

Electromagnetic radiation from correlated charm/bottom

Taesoo Song (GSI)

in collaboration with Pierre Moreau, Wolfgang Cassing, Elena Bratkovskaya

outline

- Introduction
- Single electron from heavy flavor in PHSD
- Dielectron from heavy quark pair in PHSD
- Summary

1. Introduction

- Advantages of heavy flavor as a probe particle
- Large energy momentum transfer is needed for the production
- \rightarrow pQCD is applicable and model-independent
- \rightarrow early produced, so it probes the matter from the initial stage of heavy-ion collisions
- Less thermalized than light flavors, so the memory time is longer & the information of the initial matter is not completely washed out
- and so on
- Single lepton & part of dilepton are produced through weak decays of heavy flavors

2. Single electron from heavy flavor in PHSD

Cross section for charm production in p+p

Multiplying by **the number of binary collisions** and dividing by **NN inelastic scattering cross section**, one obtains the number of charm pairs produced in heavy-ion collisions

Initial charm & bottom quarks from the PYTHIA tuned for FNOLL

Charm/bottom p_T spectra and y-distribution are obtained from PYTHIA, rescaling p_T and y such that they are similar to those from FONLL calculations

Peterson's fragmentation function

$$D_Q^H(z) \sim \frac{1}{z[1 - 1/z - \epsilon_Q/(1 - z)]^2},$$

z: momentum fraction of H to Q ε_Q=0.01 for charm =0.004 for bottom

• Chemical fractions $c \rightarrow D^+$: 14.9 % $c \rightarrow D^0$: 15.3 % $c \rightarrow D^{+*}$: 23.8 % $c \rightarrow D^{0^*}$: 24.3 % $c \rightarrow D_s$: 10.1 % $c \rightarrow \Lambda_c$: 8.7 %

b→B⁻: 39.9 % b→Bbar⁰: 39.9 % b→Bbar⁰_s: 11 % b→Λ_b: 9.2 %

comparison with exp. in p+p

T. Song, et al. PRC 93, 034906 (2016)

Weak decay of heavy flavor to single electron

T. Song, et al. PRC 96, 014905 (2017)

Cold nuclear matter effects

1. Shadowing

: Parton distribution function (PDF) modified in nucleus, for which EPS09 is used.

$$g + g \to h + \overline{h}, \qquad q + \overline{q} \to h + \overline{h}$$

2. Cronin effect

: Because of parton+N scattering in A(p)+A collisions, p_T of the produced heavy quark pair is enhanced.

R_{dAu} @ 200 GeV

Mid-rapidity (e)

Forward/backward-rapidites (µ)

T. Song, et al. PRC 96, 014905 (2017)

Hot nuclear matter effects

- 1. Partonic interactions
- : based on Dynamical Quasi-Particle Model (DQPM)

- 2. Hadronization (one of issues of this workshop)
- 3. Hadronic interactions
- : T-matrix method from effective Chiral Lagrangian

Coalescence in PHSD

 Wigner function for S-wave coalescence probability

$$\Phi(\mathbf{r}, \mathbf{p}) = 8 \exp\left[-\frac{r^2}{\sigma^2} - \sigma^2 p^2\right],$$

 $\mathbf{r}=\mathbf{r}_1-\mathbf{r}_2,$

0.9 fm

$$\mathbf{p} = (m_2 \mathbf{p_1} - m_1 \mathbf{p_2})/(m_1 + m_2)$$

in center-of-mass frame

$$\begin{split} \left< r_M^2 \right> &= \frac{1}{2} \langle (\mathbf{R} - \mathbf{r}_1)^2 + (\mathbf{R} - \mathbf{r}_2)^2 \rangle \\ &= \frac{1}{2} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \langle r^2 \rangle = \frac{3}{4} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \sigma^2, \end{split}$$

multiplied by 4 (=1+3) to include D* and divided by 36(=6*6) Wigner function for P-wave coalescence probability

$$\left(\frac{16}{3}\frac{y_i^2}{\sigma_i^2} - 8 + \frac{16}{3}\sigma_i^2 k_i^2\right) \exp\left(-\frac{y_i^2}{\sigma_i^2} - k_i^2 \sigma_i^2\right)$$

multiplied by 8 (=3+5) to include $J^p=1^+$, 2⁺ and divided by 36(=6*6)

 We assume P states decay to D(D*) + π as soon as hadronized
D_s is similarly treated

Total coalescence probability is low

Hadronization of heavy quarks in A+A

T. Song et al. PRC 93 (2016) 034906

Coalescence probabilites of charm/bottom in Au+Au collisions at 200 GeV

R_{AA} of D/B mesons

T. Song, et al. PRC 96, 014905 (2017)

$R_{AA} \& v_2$ of single e

T. Song, et al. PRC 96, 014905 (2017)

3. dielectron from heavy quark pair in PHSD

Azimuthal angle correlations (flow effects)

PHSD (opposite position)

PHSD (PYTHIA)

PHSD (opposite position)

Boosted by the same direction of flows \rightarrow correlation is enhanced around $\Phi=0$

Boosted by the opposite direction of flows \rightarrow correlation is enhanced around $\Phi=\pi$

Initial angle correlations are important

PHSD (PYTHIA) 2.0 0-10 % Au+Au @ 200 GeV initial c and c 1.5dN/d∳ (|y|<1) final D and D 1.0 0.5 (a) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 φ(π) 0-10 % Au+Au @ 200 GeV initial b and b 3 final B and B dN/d∳ (|y|<1) 2 1-(d) 0 0.2 0.8 0.0 0.4 0.6 1.0 φ(π)

PHSD (back-to-back)

Azimuthal angle correlations (collision energy dependence)

T. Song, et al. PRC 97, 064907 (2018)

Invariant mass spectra of dielectron from heavy flavor pairs at SPS/RHIC energies

T. Song, et al. PRC 97, 064907 (2018)

What we have found

- (random) scattering dissipates the azimuthal angle correlations, that it makes azimuthal angle distribution flat
- However, collective flow enhances azimuthal angle correlations at $\Phi=0$ (same direction) and suppresses them at $\Phi=\pi$ (opposite direction)
- Initial azimuthal angle correlation is important for dilepton study
- Azimuthal angle correlations are more changed in higher energy collisions

4. Summary

- In the PHSD, initial charm spectrum & rapidity distribution from PYTHIA are tuned (rescaled) such that they are similar to those from the FONLL calculations
- Peterson's fragmentation function is used for the hadronization of heavy quark in p+p collisions
- The (anti)shadowing effects are implemented by EPS09
- Partonic interactions of heavy quark are realized by the DQPM, its hadronization through either coalescence or fragmentation, and the hadronic interactions by T-matrix method
- Experimental data on single electron can be explained within the PHSD
- Extended to dielectron, the azimuthal angle distributions are very important and need to be carefully treated