

Heavy-ions* in the thirties with ALICE 3

* HF biased

Quark-Gluon Plasma Characterisation with <u>Heavy Flavour Probes</u>

15-18 November 2021, ECT Trento Gian Michele Innocenti (CERN)

Plans for ALICE 3: arXiv1902.Q1211

phase II upgrades

First ALICE 3 workshop (18-19 October 2021): link

Outline of the presentation

General physics goal of the ALICE 3 experiment

ALICE 3 design concept

Physics observables:

- impact on the detector design
- performance studies in pp and heavy-ion collisions

Lol being finalized, <u>expected by end of the year</u>

Plans for ALICE 3: arXiv1902.01211

<u>Identify and characterize the common microscopic dynamics</u> <u>underlying all of these phenomena</u>

- Microscopic description of heavy-quark interaction and medium structure at different scales
- High-precision determination of QGP coefficients
 - \rightarrow with high accuracy charm/beauty hadron measurements and HF correlations and jets

(some) ALICE 3 physics goals

New constraints of hadronization mechanisms in the QGP → multi-charmed hadrons and HF-jets

 \rightarrow (charmed?) nuclei/hypernuclei

Complete/dynamic description of bound states in the QGP

 \rightarrow with unexplored quarkonia states and exotic hadrons

The ALICE 3 design in a nutshell

First ALICE 3 workshop (18-19 October 2021): link

Inl<4 of "massless" high-resolution tracker

• Up to $\mathscr{L}_{NN} \sim 3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ events in pp and AA

• Complete suite of PID detectors (TOF, RICH, MuonID) and EMCAL \rightarrow rare HF probes and correlations in the at ~ fb⁻¹ NN-luminosities

- $\cdot m_{c,b} \gg m_{u,d,s}$: "Brownian regime" in the QGP
- incomplete thermalization for charm and beauty quarks
- \rightarrow Diffusion properties, characterized by D_{s} , inform of the coupling strength of the QGP and therefore its inner structure (e.g. strongly vs weakly coupled)

Projection for *D***s extraction with charm with Run3+4** data using R_{AA} measurements only

Extraction of diffusion parameters

 $< x^2 > = 6D_s t$ $\tau_{\rm c} = (m_{\rm HQ}/T)D_{\rm s}$

"Over-constraining" D_s with charm and beauty measurements of single-hadron production (R_{AA} and v₂) and correlations/jets (e.g. D⁰D^{0,bar}):

Relevance of beauty:

- beauty less "equilibrated"
- better theoretical control on in-medium transport calculations
- different sensitivity (?) from recombination

Single-hadron measurements with ALICE 2

S. Cao et al. Phys. Rev C. 99.054907 Yellow Report, CERN-LPCC-2018-07

• high precision R_{AA} measurements for charmed mesons and baryons \rightarrow Good accuracy for D_s coefficient with charm quarks

- collective properties
- Poor accuracy at low p_T for beauty hadrons, in particular Λ_b baryons (critical for D_s extraction with b-hadrons)

Single-hadron measurements with ALICE 3

• E.g. at $p_T=0.5$, from 20-30 μm (ITS3) to 5 μm (ALICE 3)

Single-hadron measurements with ALICE 3

(better theoretical control of beauty quark diffusion in the QGP)

- stronger constraints on HF hadron collective properties and their relation with hadronization mechanisms

Benchmark: Impact on flow analyses of Λ_c baryons

Unique combination over 8 units of η :

 high tracking resolution • ~ flat p_T resolution as a function of η • PID capabilities both at central and forward rapidities

→ unprecedented signal purity for HF probes in the widest acceptance region at hadronic colliders

- → High accuracy for flow measurements of charmed baryons
- → Constraints on the microscopic description of recombination and interplay with collective espansion
- \rightarrow Impact on $\Lambda_{\rm b}$ under study

<u>Benchmark</u>: Impact on flow analyses of Λ_c baryons

M. Nahrgang, et al. arXiv:1305.3823 S. Cao et al., Phys. Rev. C 92, 054909 (2015) **T. Stavreva et al.**, JHEP vol. 2013, 72 (2013)

