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Outline

The POWLANG setup: modelling of HQ transport

Recent results in 3+1 dimensions (A.B. et al., JHEP 05
(2021) 279)

A new approach to hadronization (work in progress)
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POWLANG setup: the relativistic Langevin equation

POWLANG setup based on the relativistic Langevin equation
In the LRF of the fluid one performs the update of the HQ momentum

∆pi

∆t
= − ηD(p)pi︸ ︷︷ ︸

determ.

+ ξi (t)︸︷︷︸
stochastic

,

with the properties of the noise encoded in

〈ξi (pt)〉 = 0 〈ξi (pt)ξj(pt′)〉=bij(p)
δtt′

∆t
bij(p)≡κL(p)p̂i p̂j+κT (p)(δij−̂pi p̂j)

One needs to know the transport coefficients:

Momentum diffusion: κT ≡
1

2

〈∆p2
T 〉

∆t
and κL≡

〈∆p2
L〉

∆t

Friction term, in the Ito pre-point discretization scheme,

ηIto
D (p) =

κL(p)

2TEp
− 1

E 2
p

[
(1− v2)

∂κL(p)

∂v2
+

d − 1

2

κL(p)− κT (p)

v2

]
fixed in order to ensure approach to equilibrium (Einstein relation)
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The transport coefficients
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In the non-relativistic limit HQ dynamics captured by a single
transport coefficient:

〈~x2(t)〉 ∼
t→∞

6Dst with DS =
2T 2

κ

Large values of κ entails fast thermalization but slow diffusion!

In the kinematic domain of experimental interest momentum
dependence of κL/T plays an important role
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Hydrodynamic background: initial condition

Initial (3+1)D entropy density provided by an optical Glauber calculation:

s(x, η; b) = s0
(1−αh)[nA

part(x; b)f+(η)+nB
part(x; b)f−(η)] + αhncoll(x; b)

(1−αh)npart(0; 0) + αhncoll(0; 0)
H(η)

Participant nucleons tend to produce entropy along their direction
of motion1

f+/−(η) =


0/2 η < −ηm
±η + ηm
ηm

−ηm ≤ η ≤ ηm

2/0 η > ηm

ηm gives rise to a tilting of the initial condition;

The fireball has a finite extension in rapidity

H(η) = exp

[
− (|η| − ηflat)2

2ση2
θ(|η| − ηflat)

]
and is flat just for a limited interval

1S. Chatterjee and P. Bozek, PRL 120 (2018) 19, 192301
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Hydrodynamic background: initial condition

Au-Au @ 200 GeV Pb-Pb @ 5.02 TeV

s0 (fm−3) 84 400

τ0 (fm/c) 1 0.5

αh 0.15 0.15

ηflat 1.5 1.5

ση 1 2.2

ηm 3.36 (= ybeam−2) 8.58 (= ybeam)

Larger tilting of the initial condition at RHIC than at the LHC to
reproduce the data

6 / 26



Hydrodynamic background: tilting in the η − x plane
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), Au-Au 10-40%, τ0=1.0 fm/c
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Hydrodynamic background: validation
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Rapidity density satisfactory reproduced;

Directed flow suggests a milder tilting of the fireball at the LHC;
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D-meson directed flow: POWLANG results
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Qualitative trend of STAR data satisfactory reproduced;

ALICE data for the average (D0 + D
0
) v1 compatible with zero, but

significant ∆v1 between D0 and D
0
, not captured by our model, not

including e.m. fields

Slope |dv1/dy |
a factor ∼10 larger for D mesons than for pions;
a factor ∼3 larger at RHIC than at the LHC
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D-meson directed flow: POWLANG results
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Directed flow: sensitivity to hadronization
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Hadronization via in-medium recombination with string-breaking can
enhance the D-meson v1(y) in the pT -range 1-3 GeV/c.

NB overall vq
1 small, but strong correlation between HQ momentum and

position and four-velocity of its fluid-cell at hadronization!
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Constraints on the transport coefficients
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The curves display results with l-QCD, l-QCD×5 and l-QCD×10
momentum diffusion coefficient κ. Since the HQ relaxation-time
η−1D = 2ET/κ, the larger κ, the faster the approach to local kinetic
equilibrium.

Combining data on RAA, v2 and v1 one can tightly constrain κ;

Since v therm
1 ≈ 0 one might expect vD

1 to decrease as κ gets very
large. However, since for the spatial diffusion we have Ds = 2T 2/κ,
a large value of κ entails that the HQ’s maintain their spatial
asymmetry with respect to the background for long.
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Hadronization: in-medium cluster formation and decay (I)

The algorithm

1 HQ in a cell at TH = 155 MeV recombines with a light quark or
diquark from the medium sampled according to a thermal
distribution in the LRF of the fluid cell;

2 Cluster C is contructed and boosted to the lab-frame

if MC > Mc perform Lung string-fragmentation
if MC < Mc , but 2-body decay allowed, simulate isotropic
two-body decay in the LRF of the cluster, e.g. C → Hc + π,
and boost the daughters to the lab-frame
if MC does not allow 2-body decay goto 1 and resample

NB If kinematically allowed, C → Hc + π decay occurs with probability 1,

without worrying whether MC corresponds to some known or unknown

resonance
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Hadronization: in-medium cluster formation and decay (II)

Species gs gI M (GeV) daughter (if MC < Mc)
q 2 2 0.33000 D0,D+

s 2 1 0.50000 D+
s

(ud)0 1 1 0.57933 Λ+
c

(qq)1 3 3 0.77133 Λ+
c

(sq)0 1 2 0.80473 Ξ0
c ,Ξ

+
c

(sq)1 3 2 0.92953 Ξ0
c ,Ξ

+
c

(ss)1 3 1 1.09361 Ω0
c ,Ξ

+
c

We assume that around TH the medium contains a set of light
diquark states which favour the production of charmed baryons;

