How does kinetic theory remember about initial conditions?

Viktor Svensson

National centre for nuclear research, Warsaw
Max Planck Institute for Gravitational Physics, Potsdam-Golm

7th May, Trento

Introduction

- Initial conditions of kinetic theory transform into hydrodynamic information
- How is information from the pre-hydrodynamic stage kept?

Introduction

- Initial conditions of kinetic theory transform into hydrodynamic information
- How is information from the pre-hydrodynamic stage kept?
Answers in Bjorken flow described by BRSSS or Holography

Transients/Quasinormal modes/Non-hydrodynamic modes

Introduction

- Initial conditions of kinetic theory transform into hydrodynamic information
- How is information from the pre-hydrodynamic stage kept?
Answers in Bjorken flow described by BRSSS or Holography

Transients/Quasinormal modes/Non-hydrodynamic modes

Hydrodynamization in kinetic theory?

Similiarities between hydrodynamization at strong and weak coupling \longrightarrow universal lessons

Bjorken flow

Highly symmetric flow

- Homogeneous and isotropic transverse to beam
- Boost-invariant in beam direction

BRSSS in conformal Bjorken flow [Heller, Spalinski,1503.07514]

Pressure anisotropy $\mathcal{A}(w)=\frac{\mathcal{P}_{T}(\tau)-\mathcal{P}_{L}(\tau)}{\mathcal{P}(\tau)}$ as function of $w=\tau T$

- Governed by differential equation:

$$
C_{\tau_{\pi}} w\left(1+\frac{\mathcal{A}}{12}\right) \mathcal{A}^{\prime}+\left(\frac{C_{\tau_{\pi}}}{3}+\frac{C_{\lambda_{1}}}{8 C_{\eta}}\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{\eta}=0
$$

BRSSS in conformal Bjorken flow [Heller, Spalinski,1503.07514]

Pressure anisotropy $\mathcal{A}(w)=\frac{\mathcal{P}_{T}(\tau)-\mathcal{P}_{L}(\tau)}{\mathcal{P}(\tau)}$ as function of $w=\tau T$

- Governed by differential equation:

$$
C_{\tau_{\pi}} w\left(1+\frac{\mathcal{A}}{12}\right) \mathcal{A}^{\prime}+\left(\frac{C_{\tau_{\pi}}}{3}+\frac{C_{\lambda_{1}}}{8 C_{\eta}}\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{\eta}=0
$$

- Formal solution in gradient expansion: $\mathcal{A}(w)=f_{0}+\frac{f_{1}}{w}+\frac{f_{2}}{w^{2}}+\ldots$

BRSSS in conformal Bjorken flow [Heller, Spalinski,1503.07514]

Pressure anisotropy $\mathcal{A}(w)=\frac{\mathcal{P}_{T}(\tau)-\mathcal{P}_{L}(\tau)}{\mathcal{P}(\tau)}$ as function of $w=\tau T$

- Governed by differential equation:

$$
C_{\tau_{\pi}} w\left(1+\frac{\mathcal{A}}{12}\right) \mathcal{A}^{\prime}+\left(\frac{C_{\tau_{\pi}}}{3}+\frac{C_{\lambda_{1}}}{8 C_{\eta}}\right) \mathcal{A}^{2}+\frac{3}{2} w \mathcal{A}-12 C_{\eta}=0
$$

- Formal solution in gradient expansion: $\mathcal{A}(w)=f_{0}+\frac{f_{1}}{w}+\frac{f_{2}}{w^{2}}+\ldots$

Perturbations around the gradient expansion
$\mathcal{A}(w)+\delta \mathcal{A}(w) \rightarrow \delta \mathcal{A}(w) \sim e^{-\frac{3}{2 C_{T_{\pi}}} w} w^{\frac{C_{\eta}-2 C_{\lambda_{1}}}{C_{\tau_{\pi}}}}$

