Determination of the total charm cross section in 5TeV pp collisions in HonexComb project

for the HonexComb charm group: R. G. De Cassagnac, G. Manca, C. Bierlich, J. Sun, J. Metwally, M. Mazzilli, G.M. Innocenti, A. Geiser, Y. Yang, J. Wilkinson

Quark-Gluon Plasma Characterisation with Heavy Flavour Probes ECT* workshop

Istituto Nazionale di Fisica Nucleare

Jiayin Sun (INFN Cagliari)

Total charm cross-section in *pp* collisions

- measurements from different experiment could provide important benefits.
- space ==> ingredients for the total charm cross-section
- A collection of open charm meson results from LHC:

pp	ALICE	LHCb	CMS	ATLAS
5TeV	Eur. Phys. J. C79 (2019) 388 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	JHEP 06 (2017) 147 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	Phys. Lett. B 782 (2018) 474 D ⁰	
7TeV	Eur. Phys. J. C77 (2017) 550 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$	Nucl. Phys. B871 (2013) 1 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}, \Lambda_c^+$		Nucl. Phys. B 907 (2016) 717 $D^{\pm}, D_s^{\pm}, D^{*\pm}$
13TeV		JHEP 05 (2017) 074, JHEP 09 (2016) 013 $D^0, D^{\pm}, D_s^{\pm}, D^{*\pm}$		

- 5TeV is a good starting point
 - New ALICE papers on prompt Λ_c^+ production in 5TeV (PRC 104, 054905, PRL 127, 202301)

• The measurement of the total charm cross-section emerged as one of the most promising area where combining

• All LHC experiments have competitive results for charmed hadrons that cover different regions of kinematic phase

Available open charm results at 5TeV pp collisions D mesons

Eur. Phys. I. C79 (2019) 388

Phys. Lett. B 782 (2018) 474

D ⁰ in 5TeV pp	ALICE	LHCb	CMS
$p_{\rm T}[{\rm GeV}/c]$	0 36	0 10	2 100
Rapidity	y < 0.5	2.0 < y < 4.5	y < 1.0

Available open charm results at 5TeV pp collisions **Charmed baryons**

PRL 127, 202301

- enhancement in pp compared to e+e-

• The need of precisely measuring charmed baryon production has become relevant in presence of large

• Need to estimate the effect of different enhancement scenarios of these particles on the total cross section

Objectives

- Objectives: obtain a combined measurement of $\sigma_{tot}(c\overline{c})$ and σ_{charm} vs. p_{T} and y using existing published measurements of ALICE, CMS and LHCb at 5 TeV.
 - Understand theory, find "best" description for total charm cross-section
 - Critical input for calculations in AA collisions
- Goals: \bullet
 - Collecting in a common database the relevant charm measurements in *pp* collisions in a consistent ROOT/txt format. • Providing summary plots to be used in review papers and summary talks

 - Providing comprehensive comparisons to theoretical calculations in the various rapidity and transverse momentum regions.
 - Encourage the development of dedicated tunes for theoretical calculations (e.g. Pythia) that consider the knowledge lacksquareacquired after 10 years of charm measurements at the LHC
 - Common and unique inputs for charm differential cross-section vs. p_{T} and rapidity to be used as input for AA theoretical calculations
 - various LHC experiments

Provide an estimation of the total charm cross-section, which incorporates the constraints coming from the

Charm results and combination

Collection of open charm results in *pp* collisions at 5 TeV

Experiment	Ref. code	Hadronic decays
ALICE	EPJC 79, 388 (2019)	$D^0 \rightarrow K^- \pi^+, D^-$
ALICE	PRL 127, 202301	$\Lambda_c^+ ightarrow p K^- \pi^+$, Λ_c^+
ALICE	PRC 104, 054905	$\Lambda_c^+ o p K^- \pi^+$, Λ_c^+
CMS	PLB, v. 782, 2018, p 474-496	$D^0 \rightarrow K^- \pi^+$ (+ c
CMS	PLB, v. 803, 2020, 135328	$\Lambda_c^+ ightarrow p K^- \pi^+$ (+
LHCb	JHEP, 147 (2017)	$D^0 \rightarrow K^- \pi^+, D^-$

