The Review Paper of the network activity HF-QGP in STRONG-2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

ECT*, hybrid format - November the 18th 2021

The Review Paper of the network activity HF-QGP in STRONG-2020

ECT*, on-line - April the 26th 2021

STRONG-2020

STRONG-2020 "The strong interaction at the frontier of knowledge: fundamental research and applications" has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 824093

Coordinator of the project: Barbara Erazmus

□ Web site: <u>http://www.strong-2020.eu/</u>

Consortium Agreement

- **45 participating institutions** (beneficiaries) in
- 16 countries:
- Austria, Belgium, Switzerland, Germany, Spain, Finland, France, Croatia, Ireland, Italy, Montenegro, Netherlands, Poland, Portugal, Sweden, United Kingdom
- Location details can be found on online <u>Google map</u>
- 134 other Involved Institutions (not receiving EU funding)

Grant Agreement

Project duration: from 1 June 2019 to 31 May 2023 (initial)

Total Budget: 10 M €

32 Work Packages (WPs):

- MAN: Management and Coordination
- DISCO: Dissemination and Communication
- > 7 Transnational Access Research Infrastructures (TA)
- > 2 Virtual Infrastructures (VA)
- Experimental /Theoretical /Instrumentation Activities:
- 7 Networking Activities (NA)
- > 14 Joint Research Activities (JRA)

Web site: http://www.strong-2020.eu/

Scientific Frontiers: Research Infrastructures

Transnational Access

- TA1-COSY (Julich)
- TA2-MAMI (Mainz)
- TA3-LNF (INFN, Frascati)
- TA4-FTD/ELSA (Bonn)
- TA5-GSI (GSI, Darmstadt)
- TA6-ECT* (Trento)
- TA7-CERN (CERN, Geneva)
- The selection of infrastructure complement each other and allow for the exploration of specific strong interaction physics questions with different probes, such as electromagnetic probes at the electron machines or hadronic probes at the hadron machines, covering a broad range of energies.

Virtual Access

VA1-NLOAccess

Jean-Philippe Landsberg, CNRS, Orsay

VA2-3DPartons

Hervé Moutarde CEA, Saclay

 Provide open-access to state-of-the-art computer codes necessary for the highprecision phenomenology of heavy ion reactions and studies of the quark gluon plasma as well as for nucleon and nuclei parton structure research.

The Network Activity HF-QGP

- NA7: Quark-Gluon Plasma characterisation with heavy flavour probes (Hf-QGP)
- Objective: support the joint efforts of experimentalists and theorists in characterizing the properties of the QGP at the LHC energies using Heavy Flavour observables
- Coordinators: Joerg Aichelin and G.B.
 Budget: mostly for workshops and
 - meetings/visits plus about 1 year of postdoc in theory and in experiment

The Network Activity HF-QGP

Structure of the networking:

3 sub-groups:

- Open Heavy Flavour
 - conveners: Andrea Rossi (ALICE), Salvatore Plumari (th.)

Quarkonia

conveners: Emilien Chapon(CMS) and Enrico Scomparin (ALICE), Alexander Rothkopf (th.)

Small System

conveners: Zaida Conesa del Valle (ALICE) and Benjamin Audurier (LHCb), Andrea Beraudo (th.)

Mailing list: STRONG2020-HF_QGP@cern.ch you are welcome to subscribe

□ The network activity is expected to produce a review paper

- At the time of proposal (2017) formulated as "Paper with perspectives and recommendations for the dedicated heavy-ion periods of LHC after the 2nd Long Shutdown for the different LHC experiments"
- The idea at that time was to give a review of run2 results and focus on perspectives for run3 and run4

The review paper

There is ample flexibility from the STRONG-2020 side concerning the content and focus of the review paper

- we should produce what we feel relevant and timing
- my feeling is that focus should go to run5
- Estimated time for this deliverable 31/05/2023

First draft ready on 1/12/2022 (milestone of the project)