Diquark masses taken from PYTHIA;

Spin-isospin degeneracy enhances the relative abundance of (qq)1
diquarks
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Historical reminder I: Herwig cluster hadronization

Developed for e+e− collisions (B.R. Webber, NPB 238 (1984), 492)

All gluons forced to spit into qq pairs

Construct color-singlet qq clusters C
If MC<4 GeV simulate 2-body C → h1h2 decay into hadrons

If MC>4 GeV simulate first the fragmentation C → C1 + C2
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Historical reminder II: hadronization as qq′ → MM ′ process

Hadronization pictured as a continuous qq′ → MM ′ process in the
Nf = 3 NJL model (P. Rehberg et al, PRC 53 (1995) 410)

Below their Mott temperatures mesons are bound states
(mM < mq + mq′) and the whole process involves on-shell particles
respecting four-momentum conservation
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Cluster-mass distribution in a Pb-Pb collision
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Cluster-mass distribution smooth (no resonance-peak by any
“pre-confinement” mechanism) and steeply falling;

Only in ≈ 15% of the cases (if mc = 1.5 GeV) cluster mass below
threshold and resampling is required;

Resampling concerns mainly c+diquark clusters arising from a
low-pT HQ
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Cluster-mass distribution in a Pb-Pb collision
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Cluster-mass distribution smooth (no resonance-peak by any
“pre-confinement” mechanism) and steeply falling;

Only in ≈ 15% of the cases (if mc = 1.5 GeV) cluster mass below
threshold and resampling is required;

Resampling concerns mainly c+diquark clusters arising from a
low-pT HQ
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Tuning of the parameters: particle ratios
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For M > Mmax clusters are hadronized as Lund strings (suppression
of excitation of ss and qq − qq pairs from the vacuum in string
breaking), otherwise overproduction of D+

s mesons and Λ+
c baryons

Notice that in Herwig hadronization only clusters with M < 4 GeV
undergo direct 2-body decay. A similar cutoff is found here to
accomodate the D+

s and Λ+
c data
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Tuning of the parameters: decay of vector clusters
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As long as M < M∗ BR of the c−q clusters in the vector channel taken

from the ones of D∗ mesons: necessary in order to have D+/D0 < 1
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Results: charmed-hadron ratios in Pb-Pb
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Yields ≈ 0.40 ≈ 0.20 ≈ 0.16 ≈ 0.16 ≈ 0.04 ≈ 0.04 < 0.01

Relative charmed-baryon yields follow directly from diquark masses and

degeneracy factor
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Results: charmed-hadron ratios in Pb-Pb
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Charmed-baryon production for pT > 4 GeV affected by the
transport coefficients, due to parent charm-quark spectrum;

Charmed-baryon enhancement and radial-flow stronger in more
central collisions
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Quantifying the effect of hadronization
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Overall, charmed hadrons inherit a larger radial flow in the new

cluster-hadronization scheme wrt string fragmentation
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Results: charmed hadron elliptic flow
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Hints of baryon-meson separation at low pT

At larger pT charmed-baryon v2 overshoots the meson one
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Results: hadronization effect on charm v2

 

0 2 4 6 8 10
 (GeV/c) 

T
 p

0

0.05

0.1

0.15

0.2

2
 v

Charm quarks

Charm hadrons, cluster hadr

Charm hadrons, in-medium string

POWLANG HTL transp coef

=5.02 TeVNNsPb-Pb, 

Centrality 30-50%

  

0 2 4 6 8 10
 (GeV/c) 

T
 p

0

0.05

0.1

0.15

0.2

2
 v

Charm quarks

Charm hadrons, cluster hadr

Charm hadrons, in-medium string

POWLANG lQCD transp coef

=5.02 TeVNNsPb-Pb, 

Centrality 30-50%

 

Enhancement of v2 coefficient wrt the one of charm quarks moved to

higher pT as compared to string-fragmentation approach, probably due

to hardening of the charmed-hadron spectrum
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Results: charmed-hadron v1

 

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
 y 

0.04−

0.02−

0

0.02

0.04

1
 v

0D
+D
+
sD
+
cΛ

POWLANG HTL transp coef

 < 3 GeV/c
T

1 < p

=5.02 TeVNNsPb-Pb, 

Centrality 30-50%

  

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
 y 

0.04−

0.02−

0

0.02

0.04

1
 v

0D
+D
+
sD
+
cΛ

POWLANG lQCD transp coef

 < 3 GeV/c
T

1 < p

=5.02 TeVNNsPb-Pb, 

Centrality 30-50%

 

Non-vanishing charmed-hadron directed-flow coefficient;

Larger v1 with lQCD transport coefficients (κlQCD > κHTL in the
considered pT -range)

Differences among hadron species not accessible with the employed
statistics;
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Results: charmed hadron directed flow
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Recombination with light (di-)quarks enhances the signal

This in spite of the very small light-hadron v1: space-momentum
correlations at work!
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To summarize

POWLANG model extended to the 3+1 case reproducing
observables arising from the tilting of the fireball (D-meson
v1) and its finite extension in rapidity;

Development of new hadronization model in progress, trying
to overcome shortcomings of the previous in-medium
string-fragmentation approach. Major features:

also diquarks involved in recombination
2-body decays of clusters −→ better description of HF
hadrochemistry
space-momentum correlations, present by construction,
important to describe flow;
exact four-momentum conservation among initial and
final-state on-shell particles
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