Charmonium production in pA and AA collisions

Roberta Arnaldi INFN Torino (Italy)

QUARK-GLUON PLASMA CHARACTERISATION WITH HEAVY FLAVOUR PROBES ECT*, 17 November 2021

Overview

wrap-up of the most recent charmonium results

at the eve of Run 3, precise results from the LHC experiments are available, in all systems and over a broad kinematic range

Observables

Nuclear modification factor R_{AA}

Medium effects quantified comparing AA particle yield with pp cross section, scaled by a geometrical factor ($\propto N_{coll}$)

$$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{pp}}$$

hot/cold matter effects $\rightarrow R_{AA} \neq 1$

Azimuthal anisotropy v₂

Multiple interactions in medium convert initial geometric anisotropy into particle momenta anisotropy

→ elliptic flow (v_2): 2nd coeff. of the Fourier expansion of the azimuthal distributions of the produced particles, wrt the event plane

 $v_2 = \langle \cos 2(\phi_{\text{particle}} - \Psi_{\text{EP}}) \rangle$

A-A	RHIC	LHC (mid-y)	LHC (fw-y)
$J/\psi R_{AA}$			
ψ(2S) <i>R</i> _{AA}			\checkmark
J/ψ v ₂	\checkmark		
ψ(2S) v ₂			
J/ψ polarization			

R_{AA}: high precision reached for ground states, but statistics still limited for excited states

 v_2 : precise J/ ψ results at LHC

new observat

observables/particles: polarization, J/ψ in jets, exotic states

Where are we?

p-A	RHIC	LHC (mid-y)	LHC (fw-y)
J/ψ R _{pA}			
ψ(2S) <i>R</i> _{pA}			\checkmark
$J/\psi v_2$			
J/ψ polarization			

 R_{AA} : available J/ ψ , ψ (2S) results, over a broad kinematic range, at RHIC and LHC

 v_2 : results only available for J/ ψ at LHC

Kinematic coverage

Kinematic coverage

CAVEAT

CMS, ATLAS and LHCb results are for prompt J/ψ , $\psi(2S)$

✓ ALICE results are mainly for inclusive J/ ψ (fraction of J/ ψ from B is ~10% for p_T < 5GeV/c and 30% for p_T ~ 10GeV/c)

A-A collisions

Hot matter effects

Heavy quarks produced in the early stages of the collisions

the original idea:

quarkonium production suppressed sequentially via color screening in QGP (T.Matsui,H.Satz, PLB178 (1986) 416)

Hot matter effects

Heavy quarks produced in the early stages of the collisions

the original idea:

quarkonium production suppressed sequentially via color screening in QGP (T.Matsui,H.Satz, PLB178 (1986) 416)

(re)combination:

charmonium production enhanced at hadronization or in QGP

Central AA coll	N _{cē} per ev.
RHIC, 200GeV	~10
LHC, 5.02 TeV	~115

P. Braun-Munzinger, J.Stachel, PLB490(2000)196 R.Thews et al, PRC63:054905(2001)

Quarkonium as a probe

This intuitive suppression picture assumes static in-medium states

 \rightarrow quarkonium as a thermometer of the system

Recent theory developments introduce a dynamical approach

- → quarkonium survival depends on how strongly it interferes with the medium and on the time spent in the medium
- → medium as a "sieve" that filters quarkonia, over time, depending on the strength of their binding

A. Rothkopf, Physics Reports 858 (2020)

$J/\psi R_{AA} vs p_T$

Very broad p_T range (up to 40 Gev/c) now accessible

Strong $R_{AA} p_T$ dependence low p_T

strong rapidity dependence

high p_{τ}

- common behavior, independent on rapidity
- very good compatibility of results from different experiments

$J/\psi R_{AA} vs p_T$

Very broad p_T range (up to 40 Gev/c) now accessible

Strong $R_{AA} p_T$ dependence low p_T

strong rapidity dependence

high p_{τ}

- common behavior, independent on rapidity
- very good compatibility of results from different experiments

very high p_T

*R*_{AA} rise due to partonic energy loss mechanisms observed for hadrons? Low $p_T J/\psi$: mid vs fw-y

LHC

Higher R_{AA} at mid-rapidity wrt forward-y, in central events

Similar y-dependence already observed at lower energies

RHIC

14

J/ψ: RHIC vs LHC

Low $p_T J/\psi$

Significant difference in central collisions

⊈ ⊈ _{1.4} • CMS, Pb-Pb $\sqrt{s_{_{NN}}}=5.02$ TeV, $|y|<2.4 p_{_{T}}>6.5$ GeV/c (EPJC78,509) • ATLAS, Pb-Pb $\sqrt{s_{NN}}$ =5.02TeV, |y|<2 p_{T} >9 GeV/c (EPJC78,762) STAR, Au-Au √s_{NN}=200GeV, |y|<0.5 p₋>5 GeV/c (PLB797,134917) 1.2 0.8 0.6 0.4 0.2 50 100 150 200 250 300 350 400 $\langle N_{\text{part'}}$

 R_{AA} at the two $\sqrt{s_{NN}}$ are closer, with slightly higher values at RHIC

High p_{T} J/ ψ

Comparison to theory

p_T dependence and difference between mid and forward-y results described by theory models, within uncertainties

suppression+regeneration mechanisms describe the data \rightarrow regeneration dominates at low p_T

