Heavy-flavour meson and baryon production in high-energy nucleus-nucleus collisions

Andrea Beraudo

INFN - Sezione di Torino

Quark-gluon plasma characterization with heavy-flavour probes Trento, $15^{\rm th}-18^{\rm th}$ November 2021

- The POWLANG setup: modelling of HQ transport
- Recent results in 3+1 dimensions (A.B. et al., JHEP 05 (2021) 279)
- A new approach to hadronization (work in progress)

POWLANG setup: the relativistic Langevin equation

POWLANG setup based on the relativistic Langevin equation In the LRF of the fluid one performs the update of the HQ momentum

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t}) \rangle = 0 \quad \langle \xi^{i}(\mathbf{p}_{t}) \xi^{j}(\mathbf{p}_{t'}) \rangle = b^{ij}(\mathbf{p}) \frac{\delta_{tt'}}{\Delta t} \quad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p) \hat{p}^{i} \hat{p}^{j} + \kappa_{T}(p) (\delta^{ij} - \hat{p}^{i} \hat{p}^{j})$$

3/26

POWLANG setup: the relativistic Langevin equation

POWLANG setup based on the relativistic Langevin equation In the LRF of the fluid one performs the update of the HQ momentum

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\rangle = 0 \quad \langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p})\frac{\delta_{tt'}}{\Delta t} \quad b^{ij}(\mathbf{p}) \equiv \kappa_{L}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{T}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

One needs to know the *transport coefficients*:

- Momentum diffusion: $\kappa_T \equiv \frac{1}{2} \frac{\langle \Delta p_T^2 \rangle}{\Delta t}$ and $\kappa_L \equiv \frac{\langle \Delta p_L^2 \rangle}{\Delta t}$
- Friction term, in the Ito pre-point discretization scheme,

$$\eta_D^{\text{Ito}}(p) = \frac{\kappa_L(p)}{2TE_p} - \frac{1}{E_p^2} \left[(1 - v^2) \frac{\partial \kappa_L(p)}{\partial v^2} + \frac{d - 1}{2} \frac{\kappa_L(p) - \kappa_T(p)}{v^2} \right]$$

fixed in order to ensure approach to equilibrium (Einstein relation)

3 / 26

The transport coefficients

 In the non-relativistic limit HQ dynamics captured by a single transport coefficient:

$$\langle \vec{x}^2(t) \rangle \underset{t \to \infty}{\sim} 6D_s t \text{ with } D_s = \frac{2T^2}{\kappa}$$

Large values of κ entails fast thermalization but slow diffusion!

The transport coefficients

 In the non-relativistic limit HQ dynamics captured by a single transport coefficient:

$$\langle \vec{x}^2(t) \rangle \underset{t \to \infty}{\sim} 6D_s t \text{ with } D_s = \frac{2T^2}{\kappa}$$

Large values of κ entails fast thermalization but slow diffusion!

• In the kinematic domain of experimental interest momentum dependence of $\kappa_{L/T}$ plays an important role

Hydrodynamic background: initial condition

Initial (3+1)D entropy density provided by an optical Glauber calculation: $s(\mathbf{x}, \eta; b) = s_0 \frac{(1-\alpha_h)[n_{\text{part}}^A(\mathbf{x}; b)f_+(\eta) + n_{\text{part}}^B(\mathbf{x}; b)f_-(\eta)] + \alpha_h n_{\text{coll}}(\mathbf{x}; b)}{(1-\alpha_h)n_{\text{part}}(\mathbf{0}; 0) + \alpha_h n_{\text{coll}}(\mathbf{0}; 0)} H(\eta)$

¹S. Chatterjee and P. Bozek, PRL 120 (2018) 19, $492301_{P} \rightarrow 42 \rightarrow 22 \rightarrow 22 \rightarrow 22$

Hydrodynamic background: initial condition

Initial (3+1)D entropy density provided by an optical Glauber calculation: $s(\mathbf{x}, \eta; b) = s_0 \frac{(1-\alpha_h)[n_{\text{part}}^A(\mathbf{x}; b)f_+(\eta) + n_{\text{part}}^B(\mathbf{x}; b)f_-(\eta)] + \alpha_h n_{\text{coll}}(\mathbf{x}; b)}{(1-\alpha_h)n_{\text{part}}(\mathbf{0}; 0) + \alpha_h n_{\text{coll}}(\mathbf{0}; 0)} H(\eta)$

