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Bjorken flow

Highly symmetric flow

Homogeneous and isotropic transverse to beam

Boost-invariant in beam direction



BRSSS in conformal Bjorken flow [Heller,
Spalinski,1503.07514]

Pressure anisotropy A(w) = PT (τ)−PL(τ)
P(τ)

as function of w = τT

Governed by differential equation:

Cτπw(1 + A
12 )A′ +

(
Cτπ

3 +
Cλ1
8Cη

)
A2 + 3

2wA− 12Cη = 0

Formal solution in gradient expansion: A(w) = f0 + f1
w + f2

w2 + . . .

Perturbations around the gradient expansion

A(w) + δA(w)→ δA(w) ∼ e
− 3
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The gradient expansion diverges and reveals transients

Figure 1: [Heller, Spalinski,1503.07514]

Figure 2: [Basar, Dunne, 1509.05046]

fk ∼
Γ(k + β)

(−S)k
Borel transform−−−−−−−−−→ poles of the form

1

(S − x)β+1

Resummation−−−−−−−−→ contributions of the form e−Swwβ
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Similar story in holography

Gradient expansion in Bjorken flow diverges
[Heller,Janik,Witaszczyk,1302.06979]

Initial conditions: Specify metric on a timeslice

Quasinormal modes in Bjorken flow

δEi = σi τ
αi e−Siτ

2/3



Borel plane in holography

Figure 3: [1302.0697,1707.02282]

δEi = σi τ
αi e−Siτ

2/3



Initial conditions, gradient expansion and
non-hydrodynamic modes in BRSSS and Holography

Divergence of gradient expansion revealed non-hydrodynamic modes

Each mode has a free parameter set by initial conditions

In BRSSS: one free parameter → one transient

Holography: infinite number of transients



Kinetic theory

Distribution function

f (x , p) = number of particles at position x with momentum p.

Evolution described by Boltzmann equation

Free streaming −→ pµ∂µf (x , p) = C[f ] ←− Collision kernel

Simplifies in Bjorken flow and Relaxation time approximation (RTA)

∂τ f (τ, p) =
feq(τ, p)− f (τ, p)

τrel

feq(τ, p) ∝ e
− E(p)

T (τ) (we consider classical, massless particles)

τrel ∝ T−∆, ∆ < 3
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Energy density satisfies an integral equation
[Florkowski,Ryblewski,Strickland,1305.7234]

E(τ) = D(τ, τ0)E0(τ) +

∫ τ

τ0

dτ ′

2τrel(τ ′)
D(τ, τ ′)H

(
τ ′

τ

)
E(τ ′),

Damping: D(τ, τ ′) = e
−

∫ τ
τ ′

dt
τrel

Initial conditions: E0(τ)

H(x) = x2 +
arctan

√
1
x2−1√

1
x2−1
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Gradient expansion in conformal RTA kinetic theory

E(τ) ∝ 1

τ4/3

(
1 + e1

τrel
τ

+ e2

(τrel
τ

)2
+ . . .

)

Figure 4: [Heller,Kurkela,Spalinski,VS,1609.04803]



Gradient expansion for different ∆

[Heller,VS,1802.08225]



Perturbations around gradient expansion

Use ansatz

E(τ) = Ege(τ) + σe
−S τ

τrel τβEβ(τ)

Exponential decay rate S

Only one purely decaying solution: S is real.

No off-axis singularities.

Power law β ∫ 1

0
dxH (x) xβ = 0

3F2

(
1, β2 + 2, β2 + 2; β2 + 5

2 ,
β
2 + 3; 1

)
2β2 + 14β + 24

+
1

2(β + 4)
= 0
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Allowed power laws β

Leading power law: β = −3.43 . . .
Logarithmic oscillations: <(στβ) ∝ τ<(β) cos(θ + =(β) log(τ))



Which contour to use in the integral equation?



Which contour to use in the integral equation?



Finding transients in numerical solutions

E(τ) = D(τ, τ0)E0(τ) +

∫ τ

τ0

dτ ′

2τrel
D(τ, τ ′)H

(
τ ′

τ

)
E(τ ′)

Numerically solvable by iteration, starting with E0

[Phys.Lett. B224, 16 (1989), Banerjee, Bhalerao, Ravishankar]
[1305.7234, Florkowski, Ryblewski, Strickland]

Can we study transients numerically?

Need w ≡ τ
τrel
∼ 100⇒ e−w ∼ 10−50
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Precision numerics with spectral methods

error ∝ (# grid points)−m e−# grid points



Subtracting solutions to see transients

Gradient expansion of pressure anisotropy A(w) = PT (τ)−PL(τ)
P(τ) is universal

Gradient expansion: A0 = A

Leading transient: A1 =
d

dw
log
(
A0 −A′0

)
Subleading transient: A2 =

d

dw
log
(
A1 −A′1

)



Exponential decay of leading transient

A1(w) = −1 +
β1 + 7/3

w
+ . . .



Power law of leading transient

β1 + . . . = w(A1(w) + 1)− 7/3



Subleading transient

wA2(w) ≈ −3.0271− 0.5614 tan (θ + 0.5614 log(w))
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Signatures of off-axis modes at ∆ = 2.5



Signatures of off-axis modes at ∆ = 2.5



Two types of modes are extractable from the divergent
behaviour of the gradient expansion

Each σi is a free parameter

Off axis modes are fixed

E(τ) = Ege(τ) + e
−Sreal axis

τ
τrel

∑
i

σiτ
βiEβi (τ)

+ e
−Soff axis

τ
τrel Eoff axis(τ) + . . .



Outlook

Three ways to study transients

Borel transform of gradient expansion

Perturbations around gradient expansion

Subtracting numerical solutions

Non-hydrodynamic sector in other models?

More general relaxation time, e.g. momentum dependent...

Other flows, e.g. Gubser...

Beyond RTA: more realistic collision kernels, EKT for QCD...
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