Precise measurement of total charm cross section needed

Clear ordering: low p_T : $v_2(h) > v_2(D) > v_2(J/\psi) \sim v_2(b) > v_2(\Upsilon)$ high p_T :

high p_T: $v_2(h) \sim v_2(D) \sim v_2(J/\psi)$

Comparison to theory:

low p_{T} :

size of v_2 reproduced by models including a large J/ ψ regeneration component

high p_{T} :

path-length effects play a role, but v_2 still underestimated

ψ(2S)

$\psi(2S)$ loosely bound state, binding energy: $\psi(2S){\sim}60$ MeV, J/ ψ ${\sim}640$ MeV

Low p_{T}

 ψ (2S) is strongly suppressed in central collisions, but size of uncertainties prevents a detailed comparison with J/ ψ

High p_{T}

ψ(2S)

$\psi(2S)$ loosely bound state, binding energy: $\psi(2S){\sim}60$ MeV, J/ ψ ${\sim}640$ MeV

Low p_{T}

 $\psi(2S)$ is strongly suppressed in central collisions, but size of uncertainties prevents a detailed comparison with J/ ψ

Tension in central events between ATLAS and CMS?

High p_{T}

J/ψ in jets

J/ψ are produced less isolated than predicted by event generators (PYTHIA)

- Production in parton showers may occur later in the collision history
- it reflects the energy loss of the initial parton

 J/ψ in jets

J/ψ are produced less isolated than predicted by event generators (PYTHIA)

- Production in parton showers may occur later in the collision history
- it reflects the energy loss of the initial parton
- J/ψ produced with a large degree of surrounding jet activity are more suppressed than those produced in isolation

p-A collisions

Cold nuclear matter effects

pA collisions to investigate role of the various CNM contributions, whose importance depends on kinematic and energy of the collisions

 shadowing, coherent energy loss, break-up in nuclear matter or via hadronic/partonic comovers

presence of possible hot matter effects

 size of CNM effects, fundamental to interpret quarkonium AA results

J/ψ in pA at RHIC

PHENIX, PRC 102 (2020) 014902

STAR, arXiv:2110.09666

25

p-Al:

• no significant CNM effects

p-Au:

- Significant suppression at forward-y ightarrow consistent with shadowing
- Suppression exceeds pure shadowing effects → additional nuclear break-up contribution

J/ψ in pA at LHC

Low p_{T}

strong rapidity dependence, J/ψ production significantly suppressed at forward-y

ALICE p-going direction: $2.3 \ 10^{-5} < x < 1.5 \ 10^{-4}$ Pb-going direction: $1.5 \ 10^{-2} < x < 10^{-1}$

J/ψ in pA at LHC

Low p_{T}

strong rapidity dependence, J/ψ production significantly suppressed at forward-y

High p_{T}

 R_{pA} is rather flat and close to unity (or slightly higher)

Comparison to theory

CNM models, based on shadowing, CGC, energy loss describe the data No need for additional break-up at LHC energies 28

ψ(2S) in pA

 $\psi(2S)$ suppression is stronger than the J/ ψ one, in particular at backward-y

At LHC energies

 $au_{crossing} < au_{formation}$ same effects were expected for the two resonances additional final state effects (interactions with hadron/partonic comovers) needed to describe the data

 χ_{c} in pA

 Converted vs calorimetric photons: better resolution, but smaller reconstruction efficiency

3(

Similar cross section ratios in pp and pPb, both at forward and mid-y Similar CNM effects on the two resonances Compare pA and AA: J/ψ

significant difference between J/ ψ R_{pA} and R_{AA} over all the p_T range

31

Compare pA and AA: J/ψ

significant difference between J/ ψ R_{pA} and R_{AA} over all the p_T range

32

Assuming shadowing as the main CNM effect at mid-y:

 $R_{AA}^{CNM} = R_{pA}^2$

Compare pA and AA: J/ψ

significant difference between J/ ψ R_{pA} and R_{AA} over all the p_T range

33

Assuming shadowing as the main CNM effect at mid-y:

 $R_{AA}^{CNM} = R_{pA}^2$

Clear R_{AA} enhancement at low p_T and suppression at high p_T

Crossing between suppression and enhancement at $p_{\rm T} \sim 4$ GeV/c

Conclusions

A large variety of charmonium results are now available, from RHIC and LHC, in pA and AA, over a broad kinematic range

Results from all the LHC experiments show an overall good compatibility in similar kinematic ranges and point to a coherent picture

Results for J/ψ have already reached a high level of precision, still room for improvements for excited states

low p_{T} :

Size of v_2 reproduced by models including a large J/ ψ regeneration component

high $p_{\rm T}$:

path-length effects play a role, but v_2 still underestimated

$J/\psi v_2$ in pA

a significant non-zero v_2 is observed in high-multiplicity p-Pb

- size of v_2 similar to the one measured in PbPb
- however, usual v₂ interpretation for PbPb, based on regeneration or path lengths effects, doesn't work in pPb

models where v_2 originates from final state effects in the fireball (dissociation, regeneration) underestimate the data

ALICE, PLB 780 (2018) 7 CMS, PLB791(2019)172 Rapp et al, JHEP03(2019)015

