

Recent results on heavy quark dynamics in small systems

Matt Durham durham@lanl.gov

ECT* Workshop Nov 2021

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA

Outline

- Brief introduction
- Effects on conventional quarkonia in small systems
 - Recent PHENIX results on J/ ψ , $\psi(2S)$
- Effects on exotic quarkonium in small systems
 - Detailed look at X(3872) and T_{cc}^+ in medium
- Outlook: Fixed-target collisions at the LHCb

Heavy quark production at colliders

- Not present in incoming beam particles must be manufactured
- Mass $\gg \Lambda_{QCD}$, perturbative methods applicable

Heavy quark production at colliders

- Not present in incoming beam particles must be manufactured
- Mass $\gg \Lambda_{QCD}$, perturbative methods applicable

Allowed bound states understood through potential models

$$V_0^{(c\bar{c})}(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\tilde{\delta}_{\sigma}(r)\vec{S}_c\cdot\vec{S}_{\bar{c}}$$

PRD 72, 054026 (2005)

Rev. Mod. Phys. 90, 015003 (2018)

 ${}^{1}P_{1} {}^{3}P_{0,1,2} {}^{1}D_{2} {}^{3}D_{1,2,3} {}^{1}F_{3} {}^{3}F_{2,3,4} {}^{1}G_{4} {}^{3}G_{3,4,5}$

 ${}^{1}S_{0} {}^{3}S_{1}$

The QCD medium

Diffuse medium (pp,pA)

Increasing T, N_{charged} Dense medium (pA, AA)

Use quarkonia states to probe non-perturbative effects in dense many-body hadronic systems

The QCD medium

Diffuse medium (pp,pA)

Increasing T, N_{charged} Dense medium (pA, AA)

Use quarkonia states to probe non-perturbative effects in dense many-body hadronic systems

Use interactions in a QCD medium to probe poorly understood heavy quark states.

J/ψ in small systems at PHENIX

J/ψ in small systems at PHENIX

- Forward rapidity (p or 3He-going direction):
 - Data generally in agreement with nPDF calculations
- Backward rapidity (A-going direction):
 - Data from Au nucleus is **inconsistent with nPDF calculation**:
 - Additional effects required to explain data

nPDF calculations reweighted to include LHC data Kusina, Lansberg, Schienbein, Shao, Phys. Rev. Lett. 121, 052004 (2018)

J/ψ in small systems at PHENIX

- Forward rapidity (p or 3He-going direction):
 - Data generally in agreement with nPDF calculations
- Backward rapidity (A-going direction):
 - Data from Au nucleus is **inconsistent with nPDF calculation**:
 - Additional effects required to explain data
 - Nuclear absorption at backwards rapidity relieves tension

nPDF calculations reweighted to include LHC data Kusina, Lansberg, Schienbein, Shao, Phys. Rev. Lett. 121, 052004 (2018)

$\psi(2S)$ in small systems at PHENIX

-Data generally in agreement with nPDF calculations

$\psi(2S)$ in small systems at PHENIX

-Transport model consistent, shadowing dominant

$\psi(2S)$ in small systems at RHIX and LHC

Comover breakup: Phys. Lett. B, 393(3):431, (1997) Phys. Rev. Lett., 78:1006–1009 (1997) Phys. Lett. B, 749:98, (2015) Phys. Rev. C, 97:014909 (2018) JHEP, 2018(10):94 (2018)

Regardless of mechanism: Effect is sensitive to *binding energy* and *density of medium*

Deuteron production in the QCD medium

Deuteron: weakly bound state of neutron and proton, $E_b \approx 2 MeV$

Effectively an np hadronic molecule

Deuteron production in the QCD medium

Deuteron: weakly bound state of neutron and proton, $E_b \approx 2 MeV$

Effectively an np hadronic molecule

Production relative to protons increases with system density:

Well described by coalescence models. Favors production at high multiplicity.

Exotic heavy quark states

Wide range of explanations: tetra- or pentaquarks, hadronic molecules, glueballs, mixtures... Given wide range of states, multiple structures likely

The first heavy exotic hadron, discovered in $J/\psi\pi^+\pi^-$ mass spectrum from B decays by Belle in 2003

- The first heavy exotic hadron, discovered in $J/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003
- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states

Artoisenet, Braaten PRD 81 114018 (2010) • The first heavy exotic hadron, discovered in $J/\psi \pi^+\pi^-$ mass spectrum from B decays by Belle in 2003

- LHCb measured quantum numbers (PRL 110 222001 2013)
 - Incompatible with expected charmonium states
- Mass is consistent with sum of D^0 and \overline{D}^{*0} masses:

 $(M_{D^0} + M_{\bar{D}^{*0}}) - M_{\chi_{c1}(3872)} = 0.07 \pm 0.12 \text{ MeV}/c^2$

Large prompt production fraction (~80%) – inconsistent with D meson coalescence in pp*

 $D^{0}\overline{D}^{*}$ Molecule

VERY small binding energy VERY large radius, ~10 fm Compact tetraquark

exchange between diquarks Small radius, ~1 fm

PRL 126 092001 (2021)

arXiv:2109.07360

Ratio of $X(3872)/\psi(2S)$ gives direct comparison between well-known charmonium state and poorly understood exotic, also cancels some uncertainties.

