Quarkonium production at low energies: achievements and prospects

E. Scomparin – INFN Torino (Italy)

QUARK-GLUON PLASMA CHARACTERISATION WITH HEAVY FLAVOUR PROBES

TRENTO NOVEMBER 15-19 2021

Quarkonium production at low energies ECT* Nov. 15-19, 2021

Introduction

Quarkonium: the only `hard probe' of QGP investigated down to low energy (√s~20 GeV)

□ Fixed target experiments
 □ A-A @ SPS → NA38/NA50/NA60 experiments
 □ p-A @ SPS, FNAL, HERA

Ground and excited states : J/ψ, ψ(2S)
 Experimental techniques and main results
 Open points

□ Prospects for (near) future measurements in A-A
 □ "Threshold" energy → CBM@SIS100 (√s < 5 GeV)
 □ "Low" SPS energy → NA60+ project (5 < √s < 20 GeV)

Conclusions

Studies of charmonium production in AA

Quarkonium production at low energies ECT* Nov. 15-19, 2021

J/ψ : low vs high energy

Collider (LHC)

Hot matter effects: regeneration counterbalances (overcomes) suppression

> Initial state effects: shadowing $x \sim 10^{-5} (y \sim 3),$ $x \sim 10^{-3} (y=0),$ $x \sim 10^{-2} (y \sim -3)$

(Final state) CNM effects: negligible, extremely short crossing time $\tau = L/(\beta_z \gamma) \sim 7 \ 10^{-5} \text{ fm/c} (\gamma \sim 3)$ $\tau = L/(\beta_z \gamma) \sim 4 \ 10^{-2} \text{ fm/c} (\gamma \sim -3)$

Fixed target (SPS)

Hot matter effects: suppression effects (if existing) dominate

> Initial state effects: moderate anti-shadowing $x \sim 10^{-1} (y=0)$

(Final state) CNM effects: break-up in nuclear matter can be sizeable $\tau = L/(\beta_z \gamma) \sim 0.5 \text{ fm/c}(y=0)$

J/ψ at SPS energy: discovery of the suppression

NA38, Z. Phys. 38(1988) 117

Centrality-dependent ratio J/ψ / continuum \rightarrow evidence for suppression

Reference process?

→ Crucial ingredient in the interpretation of the data

L (fm)

→ Stimulated an intense experimental program at both CERN and FNAL

"Summary" J/ ψ plot

NA50, EPJC39 (2005) 335 NA60, Nucl. Phys. A830 (2009) 345 R.Arnaldi, P. Cortese, E. Scomparin Phys. Rev. C 81, 014903 Expressed in terms of measured J/ψ
 yield, normalized to an extrapolation of CNM
 effects, evaluated starting from p-A results

Drell-Yan reference used to extract results

Suppression effects beyond CNM reach ~30% in central Pb-Pb collision

□ Qualitatively consistent with suppression of feed-down from $\psi(2S)$ (measured) and χ_c (not measured)

In-In result shows small or no suppression, with the origin of "wiggle" at intermediate centrality unclear (coupling to X(3872) via DD* proposed in Blaschke et al., NPA927(2014) 1)

Reference processes at SPS energy

□ Use **Drell-Yan as a reference**, insensitive to medium modifications

PROS:

- □ Both J/ ψ and DY are hard processes → Ratio proportional to J/ ψ yield per NN collision
- □ Luminosity and several efficiencies cancel out (µµ final state)
- □ Shadowing effects weak

NA50, PLB553(2003)167

CONS:

□ Low DY statistics

(largest NA50 sample led to 2 10^5 J/ ψ , ~2 10^3 DY dimuons with M>4.2 GeV/c²)

(DY-like reference was also built from minimum-bias sample in an attempt to increase statistical significance, with various technical difficulties)

E. Scomparin – INFN Torino

Extrapolation of CNM effects

□ Use L as scaling variable

→ average thickness of nuclear matter crossed by the cc pair

Exponential behaviour in pA

 \rightarrow break-up effects dominate

□ Light AA collisions (S-U) → compatible with pA behaviour

□ Pb-Pb collisions → breaking of L-scaling: anomalous suppression

10 Caveats

- \Box Assume \sqrt{s} -independence of nuclear effects
- □ Extrapolation of shadowing effects is more complex
 - \rightarrow to be taken into account

