Heavy Quark dynamics in ultra-relativistic collision: glasma, impact of vorticity, electromagnetic fields

Vincenzo Greco - University of Catania/INFN-LNS

Collaborators:

- Y.Sun, V. Minissale, L. Oliva
- S. Plumari, M.L. Sambataro
- M. Ruggieri (Lanzhou)
- S.K. Das (Ghoa)
- D. Avramescu, V. Baran (Bucharest)

"Gluon Plasma Characterisation with Heavy Flavour Probes", ECT*@Trento, 15-18 November 2021

Outline

♦ Heavy Flavor dynamical evolution in QGP

♦ Heavy Flavor as a probe of bulk initial stage:

- first studies of the impact of Glasma dynamics
- probe of **bulk vorticity**: initial space distribution of the bulk \rightarrow large v₁ of D mesons

♦ Impact of e.m. field on v_1 of D⁰, <u>D</u>⁰ and l[±] from Z⁰ decay:

- Δv_1 for heavy quarks: large effect w.r.t. light particle
- Correlation between Δv_1 of D and *leptous* from $Z^0 + \Delta M_Z$ and $\Delta \sigma_z$

Studying the HF in uRHIC

[Plumari, Tue 17:30]

Relativistic Boltzmann equation at finite n/s

Bulk evolution

 $p^{\mu}\partial_{\mu}f_{q}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{q}(x,p) = C[f_{q},f_{g}]$ $p^{\mu}\partial_{\mu}f_{g}(x,p) + m(x)\partial_{\mu}^{x}m(x)\partial_{p}^{\mu}f_{g}(x,p) = C[f_{q},f_{g}]$

Free-streaming

Field interaction $\varepsilon - 3p \neq 0$

Collision term gauged to some **η/s≠ 0**

Equivalent to viscous hydro at η/s ≈ 0.1 See M.L. Sambataro talk, Tue 10.:30

HQ evolution

$$p^{\mu}\partial_{\mu}f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{q},f_{g},f_{Q}](x,p)$$

$$\stackrel{q}{\longrightarrow} f_{Q}(x,p) = \mathcal{C}[f_{Q}] = \frac{1}{2E_{1}} \int \frac{d^{3}p_{2}}{2E_{2}(2\pi)^{3}} \int \frac{d^{3}p'_{1}}{2E_{1'}(2\pi)^{3}} \times [f_{Q}(p'_{1})f_{q,g}(p'_{2}) - f_{Q}(p_{1})f_{q,g}(p_{2})] \times |\mathcal{M}_{(q,g)+Q}(p_{1}p_{2} \rightarrow p'_{1}p'_{2})|^{2} \times (2\pi)^{4}\delta^{4}(p_{1}+p_{2}-p'_{1}-p'_{2}),$$

Non perturbative dynamics \rightarrow M scattering matrices (q,g \rightarrow Q) evaluated by Quasi-Particle Model fit to **IQCD thermodynamics**

$$m_g^2(T) = \frac{2N_c}{N_c^2 - 1} g^2(T) T^2$$
$$g^2(T) = \frac{48\pi^2}{(11N_c - 2N_f) \ln\left[\lambda \left(\frac{T}{T_c} - \frac{T_s}{T_c}\right)\right]^2}$$

Impact of off-shell dynamics: M.L. Sambataro et al., *Eur.Phys.J.C* 80 (2020) 12, 1140

What is the underlying D_s?

Reviews:

- F. Prino and R. Rapp, JPG(2019)
- X. Dong and VG, Prog. Part. Nucl. Phys. (2019)
- X. Dong, Y.J. Lee and R. Rapp, Ann.Rev.Nucl.Part.Sci. 69 (2019)
- Jiaxing Zhao et al., Prog. Part. Nucl. Phys. 114 (2020)

*Main Differences in models:

- impact of hadronization
- momentum depedence of diffusion
- not all models describe data with the same quality $[\chi^2\,and/or\,Bayesan\,analysis]$

Future:

- Access low p & precision data (detector upgrade)
- Better insight into hadronization (Λ_c ...)
- New observables: Extend to e-b-e: v_n, ESE q₂ selection & v_n(soft)-v_n(HQ) correlations + v₁(y)
 D-<u>D</u> triggered angular correlations
- Predictions & measurements for **B mesons**

[Sambataro, Tue 10:30]

A first study of HQ in a Glasma What happens for 0+<t<0.3-0.6 fm/c?

