ECT* Workshop: Quark-Gluon Plasma Characterisation with Heavy Flavor Probes

has received funding from the European Union's Horizon 2020 Innovation programme under grant agreement No 824093

Energy Dependence of *Open and Hidden* Heavy Flavor Production at RHIC

Zebo Tang

University of Science and Technology of China

Outline

- Introduction
- Open heavy flavor
- Quarkonium
- Outlook

Heavy Flavor Tomography of QGP

Complications in HF Tomography

Initial condition

- Production mechanism not well understood
- Cold nuclear matter effects contribute crucial background

Transport in QGP -> Goal

- Properties of the medium and its evolution
- Interaction of HF with the medium

Hadronization

- Coalescence vs. fragmentation
 - Different charm hadrochemistry in *pp* vs. *ee* observed

Transport in hadronic phase

+ Measuring the outgoing particles is also very challenging

Tune QGP Pars. by Scanning $\sqrt{s_{NN}}$

Datasets for Energy Dependence Study

PHENIX decommissioned in 2017

X-section decreases dramatically ~5x from 200 to 54 GeV

Open Heavy Flavor

Methods: Direct and Indirect

Slide of Fukutaro Kajihara

D⁰ in Au+Au at 200 GeV

STAR, PRL118, 212301 (2017)

- Significant suppression in central collisions in all p_T bins
- v₂ follows NCQ scaling with light hadrons

HFe Suppression in Au+Au at 200 GeV

- Strong suppression of HFe at high $p_{\rm T}$
- Less suppression of $b \rightarrow e$ than $c \rightarrow e$

HFe Flow in Au+Au at 200 GeV

- Significant v₂ for HFe
- c→e v₂ consistent with D⁰ v₂
- Non zero b \rightarrow e v₂ observed

HFe Production in Au+Au at 62 GeV

PHENIX, PRC91, 044907 (2015)

- Enhancement of yield Cronin effect play a role?
- But sizable v₂

HFe Flow in Au+Au at 62 and 39 GeV

First attempt to lower energy at STAR

- v₂ at 62 and 39 GeV consistent with zero within uncertainties
- Systematically smaller than that at 200 GeV for p_T <1 GeV/c though uncertainties are large

HFe Flow in Au+Au at 54.4 and 27 GeV

- Significant v₂ for HFe observed at 54.4 GeV and comparable to that at 200 GeV
 - → Charm quark interact strongly with the medium at 54.4 GeV
- v₂ at 27 GeV seems smaller than that at higher energies

Comparison to Light Hadrons

54.4 GeV:

v₂ of HFe is comparable to those of light hadrons 27 GeV:

Hint of HFe v_2 at p_T >1 GeV/c lower than those of light hadrons

Comparison to Theory

M. He et al. PRC 91,024904 (2015) T. Song et al. PRC 92, 014910 (2015) T. Song et al. PRC 96, 014905 (2017)

- TAMU and PHSD calculations are comparable to data at p_T >1.4 GeV/c considering the upper limit of estimated non-flow and uncertainties
- The calculations are lower than data at $p_T < 1 \text{ GeV/c}$

Summary of Open Heavy Flavor

200 GeV:

See Xin Dong's talk

- Yield consistent with flavor-dependent parton energy loss
- Significant flow for charm and non-zero flow for bottom
- ➔ Charm strongly interact with medium and reach local equilibrium

62 & 54 GeV:

- Enhancement of yield for HFe at 62 GeV
- Significant of v_2 for HFe at 54 GeV and comparable to 200 GeV
- Flow described by transport models
- Charm strongly interact with medium but CNM may also play a role

27 GeV:

- No yield measurement
- v₂ for HFe seems have different behaviors than those at higher energies and light hadrons
- ➔ No enough precision to draw firm conclusion

Quarkonium

RHIC J/ ψ Puzzles (History)

See Enrico Scomparin's talk

Mid–rapidity: Similar suppression as SPS

Forward rapidity: More suppression than in mid-rapidity

Two Puzzles!!

QGP Melting, Regeneration and CNM

Z. Qu, Y. Liu, N. Xu, P. Zhuang, NPA830, 335c (2009)

Interplay of QGP melting, regeneration and CNM effects

From RHIC to LHC

See Roberta Arnaldi's talk

- Increase of R_{AA} in (semi–)central collisions
- ➔ Evidence of regeneration

- Strong suppression at high-p_T
- Stronger at LHC than at RHIC
- ➔ Evidence of QGP melting

Towards SPS Energy

 R_{AA} in Au+Au at 62 and 39 GeV consistent with those at 200 GeV at both mid– and forward rapidity within uncertainties

Energy Dependence at Mid-rapidity

- No significant energy dependence from top SPS to RHIC energy
- Significant increase from RHIC to LHC
- Described by transport model calculation over broad energy range
 - Require careful treatment of all the three effects

J/ψ Suppression in Au+Au at 54.4 GeV

- Significant suppression observed at 54.4 GeV with improved precision
- No significant difference among 200, 62.4 and 54.4 and 39 GeV

R_{AA} vs. Energy

Data at 54.4 GeV fit the world data trend

and transport model prediction

p_T Dependence

- p_T dependence measured in different centralities with good precision
- Stroger suppression towards $low-p_T$ and central collisions
- To be compared to theory

Summary of Quarkonium

200 GeV:

- Significant suppression at low and high $p_{\scriptscriptstyle T}$
- Described by transport models
- ➔ Evidence of QGP melting and regeneration

62 & 54 & 39 GeV:

- Suppression shows no significant energy dependence from SPS to RHIC
- Increasing p_T trend at 54.4 GeV
- ➔ Provide constraints of the hot and cold nuclear matter effects

27 & 19.6 GeV:

- 6x #events of 39 GeV, 2x and 5x smaller cross-section
- One step closer to SPS

Opportunities with Isobaric Collisions

Excellent signals of $J/\psi \rightarrow ee$ and $D \rightarrow K\pi$ observed

Analysis in progress

High statistics allows the studies in fine centrality and $p_{\rm T}$ bins

- $<N_{part}>$ in 0–5% Ru/Zr collisions similar to that in 20–30% Au+Au
- System size spans from p+Au to (semi–)central Au+Au

Thanks!