NA38 Coll., PLB449 (1999)128 NA50 Coll., EPJC39 (2005)335

Initial state and CNM effects at fixed target

p-A results at fixed target: a complex environment

NA60 Coll., Phys. Lett. B 706 (2012) 263-367

 J/ψ yield in pA is modified with respect to pp, with a significant kinematic dependence

 \square α strongly decreases with x_F

□ for a fixed x_{F} , stronger CNM at lower \sqrt{s}

Superposition of several effects

Shadowing Nuclear break-up Energy loss (at large x_F)

No consistent theory description over the whole x_F range

Attempting a parameterization of CNM

"Competition" between (anti)shadowing and nuclear break-up

Relative J/ ψ cross sections Evidence for $\sqrt{s-dependence}$

 $\sigma^{J/\psi}_{abs} \sim 10 \text{ mb}$ at low \sqrt{s}

ONM effects to become dominant in A-A at sufficiently low collision energy

Improve accuracy in PbPb measurements at top SPS energy \rightarrow results now limited by DY statistics

) Improve accuracy in PbPb measurements at top SPS energy \rightarrow results now limited by DY statistics

Access excited quarkonium states in AA to confirm that the J/ ψ suppression is accounted for by the melting of $\psi(2S)$ and χ_c

- investigate their suppression
- study their impact on the J/ψ through feed down

Improve accuracy in PbPb measurements at top SPS energy → results now limited by DY statistics

3

Access excited quarkonium states in AA to confirm that the J/ ψ suppression is accounted for by the melting of ψ (2S) and χ_c

- investigate their suppression
- study their impact on the J/ ψ through feed down

Energy dependence of the anomalous suppression

studying J/ ψ production below top SPS energies

Improve accuracy in PbPb measurements at top SPS energy \rightarrow results now limited by DY statistics

Access excited quarkonium states in AA to confirm that the J/ ψ suppression is accounted for by the melting of $\psi(2S)$ and χ_c

- investigate their suppression
- study their impact on the J/ψ through feed down

Energy dependence of the anomalous suppression

studying J/ ψ production below top SPS energies

Study elliptic flow, sensitive to medium properties

Quarkonium production at low energies ECT* Nov. 15-19, 2021

NA60,

Improve accuracy in PbPb measurements at top SPS energy \rightarrow results now limited by DY statistics

Access excited quarkonium states in AA to confirm that the J/ ψ suppression is accounted for by the melting of ψ (2S) and χ_c

- investigate their suppression
- study their impact on the J/ ψ through feed down

Energy dependence of the anomalous suppression

studying J/ ψ production below top SPS energies

Study elliptic flow, sensitive to medium properties

Precise pA reference at the same energy as AA, currently ~12% uncertainty (158 GeV data taking was ~4 days at I_{beam} = 5e8 p/s)

5

Quarkonium production at low SPS energy: NA60+

Study of hard and electromagnetic processes at CERN-SPS energies

Perform an energy scan in $E_{lab} = 20 - 158 \text{ GeV}$

→ quarkonium production not studied below top SPS energies!

Decreasing \sqrt{s} :

- **\Box** High- μ_B QGP effects on quarkonium
 - \rightarrow needs theory guidance
- **Onset of** χ_c and $\psi(2S)$ deconfinement
 - \rightarrow be correlated to T measurement via thermal dimuons
- **Given Stronger CNM effects**
 - \rightarrow to be accounted for with pA data taking at the same \sqrt{s}

More details on the project Webpage \rightarrow <u>https://na60plus.ca.infn.it/</u> Expression of Interest \rightarrow <u>https://cds.cern.ch/record/2673280</u>

Performing an energy scan at SPS energies

Top view (high-energy setup)

A vertex spectrometer coupled to a muon spectrometer

Vary spectrometer length and muon absorber thickness according to collision energy

R&D in progress Preparing LoI

NA60+ J/ ψ , Pb-Pb collisions

□ With $I_{beam} \sim 10^7$ Pb/20s spill, 4mm Pb target and 1 month of data taking $\rightarrow L_{int} = 17 \text{ nb}^{-1}$ NA60+ can aim at □ ~0(10⁴) J/ ψ at 50 GeV □ ~0(10⁵) J/ ψ at 158 GeV