The review paper

□ Since 2017 a lot has been done

CERN yellow report - WG5 "Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams"

https://cds.cern.ch/record/2650176

			5	Open heavy flavour	49	_
CERN	2010		5.1	Perspectives for heavy-flavour observables in LHC Run 3 and 4	49	
N	2019	CERN-LPCC-2018-07 February 26, 2019	5.2	Impact of detector upgrades on heavy-flavour measurements	50	
/ \			5.3	Nuclear modification factor and collective flow	51	
Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams			5.4	Studies of heavy-quark hadronisation	55	
			5.5	Heavy-flavour correlations and jets	59	
			5.6	Sensitivity to early magnetic fields and vorticity phenomena	61	=
Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC			5.7	Heavy flavour measurements in small colliding systems	61	
Editors: Z. Citron ³ , A. Dainese ²⁴ M. Winn ^{33,43}	, J.F. Grosse-Oetringhaus ⁶ , J.M. Jowett ⁶ ,	YJ. Lee ⁵³ , U.A. Wiedemann ⁶ ,	7 Q	Quarkonia	81	
Chapter coordinators: A. Andronic ⁵² , F. Bellini ⁶ , F. Bruna ²⁶ , F. Chapon ⁶ , H. Dembinski ⁵¹ , D. d'Enterria ⁶ .		7.1	Introduction	81		
A. Andronic ⁵² , F. Bellini ⁶ , E. Bruna ²⁶ , E. Chapon ⁶ , H. Dembinski ⁵¹ , D. d'Enterria ⁶ , I. Grabowska-Bold ¹ , G.M. Innocenti ^{6,53} , C. Loizides ⁶¹ , S. Mohapatra ¹³ , C.A. Salgado ³⁸ , M. Verweij ^{68,101} , M. Weber ⁷⁴			7.2	Charmonia in Pb–Pb collisions		
Contributors:			7.3	Bottomonia in Pb-Pb collisions	85	
J. Aichelin ⁷¹ , A. Angerami ⁴⁸ , L. Apolinario ^{35,44} , F. Arleo ⁴⁵ , N. Armesto ³⁸ , R. Arnaldi ²⁶ , M. Arslandok ¹⁹ , P. Azzi ²⁴ , R. Bailhache ³⁹ , S.A. Bass ¹⁶ , C. Bedda ⁹⁹ , N.K. Behera ³⁶ , R. Bellwied ⁸⁸ , A. Beraudo ²⁶ , R. Bi ⁵³ , C. Bierlich ^{50,59} , K. Blum ^{6,103} , A. Borissov ⁵² , P. Braun-Munzinger ¹⁷ , R. Bruce ⁶ , G.E. Bruno ⁵⁶ , S. Bufalino ⁵⁶ , J. Castillo Castellanos ³³ , R. Chatterjee ¹⁰⁰ , Y. Chen ⁶ , Z. Chen ⁶⁹ ,			7.4	Quarkonia in p-Pb and pp collisions	88	
				Electromagnetic radiation		

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

18/11/21

E. Chapon et al. "Prospects for quarkonium studies at the highluminosity LHC", Progress in Particle and Nuclear Physics, in press, arXiv:2012.14161

ARTICLE IN PRESS

FLSEVIER

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Prospects for quarkonium studies at the high-luminosity LHC

