

Future Opportunities for Heavy-flavor and Quarkonia Measurements with CMS

Jing Wang (MIT) For the CMS Collaboration

Quark-Gluon Plasma Characterisation with Heavy Flavour Probes (ECT*, Trento) 18 November, 2021

MIT HIG group's work was supported by US DOE-NP

Great Success So Far

		,								
	O	oservable:	RAA		¢ vs.	рТ	\$			
	X-ax	xis range:	0		- 50		Log x			
	Y-a:	xis range:	0		- 1.5		Log y			
	Clear all	Random	color	Checke	ed only	e.g. ope	n, baryon	, lepton		
	Prompt D ⁰	AuAu	200 GeV	STAR	0-10%	y < 1			7	\$
	Prompt D ⁰	AuAu	200 GeV	STAR	10-40%	y < 1		•	7	\$
	Prompt D ⁰	AuAu	200 GeV	STAR	40-80%	y < 1	- 1	•	7	\$
	Prompt D ⁰	PbPb	5.02 TeV	CMS	0-100%	y < 1		•	7	\$
	Prompt D ⁰	PbPb	5.02 TeV	CMS	0-10%	y < 1		•	7	\$
	Prompt D _s	PbPb	5.02 TeV	ALICE	0-10%	y < 0.5		•	7	\$
	Prompt D _s	PbPb	5.02 TeV	ALICE	30-50%	y < 0.5		•	7	\$
	Prompt D _s	PbPb	5.02 TeV	CMS	0-100%	y < 1		•	7	\$
New!	Prompt D	PbPb	5.02 TeV	ALICE	0-10%	y < 0.5		•	7	\$
New!	Prompt D	PbPb	5.02 TeV	ALICE	30-50%	y < 0.5		•	7	\$
	Prompt J/ψ	PbPb	2.76 TeV	CMS	0-100%	1.6 < y	< 2.4	•	7	\$
	Prompt J/ψ	PbPb	2.76 TeV	CMS	0-100%	y < 2.4		•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	ATLAS	0-10%	y < 2		•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	ATLAS	0-80%	y < 2		•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	ATLAS	20-40%	y < 2		•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	ATLAS	40-80%	y < 2		•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	CMS	0-100%	1.6 < y	< 2.4	•	7	\$
	Prompt J/ψ	PbPb	5.02 TeV	CMS	0-100%	1.8 < y	< 2.4		7	\$
	Prompt J/ψ	PbPb	5.02 TeV	CMS	0-100%	y < 0.6		•	7	*
	Prompt J/ψ	PbPb	5.02 TeV	CMS	0-100%	y < 1.6			7	\$

Heavy Flavor Measurement Compilation Tool

https://boundino.github.io/hinHFplot/

Copyright © 2021 boundin

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

LHC Run 3 & 4

LHC Run 3 & 4

	2015	2018	2019	2020	2021	2022	2023
Run 1	Rı	un 2	Long	Shutde	own 2		Run
	PbPb (2.2 nb ⁻¹) pPb (0.18 pb ⁻¹)		U	ALICE LHCb Major pgrade	, es	(6	PbP 5.2 nl pPk 0.6 pl pO/0

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Not only higher luminosities But also upgraded detectors!

CMS Phase-2 upgrades for HL-LHC

Subdetector	CMS present	CMS Phase-2
Inner Tracker	$ \eta < 2.4,$ $100 \times 150 \ \mu m^2$ pixel size	$ \eta < 4,$ 50×50 μ m ² pixel size
Calorimeter	Low-granularity	High-granularity end- cap with silicon sensors
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$

- Significantly improve the resolution Better heavy flavor vertex reconstruction
- Uniquely cover large acceptance studying longitudinal dynamics Study full 3+1D heavy quark dynamics in QGP medium

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

CMS Phase-2 upgrades for HL-LHC

Subdetector	CMS present	CMS Phase-2
Inner Tracker	$ \eta < 2.4,$ 100×150 μ m ² pixel size	$ \eta < 4,$ 50×50 μ m ² pixel size
Calorimeter	Low-granularity	High-granularity end- cap with silicon sensors
Muon detector	$ \eta < 2.4$	$ \eta ~<~2.8$
L1 trigger bandwidth	30 kHz for PbPb, 100 kHz for pp and pPb	750 kHz (pass through all PbPb events)
DAQ throughput	6 GB/s	60 GB/s