The gradient expansion diverges and reveals transients

Figure 1: [Heller, Spalinski,1503.07514]

$$
f_{k} \sim \frac{\Gamma(k+\beta)}{(-S)^{k}} \xrightarrow{\text { Borel transform }} \text { poles of the form } \frac{1}{(S-x)^{\beta+1}}
$$

$\xrightarrow{\text { Resummation }}$ contributions of the form $e^{-S w} w^{\beta}$

The gradient expansion diverges and reveals transients

Figure 1: [Heller, Spalinski,1503.07514]

Figure 2: [Basar, Dunne, 1509.05046]

$$
f_{k} \sim \frac{\Gamma(k+\beta)}{(-S)^{k}} \xrightarrow{\text { Borel transform }} \text { poles of the form } \frac{1}{(S-x)^{\beta+1}}
$$

$\xrightarrow{\text { Resummation }}$ contributions of the form $e^{-S w} w^{\beta}$

Similar story in holography

- Gradient expansion in Bjorken flow diverges [Heller, Janik, Witaszczyk,1302.06979]
- Initial conditions: Specify metric on a timeslice

Quasinormal modes in Bjorken flow

$$
\delta \mathcal{E}_{i}=\sigma_{i} \tau^{\alpha_{i}} e^{-S_{i} \tau^{2 / 3}}
$$

Borel plane in holography

Figure 3: [1302.0697,1707.02282]

$$
\delta \mathcal{E}_{i}=\sigma_{i} \tau^{\alpha_{i}} e^{-S_{i} \tau^{2 / 3}}
$$

Initial conditions, gradient expansion and non-hydrodynamic modes in BRSSS and Holography

- Divergence of gradient expansion revealed non-hydrodynamic modes
- Each mode has a free parameter set by initial conditions
- In BRSSS: one free parameter \rightarrow one transient
- Holography: infinite number of transients

Kinetic theory

Distribution function
$f(x, p)=$ number of particles at position x with momentum p .

Evolution described by Boltzmann equation
Free streaming $\longrightarrow \quad p^{\mu} \partial_{\mu} f(x, p)=\mathcal{C}[f] \quad \longleftarrow$ Collision kernel

Kinetic theory

Distribution function

$f(x, p)=$ number of particles at position \times with momentum p .

Evolution described by Boltzmann equation
Free streaming $\longrightarrow \quad p^{\mu} \partial_{\mu} f(x, p)=\mathcal{C}[f] \quad \longleftarrow$ Collision kernel

Simplifies in Bjorken flow and Relaxation time approximation (RTA)

$$
\partial_{\tau} f(\tau, p)=\frac{f_{e q}(\tau, p)-f(\tau, p)}{\tau_{\mathrm{rel}}}
$$

$$
f_{e q}(\tau, p) \propto e^{-\frac{E(\rho)}{T(\tau)}}(\text { we consider classical, massless particles })
$$

$$
\tau_{\text {rel }} \propto T^{-\Delta}, \quad \Delta<3
$$

Energy density satisfies an integral equation [Florkowski,Ryblewski,Strickland,1305.7234]

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right),
$$

Energy density satisfies an integral equation [Florkowski,Ryblewski,Strickland,1305.7234]

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right),
$$

Damping: $D\left(\tau, \tau^{\prime}\right)=e^{-\int_{\tau^{\prime}}^{\tau} \frac{\mathrm{dt}}{\tau_{\mathrm{rel}}}}$

Energy density satisfies an integral equation [Florkowski,Ryblewski,Strickland,1305.7234]

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right),
$$

Damping: $D\left(\tau, \tau^{\prime}\right)=e^{-\int_{\tau^{\prime}}^{\tau} \frac{\mathrm{dt}}{\tau_{\mathrm{rel}}}}$
Initial conditions: $\mathcal{E}^{0}(\tau)$

Energy density satisfies an integral equation [Florkowski,Ryblewski,Strickland,1305.7234]