arXiv:2109.07360

ū

20

 $p_{\rm T}$ [GeV/c]

LHCb

 $\sqrt{s} = 8 \text{ TeV}$

 2.0 fb^{-1}

nonprompt

15

LHCb

 $\sqrt{s} = 13 \text{ TeV}$

 $5.4 \, \text{fb}^{-1}$

nonprompt

15

 $p_{\rm T} [{\rm GeV}/c]$

arXiv:2109.07360

$$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$$

Ratio of $X(3872)/\psi(2S)$ gives direct comparison between well-known charmonium state and poorly understood exotic, also cancels some uncertainties.

Prompt and non-prompt vs multiplicity

$$f_{prompt} = \frac{N_{prompt}}{N_{prompt} + N_{b-decay}}$$

- Significant modification of both X(3872) and $\psi(2S)$ production as event activity increases:
- The *b* decay component, which is produced in vacuum can serve as an unmodified reference sample.

Prompt and non-prompt vs multiplicity

X(3872)/ψ(2S) vs multiplicity

Does *b* hadron chemistry vary with multiplicity? New LHCb results expected soon.

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by \boldsymbol{b} decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c} \right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by **b** decay branching

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c} \right)^n \right\rangle$$

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Molecular X(3872) with large radius and large comover breakup cross section is immediately dissociated

Coalescence of D mesons into molecular X(3872) increases ratio

Prompt component:

Increasing suppression of X(3872) production relative to $\psi(2S)$ as multiplicity increases

b-decay component:

Totally different behavior: no significant change in relative production, as expected for decays in vacuum. Ratio is set by \boldsymbol{b} decay branching ratios.

Calculations from EPJ C 81, 669 (2021)

Break-up cross section:

$$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c} \right)^n \right\rangle$$

Compact tetraquark of size 1.3 fm gradually dissociated as multiplicity increases – consistent with data

Comover model: constituent interaction

Different method of calculating breakup cross section: Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

Breakup cross section approximated as sum of cross section for molecule constituents:

 $\sigma^{\text{incl}}[\pi X] \approx \frac{1}{2} (\sigma[\pi D^0] + \sigma[\pi \bar{D}^0] + \sigma[\pi D^{*0}] + \sigma[\pi \bar{D}^{*0}])$

Data is consistent with this molecular interpretation.

Comover model: constituent interaction

Different method of calculating breakup cross section: Braaten, He Ingles, Jiang Phys. Rev. D 103, 071901 (2021)

If breakup is due to scattering of individual constituents, would all $c\bar{c}$ have equal suppression? Not observed in charmonium or bottomonium systems.

Newest LHCb exotic: T_{cc}^+

New state consistent with $cc\bar{u}\bar{d}$ tetraquark recently found: Similar to X(3872), mass quite close to $D^{*+}D^{0}$ threshold

 $\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \, {\rm keV}/c^2$

Big difference: contains cc or $\overline{c}\overline{c}$, rather than $c\overline{c}$

Newest LHCb exotic: T_{cc}^+

New state consistent with $cc\bar{u}\bar{d}$ tetraquark recently found: Similar to X(3872), mass quite close to $D^{*+}D^{0}$ threshold

 $\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \, {\rm keV}/c^2$

Big difference: contains cc or $\overline{c}\overline{c}$, rather than $c\overline{c}$

Yield favors higher multiplicity collisions, reminiscent of deuteron, and multiplicity dist is similar to D^0D^0 . Evidence for hadronic molecule structure?

New Particles at the LHC

https://www.nikhef.nl/~pkoppenb/particles.html

Fixed target configuration - SMOG

Measurements so far: Charm production in p+He and p+Ar: PRL 122 132002 (2019) Antiproton production in p+He: PRL 121 222001 (2018)

Near future: SMOG II at LHCb

https://cds.cern.ch/record/2673690/files/LHCB-TDR-020.pdf

Example	SMOG2 pAr at 115 C	SeV for one yea
Int. Lum	80 pb ⁻¹	
Sys.erro	or of J/Ψ xsection	~3%
J/Ψ	yield yield	28 M 280 M
Λ_c	yield	2.8 M
Ψ' $\Upsilon(1S)$	yield vield	280 k 24 k
$DY \mu^+\mu$	- yield	24 k

- Upgraded SMOG 2 system at LHCb allows greatly increased rates of beam+gas collisions at LHCb
- Variable target gases allows hadronic environment to be adjusted (H, He, ..., Xe)
- Access to exotic states near RHIC energies
- Can potentially run concurrent with proton+proton collisions large data sets

SMOG II installed at LHCb

Summary

- Over the years at fixed target experiments and colliders, we have developed tools to use quarks to probe the nuclear medium.
- We can in turn use what we have learned about the nuclear medium to probe newly discovered, poorly understood hadrons.
- With the large number of exotic states and future data sets and upgrades, many more discoveries await us.