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

 High trigger and DAQ rate will allow more sophisticated triggers and collect large number of minimum-bias events (if not all of them)

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

CMS Phase-2 upgrades for HL-LHC

Subdetector	CMS present	CMS Phase-2
Inner Tracker	$ \eta < 2.4,$	$ \eta < 4,$
	$100 \times 150 \ \mu m^2$ pixel size	$50 \times 50 \ \mu m^2$ pixel size
Calorimeter	Low-granularity	High-granularity end-
		cap with silicon sensors
Muon detector	$ \eta < 2.4$	$ \eta < 2.8$
L1 trigger bandwidth	30 kHz for PbPb,	750 kHz (pass through
	100 kHz for pp and pPb	all PbPb events)
DAQ throughput	6 GB/s	60 GB/s
Time-of-flight	N/A	MTD for charged hadron
for Particle ID		PID over $ \eta < 3.0$

- New MIP Timing Detector (MTD) for TOF-PID! \bullet
- Unique PID up to $|\eta| = 3$

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

7

Table 1: Main features of CMS detector at present and Phase 2 upgrades.

Precision determination of the arrival time of the signal

CMS MIP Timing Detector (MTD)

CERN-LHCC-2019-003

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Serve as TOF detector for hadron particle identification

		Experiment	r	σ_{T}	$r/\sigma_{\rm T}$ (×100
			(m)	(ps)	$(m \times ps^{-1})$
		STAR-TOF	2.2	80	2.75
ETL		ALICE-TOF	3.7	56	6.6
		CMS-MTD	1.16	30	3.87
	y x				

Separation Power vs. kinematic phase space

CMS MTD (Iŋl < 3)

- ALICE: mid-rapidity ($|\eta| < 0.9$)
- LHCb: forward ($2 < \eta < 5$)

Significant improvement of signal to background ratio with PID information from MTD

MTD Impact on HF hadron reconstruction

MTD Impact on HF hadron reconstruction

- Enable new probes e.g. $B^+ \rightarrow D\pi \rightarrow K\pi\pi$

• More significant improvement for Λ_c (3 daughters) with PID information from MTD

Present CMS Open HF RAA Family

Present (2015 Run)

 Preliminary picture of flavor dependence of parton energy loss in the medium

JHEP 04 (2017) 039	PRL 123 (2019) 022001
PLB 782 (2018) 474	PRL 119 (2017) 152301
EPJC 78 (2018) 509	

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Precise RAA over wide kinematics

- Precise R_{AA} measurements over wide kinematics of light and heavy flavor hadron
 - \rightarrow Capability to reach low p_T (< 1 GeV)
 - \rightarrow CMS unique access to high p_T (> 100 GeV)
- MTD improvement not reflected
- More differential measurements enabled
- Full picture of relative relevance of collisional and radiative processes and the microscope mechanisms of heavy quark interaction with the medium

arXiv:1812.06772

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

D^o Azimuthal Anisotropy V₂

High-precision measurements of $D^0 v_2$ down to 0 p_T with MTD

Λ_c Azimuthal Anisotropy V₂

- MTD allows measurements of $\Lambda_c v_2$ down to 1 GeV

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

High-precision measurements of $D^0 v_2$ down to 0 p_T with MTD Test of the n_q scaling universalness in the charm sector

Theoretical calculation of RAA and V2

D R_{AA}

 $\mathbf{D} \mathbf{v}_2$

CMS precise R_{AA} and v₂ measurements have strong discrimination power of theoretical calculations

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

HF Correlation with Hard Probes

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

c-c̄ correlation

HF Correlation with Hard Probes

Heavy Quark Hadronization

ECT* heavy flavor workshop in April

Wide Rapidity Coverage of Λ_c/D⁰ (PbPb)