$$\langle
ho^a_A(x_T)
ho^b_A(y_T)
angle = (g^2\mu_A)^2\delta^{ab}\delta^{(2)}(x_T-y_T),$$

Inizialization by Mc-Lerran/Venugopalan model PRD49(1994)

$$\frac{dA_i^a(x)}{dt} = E_i^a(x), \tag{16}$$

 $\frac{dE_{i}^{a}(x)}{dt} = \sum_{j} \partial_{j} F_{ji}^{a}(x) - \sum_{b,c,j} f^{abc} A_{j}^{b}(x) F_{ji}^{c}(x).$ (17)

Solving classical Yang-Mills

$$E^{i} = \tau \partial_{\tau} A_{i}, \qquad \partial_{\tau} E^{i} = \frac{1}{\tau} D_{\eta} F_{\eta i} + \tau D_{j} F_{j i}$$
$$E^{\eta} = \frac{1}{\tau} \partial_{\tau} A_{\eta}, \qquad \partial_{\tau} E^{\eta} = \frac{1}{\tau} D_{j} F_{j \eta}.$$

Solved in SU(2)

Heavy quark in the chromo magnetic field

$$\frac{dx_i}{dt} = \frac{p_i}{E}, \qquad E\frac{dQ_a}{dt} = -Q_c \varepsilon^{cba} A_b \cdot p,$$

$$E\frac{dp_i}{dt} = Q_a F^a_{i\nu} p^{\nu}, \qquad \text{Wong's eq.}$$

J. Liu, S. Plumari, K. Das, M. Ruggieri, VG, Phys. Rev. C 102 (2020) 4, 044902

A first study of HQ in a Glasma What happens for 0+<t<0.3-0.5 fm/c?

$$\langle \rho_A^a(x_T) \rho_A^b(y_T)
angle = (g^2 \mu_A)^2 \delta^{ab} \delta^{(2)}(x_T - y_T),$$

Inizialization by Mc-Lerran/Venugopalan model PRD49(1994)

$$\frac{A_i^a(x)}{dt} = E_i^a(x), \tag{16}$$

 $\frac{dE_{i}^{a}(x)}{dt} = \sum_{j} \partial_{j} F_{ji}^{a}(x) - \sum_{b,c,j} f^{abc} A_{j}^{b}(x) F_{ji}^{c}(x).$ (17)

Formation time of transverse E-B fields $g^2\mu\tau \approx 1 \approx \tau_{form}$ (charm) after $\tau \cong Q_s^{-1}$, all components are equal

The very early stage has left some imprints?

J. Liu, S. Plumari, K. Das, M. Ruggieri, VG, Phys. Rev. C 102 (2020) 4, 044902

Initial State at t=0+ from chromo-magnetic fields

- Solving the t=0 divergency (\approx initio of the Collision Universe)
- The issue is not that the unknown early stage would destroy our current picture, but to find signatures of the early stage dynamics

Studying the HF in uRHIC

- M.Ruggieri and S.K. Das, PRD98 (2018)

First estimate of phenomenological impact

Comparison Glasma vs Langevin in early stage – SU(3)

Charm in the Glasma and Langevin starting at t_{form} =0.08 fm/c Same underlying bulk energy density (central PbPb@5.02ATeV) LV: Drag & Diffusion tuned to R_{AA}

D. Avramescu et al., in preparation

- Large initial broadening rate of Glasma at p_T < 5 GeV at τ≥0.3 fm/c LV (HQ scattering in QGP) becomes dominant
- Issue the transition from Glasma to QGP

 To quantify the phenomenological impact start from FONNL and compare HQ Wong's in Glasma bulk vs LV in hydro bulk starting at τ_{form}=1/2m_Q and/or τ₀=0.3-0.6 fm/c

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, JHEP09 (2020) 077 in SU(3) for $M \rightarrow \infty$

$$\frac{\text{Correlator method}}{\langle \dot{p}_i(t)\dot{p}_i(t') \rangle = \frac{g^2}{2N_c} \langle E_i^a(t)E_i^a(t') \rangle}$$

Not really a glasma, but an oveoccupied isotropic Gluon plasma: Longitudinal and transverse E-field components at t₀

Mass effect: Charm vs Bottom in Glasma and LV

Mass effect: Charm vs Bottom in Glasma and LV

Potential impact on AA observables (starting at $\tau = \tau_{form}$ -SU(2))