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right),
$$

Damping: $D\left(\tau, \tau^{\prime}\right)=e^{-\int_{\tau^{\prime}}^{\tau} \frac{\mathrm{dt}}{\tau_{\mathrm{rel}}}}$
Initial conditions: $\mathcal{E}^{0}(\tau)$
$H(x)=x^{2}+\frac{\arctan \sqrt{\frac{1}{x^{2}}-1}}{\sqrt{\frac{1}{x^{2}}-1}}$

Energy density satisfies an integral equation [Florkowski,Ryblewski,Strickland,1305.7234]

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}\left(\tau^{\prime}\right)} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right),
$$

Damping: $D\left(\tau, \tau^{\prime}\right)=e^{-\int_{\tau^{\prime}}^{\tau} \frac{d t}{\tau_{\text {rel }}}}$ Initial conditions: $\mathcal{E}^{0}(\tau)$
$H(x)=x^{2}+\frac{\arctan \sqrt{\frac{1}{x^{2}}-1}}{\sqrt{\frac{1}{x^{2}-1}}}$

Gradient expansion in conformal RTA kinetic theory

$$
\mathcal{E}(\tau) \propto \frac{1}{\tau^{4 / 3}}\left(1+e_{1} \frac{\tau_{\mathrm{rel}}}{\tau}+e_{2}\left(\frac{\tau_{\mathrm{rel}}}{\tau}\right)^{2}+\ldots\right)
$$

Figure 4: [Heller,Kurkela,Spalinski,VS,1609.04803]

Gradient expansion for different Δ

Perturbations around gradient expansion

Use ansatz

$\mathcal{E}(\tau)=\mathcal{E}_{g e}(\tau)+\sigma e^{-S \frac{\tau}{\tau_{\mathrm{rel}}} \tau^{\beta} \mathcal{E}_{\beta}(\tau)}$
Exponential decay rate S

- Only one purely decaying solution: S is real.
- No off-axis singularities.

Perturbations around gradient expansion

Use ansatz
$\mathcal{E}(\tau)=\mathcal{E}_{\mathrm{ge}}(\tau)+\sigma \mathrm{e}^{-S_{\tau_{\mathrm{rel}}}} \tau^{\beta} \mathcal{E}_{\beta}(\tau)$
Exponential decay rate S

- Only one purely decaying solution: S is real.
- No off-axis singularities.

Power law β

$$
\int_{0}^{1} \mathrm{~d} x H(x) x^{\beta}=0
$$

Perturbations around gradient expansion

Use ansatz
$\mathcal{E}(\tau)=\mathcal{E}_{\mathrm{ge}}(\tau)+\sigma \mathrm{e}^{-S_{\tau_{\mathrm{rel}}}} \tau^{\beta} \mathcal{E}_{\beta}(\tau)$
Exponential decay rate S

- Only one purely decaying solution: S is real.
- No off-axis singularities.

Power law β

$$
\begin{gathered}
\int_{0}^{1} \mathrm{~d} x H(x) x^{\beta}=0 \\
\frac{{ }_{3} F_{2}\left(1, \frac{\beta}{2}+2, \frac{\beta}{2}+2 ; \frac{\beta}{2}+\frac{5}{2}, \frac{\beta}{2}+3 ; 1\right)}{2 \beta^{2}+14 \beta+24}+\frac{1}{2(\beta+4)}=0
\end{gathered}
$$

Allowed power laws β

Leading power law: $\beta=-3.43 \ldots$
Logarithmic oscillations: $\Re\left(\sigma \tau^{\beta}\right) \propto \tau^{\Re(\beta)} \cos (\theta+\Im(\beta) \log (\tau))$

Which contour to use in the integral equation?

Which contour to use in the integral equation?