Study different "regimes" of quenching with sensitivity to "geometric" and microscopic properties of interactions and medium descriptions:

- \rightarrow beyond "averaged" quenching observables

At intermediate p_T

• At low p_T :

 \rightarrow decorrelation measures momentum diffusion

→ degree of thermalization in the QGP

G.M. Innocenti, Heavy-ion physics in Run5/6 with ALICE 3

Heavy-flavor correlations

Signal purity critical for correlation analyses

G.M. Innocenti, Heavy-ion physics in Run5/6 with ALICE 3

ALICE 3 uniqueness for HF correlation studies

- Significant increase of signal yield
- Access to unexplored region of large Δη (> 2)
- \rightarrow longitudinal properties of medium evolution

$D^0 \overline{D}^0$ correlations in PbPb collisions

- $D^0 \overline{D}^0$ correlations are measurable down to low p_T over about 8 units of rapidity
- \rightarrow High accuracy in measurement of the correlation pattern down to low p_T

<u>Wide program of quenching/"flow" observables (and beyond) to be exploited:</u>

- $\Lambda_{c}^{+} \Lambda_{c}^{-} B^{+} B^{-}$ correlations, HF- γ correlations
- Single and double-tagged HF jet studies

 \rightarrow new simulation studies show we can access lower p_T, down to at least 2 GeV (~ thermalization regime)

Multi-charm flavor hadrons

- Negligible same-scattering production
- Large enhancement (up to x100 for Ξ_{cc} , Ω_{cc}) w.r.t. pp **predicted** in presence of hadron production from uncorrelated charm quarks

double-c (~fb⁻¹ region)

ALICE: arXiv.2011.06078 Beccatini: Phys. Rev. Lett. 95 (2005) 022301 SHMC: arXiv.2104.12754 G. Chen et al., Phys. Rev. D 89, 074020 (2014)

 $\Xi_{\rm CC}, \, \Omega_{\rm CC}$

Multi-charm flavor hadrons

- Negligible same-scattering production
- Large enhancement (up to x100 for Ξ_{cc} , Ω_{cc}) w.r.t. pp **predicted** in presence of hadron production from uncorrelated charm quarks

double-c (~fb⁻¹ region)

ALICE: arXiv.2011.06078 Beccatini: Phys. Rev. Lett. 95 (2005) 022301 SHMC: arXiv.2104.12754 G. Chen et al., Phys. Rev. D 89, 074020 (2014)

$$\Xi_{cc}, \Omega_{cc}$$

"Pure" (re)combination probes

- ~ entire AA expected production from hadronisation mechanisms beyond independent string fragmentation
- in general, not true for J/ψ

→ Connection between degree of equilibration of charm quarks and hadronization modifications

Linking multi-charm and nuclei within the SHMC

In the thermal limit (SHMC), specific pattern expected as a function of hadron mass and quark content

To test the "g_c-scaling" of charm production:

- access to hadrons with $n_c > 1$
- have access to a "light" reference with similar mass
- \rightarrow (anti-)(hyper-)nuclei provide the baseline

Linking multi-charm and nuclei within the SHMC

In the thermal limit (SHMC), specific pattern expected as a function of hadron mass and quark content

To test the "g_c-scaling" of charm production:

- access to hadrons with $n_c > 1$
- have access to a "light" reference with similar mass
- \rightarrow (anti-)(hyper-)nuclei provide the baseline

Multicharm and A=5 states: \rightarrow ALICE 3 in Run5/6

Ξ⁺⁺_{cc} with strangeness tracking

\rightarrow With ALICE 3, significant observation of Ξ^{++}_{cc} and Ω_{cc} signals expected in PbPb collisions down to low p_T

G.M. Innocenti, Heavy-ion physics in Run5/6 with ALICE 3

 $\Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} + \pi^{+}$ (ct \approx 76 µm) $\Xi^+_c \rightarrow \Xi^- + 2\pi^+$ (ct $\approx 132 \ \mu m$) $\Xi^- \rightarrow \Lambda + K^-$

large reduction of combinatorial background

Multi-charm in AA as one of the most challenging experimental challenges: \rightarrow extremely challenging also for estimating performance (large MC needed, CPU resources, cut optimization...)