 Participant nucleons tend to produce entropy along their direction of motion¹

$$f_{+/-}(\eta) = egin{cases} 0/2 & \eta < -\eta_m \ rac{\pm \eta + \eta_m}{\eta_m} & -\eta_m \leq \eta \leq \eta_m \ 2/0 & \eta > \eta_m \end{cases}$$

 η_m gives rise to a tilting of the initial condition;

Hydrodynamic background: initial condition

Initial (3+1)D entropy density provided by an optical Glauber calculation: $s(\mathbf{x}, \eta; b) = s_0 \frac{(1-\alpha_h)[n_{\text{part}}^A(\mathbf{x}; b)f_+(\eta) + n_{\text{part}}^B(\mathbf{x}; b)f_-(\eta)] + \alpha_h n_{\text{coll}}(\mathbf{x}; b)}{(1-\alpha_h)n_{\text{part}}(\mathbf{0}; 0) + \alpha_h n_{\text{coll}}(\mathbf{0}; 0)} H(\eta)$

 Participant nucleons tend to produce entropy along their direction of motion¹

$$f_{+/-}(\eta) = \begin{cases} 0/2 & \eta < -\eta_m \\ \frac{\pm \eta + \eta_m}{\eta_m} & -\eta_m \le \eta \le \eta_m \\ 2/0 & \eta > \eta_m \end{cases}$$

 η_m gives rise to a tilting of the initial condition;

• The fireball has a finite extension in rapidity

$$H(\eta) = \exp\left[-rac{(|\eta| - \eta_{\mathrm{flat}})^2}{2\sigma_\eta^2} heta(|\eta| - \eta_{\mathrm{flat}})
ight]$$

and is flat just for a limited interval

5/26

¹S. Chatterjee and P. Bozek, PRL 120 (2018) 19, 19230損→ < ≣→ < ≣→ = ♥ 𝔅 𝔅

	Au-Au @ 200 GeV	Pb-Pb @ 5.02 TeV		
$s_0 ({\rm fm}^{-3})$	84	400		
$\tau_0 ~({\rm fm/c})$	1	0.5		
α_h	0.15	0.15		
$\eta_{ m flat}$	1.5	1.5		
σ_η	1	2.2		
η_m	$3.36 (= y_{\text{beam}} - 2)$	$8.58 (= y_{\rm beam})$		

Larger tilting of the initial condition at RHIC than at the LHC to reproduce the data

Hydrodynamic background: tilting in the $\eta - x$ plane

Pb-Pb collision, $\sqrt{s_{\rm NN}}{=}5.02~\text{TeV}$ 5-40% centrality class

イロト イポト イヨト イヨト

7 / 26

Hydrodynamic background: validation

• Rapidity density satisfactory reproduced;

Hydrodynamic background: validation

- Rapidity density satisfactory reproduced;
- Directed flow suggests a milder tilting of the fireball at the LHC;

D-meson directed flow: POWLANG results

- Qualitative trend of STAR data satisfactory reproduced;
- ALICE data for the average $(D^0 + \overline{D}^0) v_1$ compatible with zero, but significant Δv_1 between D^0 and \overline{D}^0 , not captured by our model, not including e.m. fields

D-meson directed flow: POWLANG results

- Qualitative trend of STAR data satisfactory reproduced;
- ALICE data for the average $(D^0 + \overline{D}^0) v_1$ compatible with zero, but significant Δv_1 between D^0 and \overline{D}^0 , not captured by our model, not including e.m. fields
- Slope $|dv_1/dy|$
 - a factor ~ 10 larger for D mesons than for pions;
 - a factor \sim 3 larger at RHIC than at the LHC

9/26

Directed flow: sensitivity to hadronization

Hadronization via in-medium recombination with string-breaking can enhance the *D*-meson $v_1(y)$ in the p_T -range 1-3 GeV/c.

Directed flow: sensitivity to hadronization

Hadronization via in-medium recombination with string-breaking can enhance the *D*-meson $v_1(y)$ in the p_T -range 1-3 GeV/c. NB overall v_1^q small, but strong correlation between HQ momentum and position and four-velocity of its fluid-cell at hadronization!