- Unique capability of CMS due to the large inner tracker and MTD acceptance
- Capability to access low p_T (down to 0) \Rightarrow Total charm cross-section
- Except for Langevin+CLVisc, other models shown assume boost invariant in the longitudinal direction
- Provide the strongest constraint on the heavy quark hadronization mechanism

1 < lyl < 2

2 < lyl < 3

Wide Rapidity Coverage of Λ_c/D^o (pPb)

 Unique capability of CMS due to the large inner tracker and MTD acceptance Fill the gap not accessible by ALICE and LHCb

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Strangeness HF hadrons

Present Data

- Wider muon detector acceptance improves lower p_T access

Strange quark content is enhanced in QGP

the high temperature Strangeness HF mesons (D_s, B_s) could be enhanced via coalescence

Y(nS) Production in PbPb

- High precision measurements of Y(nS) production
- Capability of Y(3S) observation

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Sensitive to the medium shear viscosity and the initial temperature

Y(nS) Production in PbPb

Y(nS) RAA VS. PT

- High precision measurements of Y(nS) production
- Capability of Y(3S) observation

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Y(nS) R_{AA} vs. lyl

Y(nS) RAA vs. Npart

 \rightarrow Differential: R_{AA} as a function of centrality, p_T and rapidity

Y(nS) Azimuthal Anisotropy V₂

Present

GENERATED BY BOUNDINO.GITHUB.IO/HINHFPLOT

• Higher precision and more differential Y(1S) elliptic flow • Full picture of collective behavior in all flavor sectors

- Deconfined medium or initial condition effects?
- Enable more differential study scanning multiplicity classes

Collectivity in Small Systems

Unprecedented precision could be achieved over a wider kinematic range with MTD

Detailed characterization of the heavy flavor hadron collective behavior in small systems

CNM Effects in pPb Collisions

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

- Precise measurements of heavy flavor hadrons in pPb
- Provide inputs of gluon PDFs
- Distinguish potential hot medium effect from the pure cold matter effects

arXiv:1812.06772

nPDF from Ultra-Peripheral PbPb Collisions

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

- Ultra-Peripheral Collisions(UPC): γ+Pb collisions
- Precise measurements of Y(1S) over a wide x range
 - Test Q dependence of nuclear modifications with different quarkonion masses
- Strong constraint on the gluon nuclear PDF

Search for Strong Magnetic Field

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Strong initial electromagnetic field in heavy ion collisions inducing a vorticity in the reaction plane.
 Heavy quarks produced early as best probes

Search for Strong Magnetic Field

CMS 1-year with MTD

- Strong initial electromagnetic field in heavy ion collisions inducing a vorticity in the reaction plane. Heavy quarks produced early as best probes
- The resultant effects entails a significant directed flow (v_1) and increase vs. rapidity
- Current measurements sticked in midrapidity from ALICE and STAR
- MTD and the large acceptance CMS tracker could provide high precision measurement of D⁰ v₁ over 8 units of D⁰ rapidity

HL-LHC: CMS will be the most comprehensive QGP detector

	Wide-coverage Tracking	Precision Vertexing	Full Calorimetry	High Rate	Lepton PID	Hadron I
CMS	✓ Upgrade	✓ Upgrade	\checkmark	✓ Upgrade	\checkmark	✓ Nev
ATLAS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
ALICE		\checkmark		\checkmark		\checkmark
LHCb		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

- Hot and cold nuclear matter effects, wider kinematics and more differential
- New MTD leads to unprecedented precision of D mesons and Λ_c down to 0 p_T ➡ Also enable new observables (photon-D correlation, D-D correlation)
- Wide rapidity coverage ($|\eta| < 4$) provides new access to study of longitudinal dynamics Full 3+1D heavy quark dynamics in QGP medium

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Summary

High precision production and flow in large and small systems with detector upgrade and HL-LHC

Isabelle

Thanks for your attention!

41.9 5

Thanks for your attention!

