −d(d − 1)/2 is the cosmological constant

U. Gürsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Phase transitions in holography

Finite T sates ←→ black hole solutions in the dual spacetime

Phase structure is determined by the choice of a, γ and
b2, b4, b6, coe�cients of V (φ)

With a 6= 0 con�nig models (IHQCD)

It is possible to tune parameters to mimic

→ crossover e.g. QCD

→ 1st order phase transition e.g. pure gluon systems

→ 2nd order phase transition

U. Gürsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Equilibrium con�gurations

Metric ansatz for a homogeneous con�guration

ds2 = e2A(r)
(
−h(r)dt2 + d~x2

)
− 2eA(r)+B(r)drdt

with φ(r) = r the holographic coordinate

Solve Einstein + matter equations

The event horizon: h(rH) = 0

Entropy and Hawking temperature

s =
2π

κ2D
e(d−1)A(rH) T =

eA(rH)+B(rH)|V ′(rH)|
4π

U. Gürsoy, et.al. JHEP 0905, 033 (2009)
S. S. Gubser, A. Nellore, Phys. Rev. D 78 (2008) 086007
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Equation of State (EoS)

The free energy is de�ned by the action

F = TSon−shell

Energy density is de�ned by holographic renormalization
H. Elvang, M. Hadjiantonis, JHEP 1606, 046 (2016)

Con�gurations characterized by the horizon radius

Condition for the 1st order phase transition

FBH1
= FBH2

Similar to Hawking-Page transition of pure AdS
S. W. Hawking, D. N. Page, Commun. Math. Phys. 87, 577 (1983)

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998)
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Example: Transition in 2+ 1 dimensions

In d = 2 + 1 we choose

V (φ) = −6 cosh
(
φ/
√
3
)
−0.2φ4

Con�gurations characteristics φ(z = 1) = φH

Conformal dimension of the scalar operator is ∆ = 2

Transition between two di�erent black hole solutions

Transition condition FBH1
= FBH2

Tc = 0.246 in Λ = 1 units
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Example: Free Energy

Tc = 0.246 in Λ = 1 units
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Example: Energy Density

φH = 1 → stable con�guration
φH = 2 and φH = 3 → unstable con�gurations
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Spinodal instability

When c2s < 0 we have purely damped hydro-modes

ω ≈ ± i |cs | k −
i

2T

(
4

3

η

s
+
ζ

s

)
k2 = ±i |cs | k − iΓsk

2

so for small enough k we have Im ω > 0

This mode is present for a �nite range of 0 < k < kmax

The maximum momentum for the unstable mode is
kmax = |cs |/Γs

This appears for systems with a 1st order phase transition;
spinodal instability

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Examples of spinodal instabilities

Water: superheated liquid and supercooled vapour

Spinodal instability in nuclear matter liquid-gas transition
Nuclear multifragmentation: Xe+Sn @ 32 MeV/A

B. Borderie et al. Phys. Rev. Lett. 86, 3252 (2001)

P. Chomaz, M. Colonna, J. Randrup, Phys. Rept. 389, 263 (2004)
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Time dependent set-up

The metric ansatz Eddington-Finkelstein coordinates

ds2 = −Adt2 − 2 dt dz

z2
− 2B dt dx + S2

(
G dx2 + G−1 dy2

)
with 0 ≤ z ≤ 1 and x periodic

Initial state in the spinodal region with x-dependent
perturbations

→ single mode

δS(t, x , z) = S0 z
2 (1− z)3 cos (kx)

→ Gaussian

δS(t, x , z) = S0 z
2 (1− z)3 exp

(
−w0 cos

2
(
k̃x
))
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Technicalities

Characteristic formulation of Einstein's equations
P. M. Chesler, L. G. Ya�e, JHEP 1407, 086 (2014)

Chebyshev and Fourier spectral methods; ABM4 time evolution
P. Grandclement, J. Novak, Living Rev. Rel. 12, 1 (2009)

We use k = 1/6 and k̃ = 1/12 and S0 = 0.1− 0.5, w0 = 10

ε and 〈Oφ〉 are de�ned by holographic renormalization
H. Elvang, M. Hadjiantonis, JHEP 1606, 046 (2016)

Results in this talk are with x period 12π
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Time dependence of the energy density

φH = 2 Gaussian perturbation φH = 3 cosine perturbation

Flat domains of speci�c thermodynamic phase

Narrow domain walls

Stabilization time t ∼ 300 simulation units
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Generic aspects of results

Energy conservation (microcanonical ensemble)

φH = 1 is a stable con�guration

Inhomogeneous �nal state → domains of di�erent phases

To quantify the evolution we use

Aε(t) =
1

12π

∫
ε>ε0

ε(t, x)dx

where ε0 - mean energy of the system at t = t0.
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Energy density φH = 3 case
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Energy density φH = 2 case
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Final state energy density

φH = 2 (red) and φH = 3 (blue)

Uniform Hawking temperature T = Tc

Universal shape of the domain walls
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Summary

Non-trivial phase structure limits the applicability of
hydrodynamics

Phase separation e�ect in the context of holographic models

Large black holes with T < Tc are stable against
perturbations

A large class of inhomogeneous black hole solutions

Spontaneous breakdown of translational invariance
→ holographic model for a lattice

A. Donos, J. P. Gauntlett, JHEP 1404, 040 (2014)

G. T. Horowitz, J. E. Santos, D. Tong, JHEP 1207, 168 (2012)
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Some open directions

Extensions to higher dimensions

Relaxation of symmetry assumptions

Detailed study of various temporal regimes

Conserved charges �uctuations

Applicability of hydrodynamics at late times
M. Attems, et.al JHEP 1706, 129 (2017)
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