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Outline
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• What do we mean by collectivity ?
• Specificities of small systems
• A few recent predictions

Giacalone, Noronha-Hostler,  JYO  1702.01730 

https://arxiv.org/abs/1702.01730


Particle emission in hydrodynamics
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• Particles emitted independently (no 
correlations) on the freeze-out surface

• The anisotropy of the single-particle 
momentum distribution (vn) is driven by the 
initial density profile. 

• There is certainly more, but we can use these 
two properties as a first definition of 
collectivity.



Property #1:  The flow paradigm
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• Particles are emitted independently in every 
event with momentum distribution f(p)

• f(p) fluctuates event to event  
  - azimuthal angle of impact parameter fluctuates 
  - more generally: fluctuations in density profile, hot spots..

• Averaging over events generates non-trivial 
correlations to all orders, e.g., the pair 
distribution is <f(p1) f(p2)>

Alver & Roland  1003.0194 

https://arxiv.org/abs/1003.0194


Flow paradigm naturally explains the ridge
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Pb+Pb

CMS 1305.0609 

p+Pb

• At the expense of an additional symmetry assumption:  
f(p) is essentially independent of rapidity in every event

https://arxiv.org/abs/1305.0609


Hydro versus CGC

6

• Note that some alternatives to hydro 
referred to as CGC strictly comply with this 
flow paradigm.

Dusling Mace Venugopalan  1705.00745 

https://arxiv.org/abs/1705.00745
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(courtesy Mark Baker)

An elliptic density profile produces elliptic flow
A triangular density profile produces triangular flow…

Pressure gradient : flow

Property #2:  Initial spatial anisotropy as 
the seed of anisotropic flow



Specificities of small systems

8

• Nonflow correlations, breaking the flow 
paradigm, are larger. 

• Initial anisotropies are solely produced by 
fluctuations (in p+p and p+Pb) and these 
fluctuations are larger in small systems. 



Nonflow
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• Particles sometimes come in clusters (jets, 
resonance decays). 

• The probability that two arbitrary particles come 
from the same cluster scales like 1/(# of clusters). 

• Hence, nonflow contribution to a 2-particle 
correlation typically scales like 1/Nch and is larger 
for small systems. 

• Nonflow both present at short Δη (short range) 
and large Δη (away-side)



Methods to suppress nonflow
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• Rapidity gap: eliminates short-range nonflow. 
Usually implemented in 2-particle correlations 
vn{2}  

• Cumulants: higher-order correlations: vn{4}, vn{6}.  
 

• Note that flow depends on rapidity and 
comparing vn{2} with gap and vn{4} without gap 
is not apples-to-apples. 

PHENIX nucl-ex/0305013 

Borghini et al nucl-th/0007063 nucl-th/0105040  
Bilandzic et al 1010.0233 

http://arxiv.org/abs/nucl-ex/0305013
http://arxiv.org/abs/nucl-th/0105040
http://arxiv.org/abs/nucl-th/0007063
http://arxiv.org/abs/nucl-th/0105040
https://arxiv.org/abs/1010.0233


Recent progress: cumulants with gaps
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Jia Zhou Trzupek  1701.03830 
Di Francesco et al  1612.05634 
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PHENIX 1804.10024 

In Au+Au, rapidity gaps matter for v2{2}, not v2{4}. 

https://arxiv.org/abs/1701.03830
https://arxiv.org/abs/1612.05634
https://arxiv.org/abs/1804.10024
http://arxiv.org/abs/nucl-th/0105040
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Recent progress: cumulants with gaps
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ATLAS 1708.03559 

In p+Pb, v2{4} depends somewhat on the gap

https://arxiv.org/abs/1708.03559
http://arxiv.org/abs/nucl-th/0105040


Recent progress: cumulants with gaps
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ATLAS 1708.03559 

In p+p, a gap changes everything
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Anisotropy fluctuations
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• Small fluctuations are often Gaussian (central 
limit theorem). 

• This also applies to εn fluctuations  

• =Transverse, 2-dimensional Gaussian 
fluctuations usually dubbed Bessel-Gaussian

• Such fluctuations imply vn{4}=vn{6}=…=0 
in small systems (no mean v2 in reaction plane)

• Small systems have large fluctuations, and this 
results in non-Gaussianities. 

Voloshin, Poskanzer, Aihong Tang, Gang Wang 0708.0800  

https://arxiv.org/abs/0708.0800


Non-Gaussianities in p+Pb
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Monte Carlo simulations based on 
the Trento model of initial 
conditions (essentially a Monte 
Carlo Glauber)

Giacalone et al  1702.01730 

Moreland Bernhard Bass 1412.4708

A generic prediction is that non 
Gaussianities increase as a function 
of centrality %: smaller systems are 
less Gaussian. Seen by CMS. 

No hydro here:  We assume that vn 
is proportional to εn in every event. 

https://arxiv.org/abs/arXiv:1702.01730
https://arxiv.org/abs/1412.4708


Anisotropy fluctuations
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Li Yan  JYO  1312.6555  
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New Power 
Parametrization of the 
distribution of εn in 
the form

     P(εn)=εn(1-εn
2)α

Takes into account the 
bound εn < 1

A single parameter α 
fixes the width.  

https://arxiv.org/abs/arXiv:1312.6555


Higher-order Cumulants
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• The Power distribution 
predicts a near degeneracy 
of higher-order cumulants 
in small systems, even 
though anisotropy is solely 
due to fluctuations 

• Once v{4}/v{2} is known, 
the small lifting of 
degeneracy between 
higher-order cumulants is 
precisely predicted

(number of pointlike sources)



Higher-order Cumulants
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•Monte Carlo simulations of 
the initial state (Trento 
model) agree with the 
analytic prediction from the 
Power distribution 

•CMS preliminary data also in 
good agreement
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Giacalone et al  1702.01730 

https://arxiv.org/abs/arXiv:1702.01730


Higher-order Cumulants
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• Also works for triangular 
flow (higher order 
cumulants not yet 
measured in p+Pb)
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Giacalone et al  1702.01730 

https://arxiv.org/abs/arXiv:1702.01730


Conclusions
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• Long range correlations naturally explained 
by independent particle emission from a 
fluctuating source (flow paradigm). This also 
applies to the CGC framework. 

• Assuming that anisotropic flow is a linear 
response to the initial anisotropy allows one 
to make accurate, quantitative predictions for 
higher-order cumulants, which can be tested 
against data. 



Backup slides
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• One can measure much more than the rms value 
of v2. Also higher order moments and cumulants 
 
               v2{2}=(⟨v22⟩)1/2 

                      v2{4}=(2⟨v22⟩2-⟨v24⟩)1/4 

                      v2{6}=((⟨v26⟩-9⟨v24⟩⟨v22⟩+12⟨v22⟩3)/4)1/6  

                            

• v2{4} < v2{2} if v2 fluctuates
• v2{4}=v2{6} if fluctuations are 2-dim. Gaussian. 

The fluctuations of  elliptic flow