- Kinematic regions (D^0) :
 - ALICE: $0 < p_T < 36 \text{ GeV}/c$; -0.5 < y < 0.5
 - CMS: $2 < p_T < 100 \text{ GeV}/c$; -1.0 < y < 1.0
 - LHCb: $0 < p_T < 10 \text{ GeV}/c$; $2.0 < y < 4.5 \text{ in } \Delta y$
- Produce compilation plots of σ_{charm} vs. p_{T} and y
- All information collected and accessible in twiki: lacksquare
- https://twiki.cern.ch/twiki/bin/view/Honexcomb/HonexcombCharmSection

$$^{+} \rightarrow K^{-}\pi^{+}\pi^{+}, D_{s}^{+} \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+}, D^{*+} \rightarrow D^{0}\pi^{+}$$
 (+ c.c.)
 $\Lambda_{c}^{+} \rightarrow pK_{S}^{0}$ (+ c.c.)
(c.)

⊦ c.c.)

 $^{+} \rightarrow K^{-}\pi^{+}\pi^{+}, D_{s}^{+} \rightarrow \phi\pi^{+} \rightarrow K^{+}K^{-}\pi^{+}, D^{*+} \rightarrow D^{0}\pi^{+}$ (+ c.c.)

	Decay	Branching ratio
	$D^0 \rightarrow K^- \pi^+$	$3.950 \pm 0.031\%$
-05 hins	$D^+ \rightarrow K^- \pi^+ \pi^+$	$9.38\pm0.16\%$
- 0.5 UIIIS	$D_s^+ \to \phi \pi^+ \to K^+ K^- \pi^+$	$2.24\pm0.08\%$
	$\Lambda_c \to p K^- \pi^+$	$6.28\pm0.32\%$
	$\Lambda_c \to p K^0_s \to p \pi^+ \pi^-$	$1.10\pm0.06\%$

Combination plots for D^0

Combination plots for D^+

- 60 10
- D^+ cross-section in p_T and y

Combination plots for *D*^{*+}

PYTHIA-data comparison

- performed to estimate the total charm cross section.
 - PYTHIA and FONLL event generators
- PYTHIA settings:
 - Parton-shower approach for charm production in very low $p_{\rm T}$
 - For hard $2 \rightarrow 2$ process use the PYTHIA model for multiparton interactions [PRD 36 (1987) 2019]
- value.
- space.
- Currently, made comparisons for D^0 , D^+ , D_s^+ and D^* mesons.

Data from ALICE, CMS and LHCb do not cover the full rapidity range, interpolation and extrapolation must be

• The only remaining parameter to fix is the kinematic charm mass, default value in PYTHIA is 1.5 GeV

• Scan charm mass from 1.1 to 1.9 GeV, in 0.1 GeV step size. Produce 10M PYTHIA events for each charm mass

• Find the best charm mass value from simultaneous fit to measured charmed hadrons cross-section in (p_T, y)

D^0 comparison to PYTHIA

- 10M PYTHIA events for each charm in 0.1GeV step.
- CMS and LHCb

D⁺ comparison to PYTHIA

- 10M PYTHIA events for each charm mass value (m0) from 1.1 to 1.9 GeV, in 0.1GeV step.
- Cross-section vs. rapidity in $p_{\rm T}$ slices
- Using 5TeV *pp* data from ALICE and LHCb

D_{s}^{+} comparison to PYTHA

- 10M PYTHIA events for each charm mass value (m0) from 1.1 to 1.9 GeV, in 0.1GeV step.
- Cross-section vs. rapidity in $p_{\rm T}$ slices
- Using 5TeV *pp* data from ALICE and LHCb

D*+ comparison to PYTHIA

- 10M PYTHIA events for each charm mass value (m0) rom 1.1 to 1.9 GeV, in 0.1GeV step.
- Cross-section vs. rapidity in $p_{\rm T}$ slices
- Using 5TeV *pp* data from ALICE and LHCb

Simultaneous fit

- Calculate χ^2 across D^0 , D^+ , D_s^+ and D^* from all experiments to find the charm mass value (m0) that describes data best.
- Compare each point between data and PYTHIA, calculate $\chi^2 = \Sigma \frac{(data - pythia)^2}{\sigma^2}$, summed over all data points.
- Consider correlation of systematic uncertainties
 - Common correlation between experiments
 - Branching ratio
 - Correlations within each experiment
 - between same meson species
 - between different meson species

Correlated systematics within experiments

Correlations in LHCb:

- Correlation matrices from <u>HEPDATA</u> for same and difference D meson species
- **Correlations in ALICE:**