Los Alamos is supported by the US Dept. of Energy/Office of Science/Office of Nuclear Physics

ALICE and PHENIX RpA

Example: P_c^{\pm} pentaquarks

Select daughters from the decay

 $\Lambda_b^0 \to J/\psi p K^-$

Masses are close to meson+baryon thresholds – candidate hadronic molecule

Example: Charged Tetraquark: Z_c^{\pm}

1000

500

16

Candidates / (0.2 GeV^2)

Select daughters from the decay

 $B^0 \rightarrow \psi(2S)K^{\dagger}\pi^{-}$

Charged and contains $c\overline{c}$ pair: minimal quark content $c\overline{c}q\overline{q}$

Mass not close to hadron+hadron threshold – candidate compact tetraquark

18

 $m_{\psi,\pi^{-}}^{2}$ [GeV²]

20

47

22

Exotic X(3872) in dense medium (PbPb)

Prompt X(3872)/ ψ (2S) = 1.10 ± 0.51 ± 0.53 in PbPb at 5 TeV Prompt X(3872)/ ψ (2S) ≈ 0.1 in pp at 8 TeV

Exotic X(3872) in dense medium (PbPb)

CMS-PAS-HIN-19-005

Future facility: Electron-Ion Collider

EIC site selection at BNL announced Jan 2020, CD-1 July 2021, operational ~2030

 \sqrt{s} ~20 - 100 GeV e+p, e+O, e+Al, e+Cu, e+Au, e+U,...

Charm production inside the nucleus probes:

- Parton structure of nucleons
- Parton distribution function modifications
- QCD energy loss

Future facility: Electron-Ion Collider

EIC site selection at BNL announced Jan 2020, CD-1 July 2021, operational ~2030

 \sqrt{s} ~20 - 100 GeV e+p, e+O, e+Al, e+Cu, e+Au, e+U,...

Charm production inside the nucleus probes:

- Parton structure of nucleons
- Parton distribution function modifications
- QCD energy loss

Hadronization inside the nucleus becomes important

Filtering States with the Nucleus

• Quarkonia is subject to breakup as it crosses the nucleus – suppression due to disruption of the $Q\bar{Q}$ pair

- Larger (weakly bound) states sample a larger volume of the nucleus while passing through larger absorption cross section Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906
- Explains trends observed in fixed target data at FNAL, SPS
- Test idea via MC simulation of propagation through nucleus for three cases:
 - $\psi(2S)$ with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Relative modification of X(3872)/ $\psi(2S)$ at EIC

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^X}{\sigma_{eA}^{\psi}} / \frac{\sigma_{ep}^X}{\sigma_{ep}^{\psi}}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.

X(3872) is only an example, model equally applicable for other exotics accessible at EIC

Propagation through Nuclei

- In Monte Carlo simulation, populate a Glauber nucleus, using parameters from PHOBOS model: arXiv:1408.2549
- Randomly select starting point for $Q\bar{Q}$ pair
- Propagate $Q\bar{Q}$ along z axis
- Following model of Arleo *et al.* in Phys Rev C, 61 054906 (2000), expand $Q\bar{Q}$ radius as a function of time:

 $r_{c\bar{c}}(\tau) = \begin{cases} r_0 + v_{c\bar{c}} & \tau & \text{if } r_{c\bar{c}}(\tau) \leq r_i \\ r_i & \text{otherwise} \end{cases}$

- Calculate radius-dependent cross section: $\sigma_{(c\bar{c})_1N} = \sigma_{\psi N}(s) \cdot (r_{c\bar{c}}/r_{\psi})^2$
- If the state comes within a distance of $\sqrt{\sigma_{c\bar{c}}/\pi}$ to a nucleon, consider it disrupted.
- Three cases: $\psi(2S)$ with radius 0.87 fm, compact X(3872) with radius 1 fm, molecular X(3872) with radius 7 fm

Filtering States with the Nucleus

- At the EIC, hadronization inside the nucleus becomes an important effect (Vitev, 1912. 10965)
- Quarkonia is subject to breakup as it crosses the nucleus suppression due to disruption of the $Q\bar{Q}$ pair NA50, EPJC 48 329 (2006)

Cross section Arleo, Gossiaux, Gousset, Aichelin PRC 61 (2000) 054906

- Explains trends observed in fixed target data at FNAL, SPS
- As expected, fails at RHIC (hadronization occurs outside nucleus) PHENIX PRL 111 202301 (2013)

state	η_c	J/ψ	Xc0	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
$\Delta E \; [\text{GeV}]$	0.75	0.64	0.32	0.22	0.18	0.05

Satz hep-ph/0512217

Table 1: Charmonium states and binding energies

state	Υ	<u>χ</u> 60	X 61	X62	Υ'	X'50	Хы	χ'_{b2}	Υ"
mass [GeV]	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
ΔE [GeV]	1.10	0.70	0.67	0.64	0.53	0.34	0.30	0.29	0.20

Table 2: Bottomonium states and binding energies

Quarkonia in the QCD medium

Experimentally, we use different collision systems/kinematic regions to prepare environments where different non-perturbative effects dominate.

Separate prompt/non-prompt production

Simultaneous fit to mass and proper time in each multiplicity bin