• Dominance of diffusion-like \rightarrow initial **enhancement of** $R_{AA}(p_T)$

• Gain in v_2 : larger interaction in QGP stage to have same $R_{AA}(p_T)$

To be done in SU(3) + smooth matching + early diffusion in realistic geometry (profile density)

Potential impact on AA observables (starting at $\tau = \tau_{form} - SU(2)$)

- Dominance of diffusion-like \rightarrow initial **enhancement of** $R_{AA}(p_T)$
- Gain in v_2 : larger interaction in QGP stage to have same $R_{AA}(p_T)$

To be done in SU(3) + smooth matching + early glasma diffusion in realistic geometry (profile density) Link pA <-> AA HQ as a probe of the Glasma -> May have key role for D-<u>D</u> angular correlation

Motivation for HQ in the Glasma

- Role of HQ also in the CGC/Glasma studies
- ★ Thorough study of HQ dynamics starting from $\tau_0 \approx 1/2m_Q \approx 0.02$ -0.08 fm/c
- ♦ Relevance to HQ in pA collisions (<->AA)
 → may have a key role of D-<u>D</u> angular correlation
- ✤ May affect the determination of Ds(T)
 → modify (improve) the relation R_{AA} & v₂

Strong fields in relativistic nuclear collisions

✓ HUGE ANGULAR MOMENTUM GENERATING A STRONG VORTICITY

tornado cores $\sim 10^{-1} \, \mathrm{s}^{-1}$

Jupiter's spot $\sim 10^{-4} \, \mathrm{s}^{-1}$

He nanodroplets

urHICs $\sim 10^7 \,\mathrm{s}^{-1}$ $\sim 10^{22} - 10^{23} \,\mathrm{s}^{-1}$

✓ INTENSE ELECTROMAGNETIC FIELDS (EMF)

Impact of large Electro-Magnetic Field in uRHICs

K Tuchin, Adv.High Energy Phys. 2013 (2013) 490495 K. Hattori, X.-G. Huang, arXiv:1609.00747 [nucl-th]

Strong B field induces:

- Chiral magnetic effect (CME) C & C
- Chiral vortical effect (CVE)
- Hyperion polarization

- C & CP local violation
- in Strong Interactions

Impacts on:

. . .

- Quarkonia states
- Radiative E_{loss}
- Electromagnetic radiation
- transport coefficients: viscosity,

I will discuss only the <u>direct classical effect</u> of the e.m. field → splitting of charge/anti-charge collective flows

Electro-Magnetic field in HIC collisions

Start from point-like *Lienhard-Wiechart* retarded potentials (Biot-Savart law)

$$e\mathbf{B}(t, \mathbf{r}) = \alpha_{\rm em} \sum_{a} \frac{\left(1 - v_a^2\right) \left(\mathbf{v}_a \times \mathbf{R}_a\right)}{R_a^3 \left[1 - \left(\mathbf{R}_a \times \mathbf{v}_a\right)^2 / R_a^2\right]^{3/2}},$$
$$\left(\nabla^2 - \partial_t^2 - \sigma_{el} \partial_t\right) \mathbf{B} = -\nabla \times \mathbf{J}_{ext},$$

$$\left(\nabla^2 - \partial_t^2 - \sigma_{el} \,\partial_t\right) \boldsymbol{E} = -\nabla \rho_{ext} + \partial_t \boldsymbol{J}_{ext},$$

<u>Fold them with the nuclear transverse density profile of the</u> spectator nuclei and sum forward (+) and backward (-)

$$eB_{y,s} = -Z \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\phi' \int_{x_{\rm in}(\phi')}^{x_{\rm out}(\phi')} dx'_{\perp} x'_{\perp} \rho_{-}(x'_{\perp}) \times (eB_y^+(\tau,\eta,x_{\perp},\phi) + eB_y^-(\tau,\eta,x_{\perp},\phi)),$$

$$eE_x^+(\tau,\eta,x_\perp,\phi) = eB_y^+(\tau,\eta,x_\perp,\phi)\coth(Y_b-\eta)$$

Gursoy, Kharzeev, Rajagopal, PRC89(2014) like in: K. Tuchin, PRC 88, 024911 (2013).