Émilien Chapon ^{1,a}, David d'Enterria ^{2,a}, Bertrand Ducloué ^{3,a}, Miguel G. Echevarria ^{4,a}, Pol-Bernard Gossiaux ^{5,a}, Vato Kartvelishvili ^{6,a}, Tomas Kasemets ^{7,a}, Jean-Philippe Lansberg ^{8,*,b}, Ronan McNulty ^{9,a}, Darren D. Price ^{10,a}, Hua-Sheng Shao ^{11,a}, Charlotte Van Hulse ^{9,a}, Michael Winn ^{12,a}, Jaroslav Adam ¹³, Liupan An ¹⁴, Denys Yen Arrebato Villar ⁵, Shohini Bhattacharya ¹⁵, Francesco G. Celiberto ^{16,17,18,19}, Cvetan Cheshkov ²⁰, Umberto D'Alesio ²¹, Cesar da Silva ²², Elena G. Ferreiro ²³, Chris A. Flett ^{24,25}, Carlo Flore ⁸, Maria Vittoria Garzelli ^{26,14,27}, Jonathan Gaunt ^{28,10}, Jibo He ²⁹, Yiannis Makris ¹⁷, Cyrille Marquet ³⁰, Laure Massacrier ⁸, Thomas Mehen ³¹, Cédric Mezrag ¹², Luca Micheletti ³², Riccardo Nagar ³³, Maxim A. Nefedov ³⁴, Melih A. Ozcelik ⁸, Biswarup Paul ²¹, Cristian Pisano ²¹, Jian-Wei Qiu ³⁵, Sangem Rajesh ²¹, Matteo Rinaldi ³⁶, Florent Scarpa ^{8,37}, Maddie Smith ⁶, Pieter Taels ³⁰, Amy Tee ⁶, Oleg Teryaev ³⁸, Ivan Vitev ²², Kazuhiro Watanabe ³⁵, Nodoka Yamanaka ^{39,40}, Xiaojun Yao ⁴¹, Yanxi Zhang ^{2,42}

5.	Proto	n-nucleus collisions	40			
	5.1.	Introduction	40			
	5.2.	Cold-nuclear-matter effects in Q production	40			
		5.2.1. Theoretical models: setting the scene				
		5.2.2. Improved constraints on nPDFs from LHC data				
		5.2.3. pA collisions at the FT-LHC: high-precision input for global nPDF fits				
		5.2.4. Developments in theory and phenomenology of QCD at low x and its connection to Q production				
		5.2.4. Developments in theory and phenomenology of QCD at low x and its connection to Q production				
	5.3.	Flow-like phenomena in <i>Q</i> production.				
	5.5.					
		5.3.2. Experimental prospects 4				
		5.3.3. Azimuthal anisotropies from initial-state effects				
	5.4.	Q-hadronisation studies				
		5.4.1. Theoretical status				
		5.4.2. Experimental prospects	50			
6.	Nucle	Nucleus-nucleus collisions				
	6.1.	Introduction and context	52			
	6.2.	Recent theory developments				
		6.2.1. Semi-classical transport and open quantum system	56			
		6.2.2. A density-operator model for Q production in AA collisions	57			
		6.2.3. An advanced EFT for Q in matter	58			
	6.3.	Opportunities at HL-LHC	50			
		6.3.1. Studying the collision-energy dependency of Q production				
		6.3.2. Prospects for X(3872) studies				
		6.3.3. ψ polarisation in <i>PbPb</i> collisions				
		0.5.5. y polarisation in <i>PPP</i> consideration	11			

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

18/11/21

G E Bruno

work for the Letter of Intent of "A next-generation LHC heavy-ion experiment"

- follow-up of the EoI (arXiv:1902.01211) presented as an input to the 2020 Update of the European Particle Physics Strategy
- Open workshop last October
 - https://indico.cern.ch/event/1063724/
- LoI in finalization

In all cases strong and fundamental contribution from the theory community

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

18/11/21

Focus and scope of the document

- LHC Run5&6 and heavy flavour
- Complete and extend the studies done recently
 - For the ALICE3 LoI, in most cases, exemplary performances for channels / items out of reach with run4 have been derived
 - E.g. two (HF) particle correlations, multi-charmed baryons
 - other items considered, but need more tuning:
 - Exotic hadrons, c-nuclei, HF-photons, HF femtoscopy

An assessment of expected physics reach at the end of run4 (and what we can learn further from run5) with also more conventional observables (e.g. v₂ of beauty) still very important to prepare at best the HI physics programs of the different LHC experiments with run5&6

Review paper: next actions

- Dedicated meeting of the network in January 2022
- Form an editorial team
- Present the idea of the document in one of the next meeting of the recently formed Heavy Ion WG of LPCC
 - https://lpcc.web.cern.ch/content/lhc-hiwg