Constraints on the transport coefficients

The curves display results with I-QCD, I-QCD×5 and I-QCD×10 momentum diffusion coefficient κ . Since the HQ relaxation-time $\eta_D^{-1} = 2ET/\kappa$, the larger κ , the faster the approach to local kinetic equilibrium.

Constraints on the transport coefficients

The curves display results with I-QCD, I-QCD×5 and I-QCD×10 momentum diffusion coefficient κ . Since the HQ relaxation-time $\eta_D^{-1} = 2ET/\kappa$, the larger κ , the faster the approach to local kinetic equilibrium.

• Combining data on R_{AA} , v_2 and v_1 one can tightly constrain κ ;

Constraints on the transport coefficients

The curves display results with I-QCD, I-QCD×5 and I-QCD×10 momentum diffusion coefficient κ . Since the HQ relaxation-time $\eta_D^{-1} = 2ET/\kappa$, the larger κ , the faster the approach to local kinetic equilibrium.

- Combining data on R_{AA} , v_2 and v_1 one can tightly constrain κ ;
- Since $v_1^{\text{therm}} \approx 0$ one might expect v_1^D to decrease as κ gets very large. However, since for the spatial diffusion we have $D_s = 2T^2/\kappa$, a large value of κ entails that the HQ's maintain their spatial asymmetry with respect to the background for long.

The algorithm

- HQ in a cell at $T_H = 155$ MeV recombines with a light quark or diquark from the medium sampled according to a thermal distribution in the LRF of the fluid cell;
- O Cluster $\mathcal C$ is contructed and boosted to the lab-frame
 - if $M_C > M_c$ perform Lung string-fragmentation
 - if $M_C < M_c$, but 2-body decay allowed, simulate isotropic two-body decay in the LRF of the cluster, e.g. $C \rightarrow H_c + \pi$, and boost the daughters to the lab-frame
 - if $M_{\mathcal{C}}$ does not allow 2-body decay goto 1 and resample

The algorithm

- HQ in a cell at $T_H = 155$ MeV recombines with a light quark or diquark from the medium sampled according to a thermal distribution in the LRF of the fluid cell;
- **②** Cluster \mathcal{C} is contructed and boosted to the lab-frame
 - if $M_C > M_c$ perform Lung string-fragmentation
 - if $M_C < M_c$, but 2-body decay allowed, simulate isotropic two-body decay in the LRF of the cluster, e.g. $C \rightarrow H_c + \pi$, and boost the daughters to the lab-frame
 - if $M_{\mathcal{C}}$ does not allow 2-body decay goto 1 and resample

NB If kinematically allowed, $C \rightarrow H_c + \pi$ decay occurs with probability 1, without worrying whether M_C corresponds to some known or unknown resonance

Species	g _s	gı	M (GeV)	daughter (if $M_C < M_c$)
q	2	2	0.33000	D^0, D^+
S	2	1	0.50000	D_s^+
(<i>ud</i>) ₀	1	1	0.57933	Λ_c^+
$(qq)_1$	3	3	0.77133	Λ_c^+
$(sq)_0$	1	2	0.80473	Ξ_c^0, Ξ_c^+
$(sq)_1$	3	2	0.92953	Ξ_c^0, Ξ_c^+
$(ss)_1$	3	1	1.09361	Ω_c^0, Ξ_c^+

- We assume that around T_H the medium contains a set of light diquark states which favour the production of charmed baryons;
- Diquark masses taken from PYTHIA;
- Spin-isospin degeneracy enhances the relative abundance of (qq)₁ diquarks

Historical reminder I: Herwig cluster hadronization

Developed for e^+e^- collisions (B.R. Webber, NPB 238 (1984), 492)

- All gluons forced to spit into $q\overline{q}$ pairs
- Construct color-singlet $q\overline{q}$ clusters C
- If $M_C < 4$ GeV simulate 2-body $C \rightarrow h_1 h_2$ decay into hadrons
- If $M_{\mathcal{C}} > 4$ GeV simulate first the fragmentation $\mathcal{C} \rightarrow \mathcal{C}_1 + \mathcal{C}_2 = 0$

14 / 26

Historical reminder II: hadronization as $q\overline{q}' \rightarrow MM'$ process

