Excited bottomonia in pp collisions

- Florian Damas and Raphaël Granier de Cassagnac Laboratoire Leprince-Ringuet (CNRS/IN2P3 and École polytechnique)
- QGP characterisation with heavy-flavour probes workshop Trento 2021

Part 1 Feed-downs among bottomonia

Feed-down force: FD and RGdC (CMS), B. Audurier and G. Manca (LHCb)

Project within the HonexComb work package (JRA1 of STRONG-2020) Honexcomb goal: to foster cross-collaboration work at the LHC

Introduction

resonances of the same family

components of the inclusive production measured experimentally

Fraction of *Q*(nL) originating from the decay of Q'(mL'):

Strong implications in quarkonium measurements

- p_T spectrum of production cross sections
- ▶ key role in the ``polarisation puzzle" (cf PRD 94 (2016) 014028)
- essential to understand the sequential suppression pattern in heavy-ion collisions (and in proton–nucleus too!!!)

Florian Damas, Bottomonium feed-downs at the LHC

Feed-downs are production modes of a given quarkonium state from the decay of heavier

$$\sigma(pp \to \hat{Q}'(mL') + X) = \frac{\sigma(pp \to \hat{Q}'(mL') + X)}{\sigma(pp \to \hat{Q}(nL) + X)} \times \mathscr{B}(\hat{Q}'(mL') \to \hat{Q}(nL) + \dots)$$

Motivations

Derivation of feed-down fractions based on early Run 1 measurements (Hermine Wöhri at QWG 2014)

- reference for many models but results not published!
- charmonium family under control
- **bottomonium case much more complex** (next slide) $\chi_b \rightarrow \Upsilon(nS) \gamma$ cannot be reconstructed for $p_T < 6$ GeV

Florian Damas, Bottomonium feed-downs at the LHC

derivation and publication of feed-down fractions exploiting all the available Run 1 and 2 measurements starting with bottomonia

bonus achievement: assess long-standing questions ► is the direct Y(1S) production suppressed at the LHC?

Bottomonia accessible at the LHC

5

Florian Damas, Bottomonium feed-downs at the LHC

Step 1) check the rapidity dependence

Florian Damas, Bottomonium feed-downs at the LHC

Verification of the non-dependence with rapidity (always assumed but never demonstrated)

- with Y(nS) cross-section ratios at 7 TeV measured by CMS (statistical uncertainties only, $p_T < 50$ GeV) and LHCb ($p_T < 30$ GeV)
- best chi-square obtained with a constant fit

can mix data measured for different rapidities without any correction

 $rac{1}{r}$ what about χ_b -to- Υ ratios? is the dependence expected to be similar? would need guidance from theory

Step 2) study of the energy dependence

r can exploit measurements performed at different energies just by applying global scale factors

no p_T dependence + small energy dependence at low p_T

Florian Damas, Bottomonium feed-downs at the LHC

Investigation of the dependence of the cross-section ratios with the centre-of-mass energy

not clear for high p_T

Snapshot – feed-down fractions to Y(1S)

Preliminary results for Y(1S)

- Y(nS) cross-section ratios from LHCb (triangles) and CMS (circles) measurements at 13 TeV
- feed-down fractions from χ_b directly taken from LHCb measurements at 8 TeV
- branching-ratio uncertainties not represented (probably the dominant source of final systematics)

Conclusion

available Run 1 and 2 measurements.

Next steps

- investigation of low-p_T extrapolation for x_b contributions
- evaluation of global uncertainties from branching fractions (partially correlated)

Open questions

- how to extrapolate? CEM / NRQCD predictions? empirical functions?
- could we estimate contributions to χ_b aswell? in view of future measurements

Any suggestion is more than welcome!!!

9

Florian Damas, Bottomonium feed-downs at the LHC

We aim to derive feed-down fractions in bottomonium production at the LHC, exploiting all

First study shows no dependence with rapidity and small dependence with energy (if any).

Part 2 Y(nS) versus pp multiplicity

First look at pp collisions versus multiplicity, brought a big surprise 😡 Is the multiplicity killing the state? or are the states modifying the multiplicity?