Systematic uncertainty	Same D mesons	Different D mesons
Luminosity	fully correlated	fully correlated
Raw yields		
Tracking	fully correlated	fully correlated
Cut efficiency	fully correlated	
PID	fully correlated	
MC p _T shape	fully correlated	
Feed-down	fully correlated	fully correlated

• Correlations in CMS:

• Luminosity and BR are fully correlated

	Uncertainties $(\%)$			Correlation		
	D^0	D^+	D_s^+	D^{*+}	Bins	Deca
Luminosity			3.8		100	
Tracking	3 - 5	5 - 7	4 - 7	5 - 7	90–100	90
Branching fractions	1.2	2.1	5.8	1.5	100	(
Simulation sample size	0–10	0–10	2–9	1 - 10	0	
Simulation modelling	0.3	0.7	0.6	2	0	
PID sample size	0–1	0–1	0 - 2	$0\!\!-\!\!2$	0–100	0
PID binning	0–30	0–10	0–20	0 - 20	0	
Fit model shapes	0–3	0–3	0–3	0.0 - 1.0	0	

• Tested calculating χ^2 with correlated uncertainties:

$$\chi^2 = X^T V^{-1} X$$

- X = (measurement expectation) =(data points - pythia)
 - X: an n-dimensional vector
 - n is the number of data points used in the calculation
- $V = n \times n$ covariance matrix
- V^{-1} = invert of covariance matrix

Simultaneous fit

- Calculate χ^2 across D^0 , D^+ , D_s^+ and D^{*+} from all experiments to find the best charm mass value (m0).
- - σ is the total uncertainty of a data point
- $p_{\rm T} < 6 \, {\rm GeV/c}$
- ALICE, LHCb and CMS points are used.
 - LHCb points provide most constraint.
- Assuming two extreme cases:
 - **Totally uncorrelated uncertainty** across data points (black)
 - **Totally correlated uncertainty:**
 - Shift all points up by 1 sigma (red)
 - Shift all points down by 1 sigma (blue)
- The variation of the minimum position can be used as uncertainty of m_c
 - Minimum position: $1.43^{+0.14}_{-0.15}$

Fit results: D^0 vs. Pythia

- Light blue:
 - Uncorrelated case
 - $m_c = 1.43 \ GeV/c^2$
- Magenta:
 - Fully correlated, upper limit \bullet
 - $m_c = 1.28 \ GeV/c^2$
- Green:
 - Fully correlated, lower limit
 - $m_c = 1.57 \ GeV/c^2$
- Pythia band below data at low $p_{\rm T}$
- Increase Δm_c to cover low p_T data point
- Include Λ_c^+ into the fit.

- Light blue:
 - Uncorrelated case
 - $m_c = 1.43 \ GeV/c^2$
- Magenta:
 - Fully correlated, upper limit
 - $m_c = 1.28 \ GeV/c^2$
- Green:
 - Fully correlated, lower limit
 - $m_c = 1.57 \ GeV/c^2$
- Pythia band below data at low $p_{\rm T}$
- Increase Δm_c to cover low $p_{\rm T}$ data points
- Include Λ_c^+ into the fit.

Fit results: D^+ vs. Pythia

• Light blue:

- Uncorrelated case
- $m_c = 1.43 \ GeV/c^2$
- Magenta:
 - Fully correlated, upper limit
 - $m_c = 1.28 \ GeV/c^2$

Green: ullet

- Fully correlated, lower limit
- $m_c = 1.57 \ GeV/c^2$
- Pythia band below data at low $p_{\rm T}$
- Increase Δm_c to cover low $p_{\rm T}$ data points
- Include Λ_c^+ into the fit.

Fit results: D_s^+ vs. Pythia

- Light blue:
 - Uncorrelated case
 - $m_c = 1.43 \ GeV/c^2$
- Magenta:
 - Fully correlated, upper limit
 - $m_c = 1.28 \ GeV/c^2$
- Green:
 - Fully correlated, lower limit
 - $m_c = 1.57 \ GeV/c^2$
- Pythia band below data at low $p_{\rm T}$
- Increase Δm_c to cover low $p_{\rm T}$ data points
- Include Λ_c^+ into the fit.

Fit results: D^{*+} vs. Pythia

- The project of total charm cross-section from combining ALICE, CMS and LHCb measurements is making good progress.
- Compared with PYTHIA calculations, found parameters that describe data.
 - To-do: include ALICE Λ_c^+ data into the fitting.
- Working on extrapolation to obtain total cross-section.
- Preparing paper on data/theory comparisons and total charm cross-section in the coming months.