Finding transients in numerical solutions

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right)
$$

Numerically solvable by iteration, starting with \mathcal{E}^{0}
[Phys.Lett. B224, 16 (1989), Banerjee, Bhalerao, Ravishankar]
[1305.7234, Florkowski, Ryblewski, Strickland]

Finding transients in numerical solutions

$$
\mathcal{E}(\tau)=D\left(\tau, \tau_{0}\right) \mathcal{E}^{0}(\tau)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{2 \tau_{\mathrm{rel}}} D\left(\tau, \tau^{\prime}\right) H\left(\frac{\tau^{\prime}}{\tau}\right) \mathcal{E}\left(\tau^{\prime}\right)
$$

Numerically solvable by iteration, starting with \mathcal{E}^{0}
[Phys.Lett. B224, 16 (1989), Banerjee, Bhalerao, Ravishankar]
[1305.7234, Florkowski, Ryblewski, Strickland]
Can we study transients numerically?
Need $w \equiv \frac{\tau}{\tau_{\text {rel }}} \sim 100 \Rightarrow e^{-w} \sim 10^{-50}$

Precision numerics with spectral methods

error $\propto \quad(\# \text { grid points) })^{-m}$

$e^{-\# \text { grid points }}$

Subtracting solutions to see transients

Gradient expansion of pressure anisotropy $\mathcal{A}(w)=\frac{\mathcal{P}_{T}(\tau)-\mathcal{P}_{L}(\tau)}{\mathcal{P}(\tau)}$ is universal

Gradient expansion: $\mathcal{A}_{0}=\mathcal{A}$
Leading transient: $\mathcal{A}_{1}=\frac{\mathrm{d}}{\mathrm{d} w} \log \left(\mathcal{A}_{0}-\mathcal{A}_{0}^{\prime}\right)$
Subleading transient: $\mathcal{A}_{2}=\frac{\mathrm{d}}{\mathrm{d} w} \log \left(\mathcal{A}_{1}-\mathcal{A}_{1}^{\prime}\right)$

Exponential decay of leading transient

$$
\mathcal{A}_{1}(w)=-1+\frac{\beta_{1}+7 / 3}{w}+\ldots
$$

Power law of leading transient

$$
\beta_{1}+\ldots=w\left(\mathcal{A}_{1}(w)+1\right)-7 / 3
$$

Subleading transient

$$
w \mathcal{A}_{2}(w) \approx-3.0271-0.5614 \tan (\theta+0.5614 \log (w))
$$

Subleading transient

$$
w \mathcal{A}_{2}(w) \approx-3.0271-0.5614 \tan (\theta+0.5614 \log (w))
$$

Signatures of off-axis modes at $\Delta=2.5$

Pressure anisotropy

Signatures of off-axis modes at $\Delta=2.5$

Log[Pressure anisotropy - truncated gradient expansion]

Two types of modes are extractable from the divergent behaviour of the gradient expansion

- Each σ_{i} is a free parameter
- Off axis modes are fixed

$$
\begin{aligned}
\mathcal{E}(\tau)=\mathcal{E}_{g e}(\tau) & +e^{-S_{\text {real axis }} \frac{\tau}{\tau_{\text {rel }}}} \sum_{i} \sigma_{i} \tau^{\beta_{i}} \mathcal{E}_{\beta_{i}}(\tau) \\
& +e^{-S_{\text {off axis }} \frac{\tau}{\tau_{\text {rel }}}} \mathcal{E}_{\text {off axis }}(\tau)+\ldots
\end{aligned}
$$

Outlook

Three ways to study transients

- Borel transform of gradient expansion
- Perturbations around gradient expansion
- Subtracting numerical solutions

Outlook

Three ways to study transients

- Borel transform of gradient expansion
- Perturbations around gradient expansion
- Subtracting numerical solutions

Non-hydrodynamic sector in other models?

- More general relaxation time, e.g. momentum dependent...
- Other flows, e.g. Gubser...
- Beyond RTA: more realistic collision kernels, EKT for QCD...