11

F. Damas and R. GdC, Bottomonium production at the LHC

A variation of Y(nS)/Y(1S), larger than for pPb, larger when multiplicity is measured at same y

CMS, <u>JHEP04 (2014) 103</u>

This triggered a high-statistics analysis in pp collisions @ 7 TeV No results vs forward energy, because of pile-up (2), but a very large sample @ high p_T A rapid plateau, effect concentrated at very small multiplicity

F. Damas and R. GdC, Bottomonium production at the LHC

13

Vs multiplicity, and p_T

The effect is visible for all p_T (maximal in the 5-7 GeV bin)

F. Damas and R. GdC, Bottomonium production at the LHC

Vs pp multiplicity, and pt

As multiplicity grows, the states have more and more momentum + Heavier states have higher momentum

Positive correlation between mass, momentum and multiplicity

F. Damas and R. GdC, Bottomonium production at the LHC

Vs pp regional multiplicity

No strong dependence with the regional multiplicity

Small dependence at super-low multiplicity: more effect in the backward region In particular, still present in the transverse region* -> Underlying event

F. Damas and R. GdC, Bottomonium production at the LHC

Vs pp multiplicity

No dependence with isolation N co-moving particles in $\Delta R = 0.5$

(excluding $\Upsilon(nS) \rightarrow \Upsilon(1S) \pi^+ \pi^-$)

F. Damas and R. GdC, Bottomonium production at the LHC

CMS, JHEP11 (2020) 001

Vs pp multiplicity & sphericity

No dependence with isolation

N co-moving particles in $\Delta R = 0.5$ (excluding $\Upsilon(nS) \rightarrow \Upsilon(1S) \pi^+ \pi^-$)

F. Damas and R. GdC, Bottomonium production at the LHC

Sphericity S=0 jetty vs S=1 isotropic events Lesser dependence for **jetty events**

When you see an effect versus pp multiplicity, **don't panic**

Rather do a high-statistic super-differential correlation study, here :

- Lower dependence with a rapidity gap between probe and multiplicity
- The dependence is located at (very) low multiplicity and plateaus rapidly
- Positive correlation between mass, momentum and multiplicity • (overall, the Y(1S) comes with 2 more tracks)
- Does not depend regional multiplicity (UE driven in the transverse region)
- Does not depend on isolation (with or without co-moving particles)
- No effect for jetty events (multiplicity not driven by the UE)

Conclusion

 $rac{1}{2}$ Wouldn't Y(nS) just come with different multiplicity, biasing the ratio measurements? Shouldn't all probe-multiplicity analyses be done with a rapidity gap?

F. Damas and R. GdC, Bottomonium production at the LHC

Overview of available data (for feed-down)

Centre-of- mass energy	Mid-rapidity		Forward rapidity	
	Y(nS) cross-section ratio	X b measurement	Y(nS) cross-section ratio	X b measurement
5 TeV	Only single-state cross sections are reported + binning matching pPb / PbPb measurements + no χ _b measurement		NONE!	
7 TeV	ATLAS: y-diff. and p _T -diff. up to 70 GeV CMS: p _T -diff. up to 40 GeV + Υ(3S) / Υ(2S) CMS: p _T -diff. from 10 to 100 GeV	ATLAS: first obervation of χ _b (3P)	LHCb: y-diff, p _T -diff, and double-diff up to 30 GeV + Y(3S) / Y(2S)	LHCb: derivation of χ_b -to- Υ feed-down fractions
8 TeV	None?	CMS: χ _{b2} (1P) / χ _{b1} (1P)		
13 TeV	CMS: p _T -diff. from 20 to 100 GeV + ratio to 7 TeV	CMS: observation of χ _{b1} (3P) and χ _{b2} (3P)	LHCb: y-diff, p _T -diff, and double-diff up to 30 GeV + ratio to 8 TeV	None

Florian Damas, Bottomonium feed-downs at the LHC

Which datasets to use?

ATLAS, CMS and LHCb p_T-differential cross-section ratio measurements at 7 TeV (! log scale)

- LHCb data more precise for p_T ≤ 15 GeV
- CMS data better suited for higher p_T (up to 100 GeV)
- in agreement in the overlapping region! ($10 < p_T < 30$ GeV)

Florian Damas, Bottomonium feed-downs at the LHC

Which dataset(s) to use? – 13 TeV

Florian Damas, Bottomonium feed-downs at the LHC

 p_T -differential measurements of $\Upsilon(2S)$ -to- $\Upsilon(1S)$ and Y(3S)-to-Y(1S) cross-section ratios

- LHCb data up to 30 GeV (double-differential, only up to 13 GeV for 2.0 < y < 4.5)
- CMS data from 20 to 100 GeV

complementarity / overlap between measurement points

However...

- ► Y(3S)-to-Y(2S) ratio to be made by hand
- relative systematic uncertainties (much) larger than 8/7 TeV data 🐝