□ N.B.: a factor 3 overall suppression (CNM + QGP) is assumed in these estimates

NA60+ J/ ψ , p-A collisions

NA60 sample

(pA at 158 GeV)

~1.5 x 10⁴ J/ ψ

With I_{beam}~8x10⁸ p/20s spill, 7 targets with total interaction length 10% and 0.5 months of data taking NA60+ can aim at
 ~6000 J/ψ at 50 GeV
 ~50000 J/ψ at 158 GeV

pp collisions unpractical

 \rightarrow Use a system of several targets

simultaneously exposed to the p beam

NA60+, R_{AA} estimate

→ Precise evaluation of anomalous suppression within reach even at low energy In 15 days of data taking at 1.6 x 10⁸ p/s the uncertainties on the pA reference are:

 $E_{lab} = 50 \text{GeV} \qquad \begin{array}{c} \sim 15\% \text{ on } \sigma_{abs} \\ \sim 5\% \text{ on } \sigma_{pp} \end{array} \qquad \begin{array}{c} E_{lab} = 158 \text{GeV} \qquad \begin{array}{c} \sim 6\% \text{ on } \sigma_{abs} \\ \sim 2\% \text{ on } \sigma_{pp} \end{array}$ E. Scomparin – INFN Torino $\begin{array}{c} \text{Quarkonium production at low energies} \\ \text{ECT* Nov. 15-19, 2021} \end{array}$

Quantifying hot matter effects

Which observables could be used?

□ R_{AA} based on pp extrapolated from pA results at the same \sqrt{s} (<5% uncertainty)

R_{AA}/R_{pA} ~ measured/expected à la NA50/60
 → useful to compare results at various √s, since CNM are energy dependent

Drell-Yan

very much limited by statistics at high mass (x100 less wrt J/ ψ for m>m_{J/ ψ})

I J/ψ/(total charm)?

potentially accessible via hadronic charm measurements

Prospects for open charm measurements

F. Prino, ECT*

\Box Measurement of hadronic decays of open charm (vertex spectrometer, no PID): D_{s}^{0} , D_{s}^{c}

\Box Assume 10¹¹ MB collisions (can be collected in ~1 month at 200kHz interaction rate)

□ Measurements of **D**⁺ meson expected to be within reach

 \rightarrow longer lifetime (larger displacement) and higher abundance than D_s meson

\Box Studies ongoing for Λ_c performance

- \rightarrow short lifetime, more challenging separation of decay vertex
- \rightarrow Study also reconstruction of decays with a neutral strange hadron in the decay products

Low- $\sqrt{s} J/\psi$: studying intrinsic charm

Intrinsic charm component of the hadron wavefunction |uudcc>
Leads to enhanced charm production in the forward region

□ Hints from several experiments, but no conclusive results
 □ At colliders, forward x_F pushed to very high rapidity, difficult to measure
 → fixed-target configurations more appropriate

Assumed intrinsic charm content varied between 0.1% and 1%

R. Vogt, talk at ECT* workshop "Exploring high-muB matter with rare probes", october 2021

Low- $\sqrt{s} J/\psi$: energy dependence in p-Pb

p-Pb collisions

EPPS shadowing σ_{abs} = 9,10,11 mb at E_{lab} =120, 80, 40 GeV P_{ic} varied between 0.1 and 1%

□ R_{pPb} is overwhelmed by intrinsic charm, even at midrapidity with P_{ic}=0.1%
 □ N.B.: all calculations are preliminary

Quarkonium at CBM: threshold production

- Sub-threshold production (rare but feasible) via multiple collision processes
- Production threshold might be exceeded with SIS100 beam of N=Z nuclei
- \Box Both $\mu^+\mu^-$ and e^+e^- decay channels accessible
- □ Needs very large interaction rates \rightarrow 10 MHz (50 times NA60+)
- □ Beam intensities \rightarrow 10⁹/s A, 10¹¹/s p

J. Steinheimer et al, Phys. Rev, C95 (2017) 014911

Quarkonium at CBM: physics performance

 $J/\psi \rightarrow \mu\mu$ AuAu ~30k J/ ψ in 4 weeks at 10 MHz interaction rate pAu ~500 J/ ψ in 4 weeks at 10 MHz interaction rate