- Hadronization pictured as a continuous $q\overline{q}' \rightarrow MM'$ process in the $N_f = 3$ NJL model (P. Rehberg et al, PRC 53 (1995) 410)
- Below their Mott temperatures mesons are bound states $(m_M < m_q + m_{\overline{q}'})$ and the whole process involves on-shell particles respecting four-momentum conservation

Cluster-mass distribution in a Pb-Pb collision

- Cluster-mass distribution smooth (no resonance-peak by any "pre-confinement" mechanism) and steeply falling;
- Only in $\approx 15\%$ of the cases (if $m_c = 1.5$ GeV) cluster mass below threshold and resampling is required;

Cluster-mass distribution in a Pb-Pb collision

- Cluster-mass distribution smooth (no resonance-peak by any "pre-confinement" mechanism) and steeply falling;
- Only in $\approx 15\%$ of the cases (if $m_c = 1.5$ GeV) cluster mass below threshold and resampling is required;
- Resampling concerns mainly c+diquark clusters arising from a low-p_T HQ

イロト イポト イヨト イヨト

Tuning of the parameters: particle ratios

For M > M_{max} clusters are hadronized as Lund strings (suppression of excitation of ss and qq - qq pairs from the vacuum in string breaking), otherwise overproduction of D_s⁺ mesons and Λ_c⁺ baryons

Tuning of the parameters: particle ratios

- For M > M_{max} clusters are hadronized as Lund strings (suppression of excitation of ss and qq qq pairs from the vacuum in string breaking), otherwise overproduction of D_s⁺ mesons and Λ_c⁺ baryons
- Notice that in Herwig hadronization only clusters with M < 4 GeV undergo direct 2-body decay. A similar cutoff is found here to accomodate the D_s^+ and Λ_c^+ data

Tuning of the parameters: decay of vector clusters

As long as $M < M^*$ BR of the c-q clusters in the vector channel taken from the ones of D^* mesons: necessary in order to have $D^+/D^0 < 1$

Results: charmed-hadron ratios in Pb-Pb

Species	D^0	D^+	D_s^+	Λ_c^+	Ξ_c^0	Ξ_c^+	Ω_c^+
Yields	≈ 0.40	≈ 0.20	pprox 0.16	pprox 0.16	pprox 0.04	pprox 0.04	< 0.01

Relative charmed-baryon yields follow directly from diquark masses and degeneracy factor

Results: charmed-hadron ratios in Pb-Pb

- Charmed-baryon production for p_T > 4 GeV affected by the transport coefficients, due to parent charm-quark spectrum;
- Charmed-baryon enhancement and radial-flow stronger in more central collisions

(a)

Quantifying the effect of hadronization

Overall, charmed hadrons inherit a larger radial flow in the new cluster-hadronization scheme wrt string fragmentation

Quantifying the effect of hadronization

Overall, charmed hadrons inherit a larger radial flow in the new cluster-hadronization scheme wrt string fragmentation

Results: charmed hadron elliptic flow

- Hints of baryon-meson separation at low p_T
- At larger p_T charmed-baryon v_2 overshoots the meson one

Results: hadronization effect on charm v_2

Enhancement of v_2 coefficient wrt the one of charm quarks moved to higher p_T as compared to string-fragmentation approach, probably due to hardening of the charmed-hadron spectrum

Results: charmed-hadron v_1

- Non-vanishing charmed-hadron directed-flow coefficient;
- Larger v₁ with IQCD transport coefficients (κ_{IQCD} > κ_{HTL} in the considered p_T-range)
- Differences among hadron species not accessible with the employed statistics;

Results: charmed hadron directed flow

- Recombination with light (di-)quarks enhances the signal
- This in spite of the very small light-hadron v₁: space-momentum correlations at work!

 POWLANG model extended to the 3+1 case reproducing observables arising from the tilting of the fireball (*D*-meson v₁) and its finite extension in rapidity;

- POWLANG model extended to the 3+1 case reproducing observables arising from the tilting of the fireball (*D*-meson v₁) and its finite extension in rapidity;
- Development of new hadronization model in progress, trying to overcome shortcomings of the previous in-medium string-fragmentation approach. Major features:
 - also diquarks involved in recombination
 - 2-body decays of clusters \longrightarrow better description of HF hadrochemistry
 - space-momentum correlations, present by construction, important to describe flow;
 - exact four-momentum conservation among initial and final-state on-shell particles