K. Tuchin, Adv. High Energy Phys. 2013, 1 (2013).

Assumptions:

- Medium at t<0
- Electric Conductivity const. in $T \rightarrow (r, t)$
- No back reactions in the bulk due to currents
- No e-b-e fluctuations
- Neglected finite size of colliding nuclei

Impact of Magnetic Field on charged light hadrons

Reaction plane

Gursoy, Kharzeev, Rajagopal, PRC89(2014)

Impact of Magnetic Field on charged partons

Gursoy, Kharzeev, Rajagopal, PRC89(2014)

Odd parity wrt charge $\neq v_1$ vorticity

STAR similar values – opposite sign ALICE $d\Delta v_1/dy = (1.7 \pm 0.5 \pm 0.4)10^{-4}$ - opposite sign

- * Delicate balance E and B fields
- + small effects also from μ_B dependent mean fields [C.M. Ko et al, PRL(2014)], Baryon transport into mid-rapidity ²⁰

Impact of Magnetic Field on Charm

S. K. Das, S. Plumari, S. Chatterjee, J. Alam, F. Scardina, V. Greco, PLB**768** (2017) 260-264.

For charm quark we find a sizeable $v_1 \approx O(10^{-2}) \approx 10-50$ times larger than $\pi^+/\pi^-!$

Using the same E-B field evolution as in U. Gursoy et al, PRC(2014)

HQ best probe for v₁ from e.m. field:

- $t_{form} \approx 0.08$ fm/c when By is \approx its maximum
- No contribution from neutral gluons diff. from π^+/π^- , p/p
- $\ \tau_{th}(c) \approx \tau_{QGP} \!\! > \!\! > \tau_{e.m} \ (keep \ more \ memory \ effects)$

Balance between Magnetic and Electric currents

♦ Decreasing magnetic field B_y creates E_x that induces a current in opposite direction: <u>delicate balance</u>!

First Measurement of v₁ of D mesons

STAR, Phys.Rev.Lett. 123 (2019) 16, 162301

 $dv_1/dy = -0.080 \pm 0.017(stat) \pm 0.016(syst)$

Huge v_1 about **30 times larger** than the kaon one

Excellent qualitative prediction of Chatherjee and Bozek, PRL 120 (2018) $dv_1/dy \approx 0.02-0.04 \ (\approx 10-15 \text{ times larger than light-charged})$

Very surprising that v_1 heavy quark >> v_1 light quarks

v₁ of **D** mesons: quantitative study

$$f_{+}(\eta_{s}) = f_{-}(-\eta_{s}) = \begin{cases} 0 & \eta_{s} < -\eta_{m} \\ \frac{\eta_{s} + \eta_{m}}{2\eta_{m}} & -\eta_{m} \le \eta_{s} \le \eta_{m} \\ 1 & \eta_{s} > \eta_{m} \end{cases}$$

P. Bozek and I. Wyskiel, PRC 81(2010) 054902

Quantitative good description v_1 of D mesons

Needed initial "tilt" of bulk and no of HQ

 $dv_1/dy = -0.080 \pm 0.017(stat) \pm 0.016(syst)$

 $dv_1/dy = -0.065$ (theory)

v₁ of D mesons probe 3D bulk + non-pertubative Oliva, Plumari, V.G., JHEPO5 (2021)

Δv_1 from e.m. field?

 $d(\Delta v_1)/dy\big|_{exp} = - \ 0.011 \ \pm 0.024 (stat) \pm 0.016 (syst)$

 $d(\Delta v_1)/dy|_{th.} = -0.01$, L. Oliva et al.

Time evolution

(normalized)

бр / Jp

0.8

0.6

0.2

 $\langle v_1^D \rangle$

Au+Au @ RHIC 200GeV

 $b = 9 \text{ fm}, p_{T} > 1.5 \text{ GeV}$

• · · · • $f = \langle v_1^{D} \rangle, |y| < 0.5$ • · · · • $f = \Delta v_1^{D}, |y| < 0.5$

normalized to the final value at t = 9 fm/c

5

t [fm/c]

 $\sigma_{\rm el} = 0.023 \, {\rm fm}^{-1}$

 $\eta_{T} = 1.1$

8

9 10

 \approx 10 times larger than charged, similar to S. Das et al., PLB768 (2017) but could be **also consistent with 0!**

> v_1 expected to be more sensitive than v_2 to high T (early time) $D_s(T)$!

Unexplored...

Δv_1 from e.m. field?