Multi-charm with strangeness tracking in PbPb

- Theoretical input: GSI/Heidelberg yields, PYTHIA mode 2 p_T distributions
- Very precise measurement possible in central Pb-Pb: maximum significance of ~33
 - Equivalent to statistical error of 3%

anti-deuteron

 Excellent performances for the identification of light nuclei thanks to the high resolution TOF

G.M. Innocenti, Heavy-ion physics in Run5/6 with ALICE 3

Nuclei and hypernuclei

Sensitivity to new states as c-deuteron

η_c and $\chi_{c,b}$ states in heavy-ions

Pseudo-scalars (η_c)

never measured in HI collisions

$\chi_c \text{ and } \chi_b \rightarrow J/\psi + \gamma (L=1):$

- different bound-state stability and sensitivity to thermal fluctuations → significant discrepancies among different
 - theoretical predictions

Challenging analyses in the high-density AA environment:

- Photon reconstruction down to ~ 0.5 GeV with good resolution:
- J/ψ and Y reconstruction **down to low p**_T

Strong push from the theoretical community to measure more states with different quantum number properties

P. Artoisenet et al. Phys. Rev. D 81, 114018 A. Andronic et al.: PLB 797, 2019, 134836 + priv. communication Belle: PRL 91, 262001 (2003)

Exotic hadrons in HI collisions

- Constrain their nature by studying their interaction with the hadronic environment
- New insights into properties of complex bound states in the QGP

• J/ ψ and Y reconstruction down to 0 at mid- and forward rapidities • low p_T reach for measuring soft pions

G.M. Innocenti, Heavy-ion physics in Run5/6 with ALICE 3

Wu, B., et al.: Eur. Phys. J. A 57, 122 (2021)

J/ψ performance as a benchmark

• J/ ψ reconstruction as a building block of the quarkonia/exotic program of ALICE 3

• J/ ψ reconstruction at y=0 down to $p_T = 0$ GeV/c as a unique feature of the ALICE 3 detector

Photon identification performed with ECAL:

- high-resolution crystals at mid rapidity (no boost)
- sampling calorimeter at more forward rapidities
- → maximize photon reconstruction efficiency

P-wave measurements with ALICE3

$\chi_{c1}(3872)$ measurements with ALICE 3

→ Low p_T reach for J/ ψ and charged tracks could allow for a unique kinematic reach at the LHC → For both $\chi_{c,b}$ and $\chi_{c1}(3872)$ work is ongoing to assess the low p_T reach for heavy-ion analyses

Femtoscopy techniques for "exotic" studies

 Recent measurement of tetraquark-like state by LHC • Just below D^0D^* and D^*D^* thresholds \rightarrow candidate to be a molecular state

- Scan from pp to AA collisions needed
- ALICE3 is the ideal detector for acceptance

()

• Its nature can be assessed via the measurement of DD^{*} correlations \rightarrow In case of a bound state (T_{cc}⁺) the correlation function is expected to change from smaller to larger than unity for different source sizes

Predictions: courtesy of T. Hyodo and Y. Kamya

Conclusions and outlook

- → understanding heavy quark diffusion in the QGP
- → thermalisation and hadronisation
- \rightarrow bound states' interactions and nature of the states
- → And much more, also beyond QGP physics

Conclusions and outlook

<u>Critical moment to shape the future of HI physics at the LHC beyond Run 4:</u>

- In this talk, the "ALICE(3)" prospective much activities are ramping up also in the other LHC collaborations
- thank all the theorists that are helping out and strongly encourage new inputs/ideas

- → understanding heavy quark diffusion in the QGP
- → thermalisation and hadronisation
- \rightarrow bound states' interactions and nature of the states
- \rightarrow And much more, also beyond QGP physics

Thanks for your attention!