J/ψ→ee pAu ~450 J/ψ in 4 weeks at 10 MHz int. rate

 $pA \rightarrow$ lower statistics, but very clean signal

Excited charmonium states: $\psi(2S)$, χ_c

NA50, EPJC39 (2005) 335, EPJC49 (2007) 559

 \Box Clear ordering in the suppression when moving from J/ ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel
 → Lower by a factor ~100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

Excited charmonium states: $\psi(2S)$, χ_c

Clear ordering in the suppression when moving from J/ψ to $\psi(2S)$

□ The first discovery of sequential suppression!
→ Later confirmed by CMS in the Y sector

□ Typical yields in the dilepton channel → Lower by a factor ~ 100

No measurement of CNM on $\psi(2S)$ available at $E_{lab}=158 \text{ GeV} \rightarrow \text{not enough stat for NA60}$

N.B. here (weaker) CNM effects tuned at 450 GeV were used \rightarrow bias!

Prospects for $\psi(2S)$ measurements in NA60+

Good charmonium resolution (~30 MeV for the J/ ψ) will help ψ (2S) measurements

Expectations based on

30 days PbPb, I_{beam} = 1e7 ions/spill

(assuming larger suppression for $\psi(2S)$ than J/ $\psi)$

• 15 days pA, $I_{beam} = 8e8$ p/spill

$\Box \ \psi(2S)/\psi \text{ measurement looks feasible down to } E_{lab} = 120 \text{ GeV}$ $\Box \text{ Lower } E_{lab} \text{ would require larger beam intensites/longer running times}$

E. Scomparin – INFN Torino

Quarkonium production at low energies ECT* Nov. 15-19, 2021

χ_c measurements

□ ~25% of the J/ ψ comes from the χ_c decay → $\alpha(\chi_c)$ important to understand the J/ ψ suppression

 ↓ χ_c not measured at SPS (no AA data)
 ↓ Available results at HERA-B, pA@ 920 GeV (large χ_c sample: ~15000 χ_c -0.35<x_F ^{J/ψ}<0.15)

□ HERA-B observed no significant difference between $\alpha(\chi_c)$ and $\alpha(J/\psi)$

→ similar "global" CNM effects on both resonances in the covered kinematical range (average value $\Delta \alpha = 0.05 \pm 0.04$), but more accurate results are needed

 □ Non-trivial measurement, needs detection of low-momentum photon (<1 GeV)
 → conversion or calorimetry

HERA-B, Phys.Rev.D79:012001,2009

Conclusions

□ Charmonium measurements in A-A at fixed target energy have provided in the past → Evidence for J/ ψ suppression beyond CNM effects → Ordering of J/ ψ and ψ (2S) suppression according to binding energy

p-A studies have shown a superposition of various effects with increasing size at small collision energy

D No information exists below top SPS energy ($\sqrt{s_{NN}}=17$ GeV)

□ Prospects for measurements
 □ Low SPS energy → NA60+ project
 □ Threshold region → CBM experiment

□ Aims

□ Detecting threshold for hot matter effects on charmonia and correlate with temperature information obtained with thermal dimuon production
 □ Search evidence for new effects → intrinsic charm

Backup

Why was R_{AA} not used ?

□ Historical reasons (in pre-RHIC era)

Possibility of using
 A "direct" pp reference
 An extrapolation of pA results

NA51: pp collisions using 1.2m liquid H₂ target at 450GeV \rightarrow broad J/ ψ resolution ~175 MeV due to multiple scattering in the absorber + poor vertex constraint \rightarrow B_{σ}(J/ ψ) = 5.50 ± 0.01 ± 0.36 nb \rightarrow ~7% uncertainty

NA50: J/ψ in pA collisions at 400 GeV

- → extrapolate A-dependence to A=1, having Be as lightest target
- \rightarrow ~3% uncertainty on the extrapolated pp cross section

 \Box Use of R_{AA} would have been in principle possible

p-A results at fixed target: a complex environment

Extrapolation of CNM effects from pA to AA can be delicate \rightarrow various effects superimposed

E. Scomparin – INFN Torino

Quarkonium production at low energies ECT* Nov. 15-19, 2021

Moving to lower \sqrt{s}

Factor >2 suppression due to shadowing and break-up

at low SPS energy

Expect **strong p**_T **dependence** due to collision broadening