Electro-Magnetic field is not really under control

Computation of early stage e.m. field is quite an issue:

- **large gap @LHC:** $eB_y(t=0)$ in the **vacuum:** $\approx 50 m_{\pi}^2$ but $eB_y(t=0)=0$ assuming a **medium** in equilibrium at σ_{el}
 - $\boldsymbol{\rightarrow} \ \sigma_{el}(t) \ \text{for} \ t < 1 \ \text{fm/c} \ \text{ and then } \sigma_{el}(T) \ \text{ as IQCD } ?$
- NOTE: In the medium (t<0) σ_{el} =const. approach the magnetic field at RHIC and LHC are essentially equal!
- Early time what is σ_{el} in the Glasma + more exotics: Chiral topological charge [arXiv:2002.05047,Tuchin] etc..

29

E.m. field: a main source of uncertainty

Case A

E-B fields like Gursoy et al., PRC89(2014) Medium at t<0 + eq. medium σ_{el} =0.023 fm⁻¹

Case B and C [B₀ at t=0 vacuum value] $eB_y(x, y, \tau) = -B(\tau)\rho_B(x, y)$ $\tau_B=0.4$ fm/c assumption $B(\tau) = eB_0/(1 + \tau^2/\tau_B^2)$ $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$: $\frac{\partial E_z}{\partial x} \approx 0$ small $B(\tau) = eB_0/(1 + \tau/\tau_B)$

B an C similar B_y up to t< 1 fm/c

E.m. field: a main source of uncertainty

Case A

E-B fields like Gursoy et al., PRC89(2014) Medium at t<0 + eq. medium σ_{el} =0.023 fm⁻¹

Case B and C [B₀ at t=0 vacuum value] $eB_y(x, y, \tau) = -B(\tau)\rho_B(x, y)$ $\tau_B=0.4$ fm/c assumption $B(\tau) = eB_0/(1 + \tau^2/\tau_B^2)$ $\nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t$: $\frac{\partial E_z}{\partial x} \approx 0$ small $B(\tau) = eB_0/(1 + \tau/\tau_B)$

B an C similar B_y up to t< 1 fm/c

* e.m. field $\sigma_{\rm el}$ as for RHIC

 $\rightarrow \Delta v_1(D^0)$ order magnitudes smaller than ALICE data + opposite sign

* e.m. with $B_y(t=0)$ as in vacuum \rightarrow Large $\Delta v_1(D^0)$ but **opposite** direction wrt to data

* e.m. with $B_y(t=0)$ as in vacuum, $E_x \approx 0.5 B_y$ (t=0.5-1 fm/c) $\rightarrow \Delta v_1(D^0) \approx ALICE Data$ (1/t ideal MHD)

Time derivative of $B_y(t)$ even more relevant than absolute values"³¹

If $\Delta v_1 = v_1(D^0) - v_1(\underline{D}^0)$ is of electromagnetic origin \rightarrow we'd have a proof of the formation of the QGP Is there some complementary way of proving it?

> Is there a further way to pin down the e.m field strength? Such a large splitting (in ALICE) has an electromagnetic origin?

Probing the electromagnetic fields in ultra-relativistic collisions with leptons from Z₀ decay and charmed mesons

Leptons from Z⁰?

 $\tau_{Z^0} = 1/2m_{Z^0} = 0.0011 \text{ fm}/c$

What one expects?

- No damping from medium interaction
- Massless more easily to drag
- Charge 1.5 times larger

One expects «naively» same sign and $\Delta v_1(l^+, l^-) > \Delta v_1(D^0, \underline{D}^0)$?!

− $\tau_{decay}(Z^0) = \tau_{form}(charm) = 0.08 \text{ fm/c}$: they go through the e.m. fields at the same time
→ meanfigul look at the correlation $\Delta v_1(D^0, \underline{D}^0)$ and $\Delta v_1(l^+, l^-)$

V₁ splitting for D⁰-<u>D</u>⁰ and I⁺- I⁻ from Z⁰ decay and

- No medium strong interaction
- $\tau_{decay}(Z^0) = \tau_{form}(charm) = 0.08 \text{ fm/c}$
- Massless more easily to drag
- Charge 1.5 times larger

Surprises:

- 1) $\Delta v_1(l^+, l^-) < \Delta v_1(D^0, \underline{D}^0)$ even if $\Delta p_X(l) \approx 2^* \Delta p_X(D)$
- 2) even the sign of $\Delta v_1 (l^+, l^-)$ can be opposite!? not because wins electric field

 Δp_X is always positive: ≈ 0.3 GeV for D charm ≈ 0.7 GeV for leptons with a weak p_T dependence

What determines the Δv_1 ?