Heavy-ion data in CMS

	Collision System	Energy	CMS Recorded	Scale to pp		
Run 1						
2011	Pb-Pb	2.76 TeV	174.3 μb ⁻¹	7.5 pb ⁻¹		
2013	p-Pb	5.02 TeV	35.5 nb ⁻¹	7.4 pb ⁻¹		
Run2						
2015	р-р	5.02 TeV	28.1 pb ⁻¹	28.1 pb ⁻¹		
2015	Pb-Pb	5.02 TeV	0.55 nb ⁻¹	23.8 pb ⁻¹		
 2016	p-Pb	8.16 TeV	180.2 nb ⁻¹	37.5 pb ⁻¹		
 2017	Xe+Xe	5.44 TeV	6.0 μb ⁻¹	99.8 nb ⁻¹		
2017	р-р	5.02 TeV	316.3 pb ⁻¹	316.3 pb ⁻¹	, 1 1	
 2018	Pb-Pb	5.02 TeV	1.71 nb ⁻¹	74.0 pb ⁻¹		

	Collision System	Energy	CMS Recorded	Scale to pp		
Run 1						
 2011	Pb-Pb	2.76 TeV	174.3 μb ⁻¹	7.5 pb ⁻¹		
 2013	p-Pb	5.02 TeV	35.5 nb ⁻¹	7.4 pb ⁻¹		
Run2						
 2015	р-р	5.02 TeV	28.1 pb ⁻¹	28.1 pb ⁻¹		
 2015	Pb-Pb	5.02 TeV	0.55 nb ⁻¹	23.8 pb ⁻¹		
 2016	p-Pb	8.16 TeV	180.2 nb ⁻¹	37.5 pb ⁻¹		
 2017	Xe+Xe	5.44 TeV	6.0 μb ⁻¹	99.8 nb ⁻¹		
 2017	р-р	5.02 TeV	316.3 pb ⁻¹	316.3 pb ⁻¹		
 2018	Pb-Pb	5.02 TeV	1.71 nb ⁻¹	74.0 pb ⁻¹		

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Year	Systems, $\sqrt{s_{_{\rm NN}}}$	Time	L_{int}
2021	Pb–Pb 5.5 TeV	3 weeks	$2.3 \ \mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb–Pb 5.5 TeV	5 weeks	$3.9~\mathrm{nb}^{-1}$
	О–О, р–О	1 week	$500 \ \mu { m b}^{-1}$ and $200 \ \mu { m b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb–Pb 5.5 TeV	5 weeks	$3.8 \ \mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb–Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)
	pp reference	1 week	

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

CMS MIP Timing Detector (MTD)

Λ_c Reconstruction with MTD

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: $|\eta| < 1.45$
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

CMS MTD

ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < |η| < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{eq}/cm²

D_s diffusion coefficient

D_s projection after Run 4 (Catania)

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

CMS vs. ALICE: Λ_c

ALICE Run 3+4

CMS vs. ALICE: Charm v₂

Elliptic flow of charm hadrons

CMS vs. ALICE: Charm v₂

Quarkonia with MTD

Offline $J/\psi \rightarrow \mu^+\mu^-$ acc*eff (BR=0.0593)

Missing low-p_T at midrapidity

Significance of ~ 20 for MB PbPb with L_{int}=7/nb

Multi-HF hadrons

G.M. Innocenti, Prospects for heavy-flavour measurements with ALICE3

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

44

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

B_c meson

nPDF from Ultra-Peripheral PbPb Collisions

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Quarkonion Azimuthal Anisotropy v₂

Y(1S) v₂

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Y(2S) v₂ **HL-LHC** PbPb 10 nb⁻¹ (5.02 TeV) ~0.15 CMS Projection 0.1 0.05 0 lyl<2.4, 5%-60% Y(2S) reg -0.05 Y(2S) prim Y(2S) tot ─ Y(2S) CMS 10 nb⁻¹ -0. p_⊤ (GeV) 5 15 20 10

Collectivity in Small Systems

- Enable more differential study scanning multiplicity classes

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

Unprecedented precision could be achieved over a wider kinematic range with MTD Detailed characterization of the heavy flavor hadron collective behavior in small systems

v₂ n_q Scaling

Jing Wang (MIT), Future Opportunities with CMS, HF Workshop (ECT*, Trento)

WED 9/22 STREAM ON