Why leptons from Z^0 should be quite correlated to D-<u>D</u>?

- Large By at t=0? Its time derivative? p_T spectrum? Mass charm vs bottom? ...

An undergoing first tentative to get more insight...

Relation Δv_1 of D⁰ and leptons from Z⁰: σ_{el} const. Y. Sun, S. Plumari, VG, EPJ Plus 136 (2021)

Approximate analitical formula $\frac{d\Delta v_{1}^{c}}{dy_{z}}|_{y_{z}=0} = -\alpha \frac{\partial \ln f_{c}}{\partial p_{T}} + (2\alpha - \beta) \frac{p_{T}}{m_{T}^{2}}$ $\alpha = |q|K[\tau_{1}B_{y}(\tau_{1}) - \tau_{o}B_{y}(\tau_{0})]$

- discarding medium interaction
- assuming an elliptic "rigid" bulk
- slow variation of E-B in the transverse plane

 Δ [tB_y(t)] is the quantity driving the splitting Δv_1 It includes the balance with the <u>electric field</u> under $\frac{\partial E_z}{\partial x} \approx 0$ asumption Peak disappears only if $\alpha \approx 0$, which happens with $\Delta v_1 \rightarrow 0$ (10⁻³) The correlation between the D⁰ & Z⁰ supply an info on the e.m. origin

Magnetic field modifies Z⁰ I[±] invariant mass and width in AA

Z⁰ mass and width modification in AA

To be done vs centralities, systems,...

Conclusions & Perspectives

- Set Estimate of $D_s(T)$ [non –perturbative \approx AdS/CFT] from R_{AA} & v_2 successful:
 - v_1 should be added to efforts for $D_s(T)$: more sensitive to high (initial) T
 - * Glasma impact: link pA and AA

• Charm ΔV_1 can allow to <u>access the initial strong E-B field and vorticity</u>:

- * splitting in $\Delta v_1(l^+, l^-)$ from Z⁰ decay can clarify the e.m. origin of $\Delta v_1(D^0 \overline{D}^0)@LHC$
- * Bottom can supply info on the evolution of $B_y(t)$ at earlier t ≈ 0.03 fm/c ($B_y \rightarrow 0$ or $B_y \rightarrow$ vacuum)

- ▶ if $\Delta v_1(D^0 \overline{D}^0)$ has an e.m. origin → probe of deconfinement vs flavor
- ➤ constraint on e.m. field → quantitative studies of CME, CWE, CMW, hyperon polarization

Back-up Slide

Charm quark vs Bottom quark

Chiral Magnetic Effect and P & CP violation

Reveals a local Parity breaking in Strong Interactions

Consider a homogeneous, strong magnetic field (Warringa, 2008):

Momentum Spin $\int_{1}^{1} \int_{1}^{1} \int_{2}^{1} \int_{2}^{1}$

A local axial $\mu_5 = \mu_{R-} \mu_L$ (topological μ_{θ}) induces an electric current J_v along B \rightarrow charge separation No *C*-odd but *CP*-odd

Expected exp. effect: dipole modulation of azimutal distribution

$$\frac{dN_{\pm}}{d\phi} \sim 1 + 2\nu_1 \cos(\Delta\phi) + 2\nu_2 \cos(2\Delta\phi) + \dots + 2a_{\pm} \sin(\Delta\phi)$$

Observed in Dirac semi-metals – Q. Li et al., Nature Physics 12 (2016)

Impact of Δ [tB_y(t)]

Relevance of particle formation time, mass, spectra

Different t₀ for 2 particle species decorrelate $\Delta v_1 \rightarrow \text{correlation}$ for D⁰ and Z⁰

V₁ splitting for leptons from Z⁰ decay

Surprises:

 $\ast) \Delta v_1(l^+,l^-) < \Delta v_1(D^0,\underline{D}^0)$

*) even the sign of $\Delta v_1 (l^+, l^-)$ can be opposite!?

 Δp_X is always positive: ≈ 0.3 GeV for D charm ≈ 0.7 GeV for leptons with a weak p_T dependence

Sign change is not due to a sign change of Δp_x that is always positive

$$v_1(p_T, y) \approx \frac{\overline{\Delta p}_x(p_T, y)}{2} \frac{-\partial \ln f_a}{\partial p_T}.$$

Never pointed in HIC ...a rise and fall p_T spectrum never studied

Improvements...

Several aspects to be investigated more in detail for e.m. field:

- Better assessment of the magnetic field for t<0.5-1 fm/c: non-eq., $\sigma_{el}(t)$, anomalous...
- Back-reaction to the electromagnetic field of the the fluid, now "rigid charges" no rearrengements that can modify the **E-B** balance
- Modification to anisotropic transport coeff. Induced by e.m. field (Hall viscosity,...)

•

Correlator of color-magnetic field

<u>Initial time</u>

•Correlation length $\approx 0.3/g^2\mu\approx 0.06~\text{fm}$

Nucleon size ≈ 1 fm $\gg \xi$: *domains on sub-nuclear scale*

•Anti-correlation on length scale $\approx 1/g^2\mu$ on the transverse plane Antiferromagnetic-like ordering on length scale $\approx 1/g^2\mu$

Studying the HF in uRHIC

Memory for the HQs diffusion in EvGlasma

Comparison Glasma vs Langevin in early stage – SU(3)

Charm in the Glasma and Langevin starting at t_{form} =0.08 fm/c Same underlying bulk energy density (central PbPb@5.02ATeV) LV: Drag & Diffusion tuned to R_{AA}

Evolution of variance of the distribution

Memory effect

- Early time: $\sigma_p \approx Dt^2 / \tau_{mem}$
- Later time time: $\sigma_p \approx 2Dt$

Like LV

Fast early diffusion ($M \rightarrow \infty$)

K. Boguslavski, A. Kurkela, T. Lappi and J. Peuron, JHEP09 (2020) 077 in SU(3) for $M \rightarrow \infty$

Not really a glasma, but an oveoccupied isotropic Gluon plasma: transverse components at t₀

Mass effect: Charm vs Bottom in Glasma and LV

Large mass -> motion stays more in the correlated tube

However bottom as a flat p_T distribution so folding by it. The effective difference may be even smaller than for charm

Naive discretization

Proceed with caution

Non-Abelian gauge transformations:

$$A_{\mu}(x) \mapsto \mathsf{U}(x)A_{\mu}(x)\mathsf{U}^{\dagger}(x) + \frac{1}{\mathrm{i}g}\mathsf{U}(x)\partial_{\mu}\mathsf{U}^{\dagger}(x)$$

Discretizing the gauge field on a lattice will break gauge invariance.

Figure from F. Gelis - Color Glass Condensate and Glasma [1211.3327]

CPIC adapted to Glasma

Evolution of color charge

- When the nearest grid point on the lattice changes, color rotate the charge with the appropriate Wilson lines.
- Glasma in temporal gauge $A_{\tau} = 0$ with boost-invariance

$$\mathcal{U}(\tau,\tau_0) = \mathscr{P} \exp\left\{-\mathrm{i}g \int_{x_T(\tau_0)}^{x_T(\tau)} \mathrm{d}x'^i A_i\left(x'_T(\tau)\right) - \mathrm{i}g \int_{\eta(\tau_0)}^{\eta(\tau)} \mathrm{d}\eta' \underbrace{A_\eta\left(x_T(\tau)\right)}_{\mathrm{indep}(\eta')}\right\}.$$

► Numerically approximate as $\mathcal{U}(\tau_i, \tau_f) \approx \mathcal{U}(\tau_i, \tau_{i+1}) \mathcal{U}(\tau_{i+1}, \tau_{i+2}) \dots \mathcal{U}(\tau_{f-1}, \tau_f)$

CPIC adapted to Glasma

Evolution of color charge

• Numerically $\left[\int dx^i A_i, \delta\eta_n A_\eta\right] \simeq 0$ thus a Wilson line in a single simulation step is

$$\mathcal{U}(\tau_{n-1},\tau_n) \simeq \exp\left\{ ig \int_{x_{n-1}}^{x_n} dx'^i A_i\left(x'_n\right) \right\} \times \underbrace{\exp\left\{ ig\delta\eta_n A_\eta(x_n)\right\}}_{\equiv U_{x_n,\hat{\eta}}(\tau_n)}$$

where $U_{\boldsymbol{x}_n,\hat{i}}$ is a transverse gauge link along direction \hat{i} and $U_{\boldsymbol{x}_n,\hat{\eta}}$ an artificially constructed Wilson line along the $\hat{\eta}$ direction.