J/y production in a dynamical coalescence approach

Pol B Gossiaux, SUBATECH (NANTES)

ECT* November 2021

- 1. Motivation
- 2. Our approach
- 3. Results
- 4. Conclusion and perspectives

With Joerg Aichelin and Denys Yen Arrebato Villar... Thanking Taesoo Song and Elena Bratkovskaya for fruitful discussions

Motivation	The model	Some Results	Conclusions and Perspectives					
Motivation								
A simple and single question :								
At what stage of the AA collision are the J/ ψ created ?								
	(here, mainly thinking of LHC)							

Some Results

Conclusions and Perspectives

Motivation

2 competing approaches in the place :

SHM and coalescence at FO

Include a primordial component that is partially suppressed along time and witnesses QGP properties

Transport theories

No such component, charmonia are soft probe and only probe the latest stage of QGP !

Transport theories

• In transport theory, primordial component is mandatory to reproduce the absolute production as a function of centrality & p_T class

Some Results

Conclusions and Perspectives

Motivation

2 competing approaches in the place :

SHM and coalescence at FO

1

Transport theories

0

Recently : More global view

- v2 and v3 analysis confirm that J/ ψ flows
- Flow compatible with 0 for the upsilon 1S

Coalescence explains it all ?

- $v_2 \& v_3(\pi) => v_2 \& v_3(q)$ (reverse engineering)
- $v_2 \& v_3(J/\psi \text{ fit}) \Rightarrow v_2 \& v_3(c)$ (reverse engineering)

Coalescence explains it all ?

v_n(q) & v_n(c) + relative weights of masses (momenta) => v_n(D)

- Good global agreement for $p_T^q/p_T^D = 0.4 \iff m_a \approx 0.7 0.8 \text{ GeV}$
- Either ... you consider that this is way too high => discard the plausibility of coalescence approach

Coalescence explains it all ?

v_n(q) & v_n(c) + relative weights of masses (momenta) => v_n(D)

• Good global agreement for $p_T^q/p_T^D = 0.4 \Leftrightarrow m_a \approx 0.7 - 0.8 \text{ GeV}$

Or you consider such light-quark masses are achievable close to T_c => coalescence is indeed a good scheme to understand both charmonia and D mesons flows...
 However, no attempt to explain R_{AA}(p_T)

Subatech

Disappearance of all $c - \bar{c}$ correlations before FO

Transport theories

- Good agreement for low p_{τ} , where J/ ψ formation proceeds through recombination at FO
- Disagreement from intermediate $p_T on$, where primordial production starts having a large weight (crucial for the $R_{AA}(p_T)$)

Some Results

Conclusions and Perspectives

Motivation

2 competing approaches in the place :

SHM and coalescence at FO

1

Transport theories

1

Other possible contender :

Quantum Master Equation for large # of HQ with semi-classical approximation :

Jean-Paul Blaizot and Miguel Angel Escobedo, JHEP06 (2018) 034

Motivation

- Need to revisit how robustly we understand the survival of primordial component
- J/ ψ are *quantum* bound states => need for a formalism that preserves *quantum* properties... and continuous transitions between bound and unbound states
- Quarkonia production should rely on a good understanding of the single HQ dynamics (as equilibration of those HQ have a significant influence on the rates)

Good in EPOS-HQ

Build a quarkonia « overlayer » to EPOS-HQ, with minimalistic modifications

Conclusions and Perspectives

Remler's formalism

Generic idea : describe charmonia (Ψ) production using density matrix

$$\nabla^{\Psi}(t) = \operatorname{Tr}\left[\hat{\rho}_{Q\bar{Q}}^{\Psi}\hat{\rho}_{N}(t)\right]$$

 $\hat{\rho}_{Q\bar{Q}}^{\Psi_{i}}=\sum_{i}|\Psi_{Q\bar{Q}}^{i}\rangle\langle\Psi_{Q\bar{Q}}^{i}|$

N-body density matrix (bulk partons + many c and many cbar)

"Just" looking at the initial stage brings interesting features:

Taesoo .S, J.Aichelin and E.Bratkovskaya , PRC 96. 014907 (2017)

Good reproduction of pp -> J/ ψ + x !!!

considerable enhancement of primordial J/ ψ (in the initial state): large off-diagonal contributions

Dealing with the dynamics ?

- The idea of the formalism goes back to Remler's work
- General scheme connecting composite-particle cross section and rates with time-dependent density operators
- Applied by Remler et al to the deuteron production in (low energy) AA collisions. The formalism is able to deal with many particles (nucleons -> deuterium)

E.A. Remler, ANNALS OF PHYSICS 136, 293-316 (1981)

Remler formalism at work

<u>Lessons from the past</u>: the direct calculation is not effective for codes based on "cascade approach" (for which members of a genuine fragment are found far apart in the final stage)

Use the identity
$$P^{\Psi}(t) = P^{\mathrm{prim}}(t_{\mathrm{init}}) + \int_{t_{\mathrm{init}}}^{t} \Gamma^{\Psi}(t') dt'$$

Where :

• Γ is The effective rate for quarkonia state creation (dissociation) in the medium :

$$\Gamma^{\psi}(t) = \frac{dP^{\Psi}(t)}{dt} = \operatorname{Tr}\left[\hat{\rho}_{Q\bar{Q}}^{\Psi}\frac{d\hat{\rho}_{N}(t)}{dt}\right]$$

• $P^{\mathrm{prim}}(t_{\mathrm{init}})$ is the production at initial time (*primordial*)

Remler formalism at work

The effective rate for quarkonia state creation (dissociation) in the medium is

$$\Gamma^{\Psi}(t) = -iTr[\hat{\rho}^{\Psi}[\hat{U}_1 + \hat{U}_2, \hat{\rho}_N(t)]]$$

Working in the phase space through Wigner distribution

$$W_{Q\bar{Q}}^{\Psi_i} = \int d^3y e^{ipy} \langle r - \frac{y}{2} | \Psi^i \rangle \langle \Psi^i | r + \frac{y}{2} \rangle$$

Quarkonia: Double Gaussian approximation $W^{\Psi}_{Q\bar{Q}}(r_{\rm rel}, p_{\rm rel}) = C e^{r_{\rm rel}^2 \sigma^2} \times e^{\frac{p_{\rm rel}^2}{\sigma^2}}$

Parameter: The Gaussian width $\sigma \approx$ 0.35 fm

$$[\frac{\hbar^2}{2\mu}\nabla^2 + V(r)]\Psi_{Q\bar{Q}}(r) = E_{Q\bar{Q}}\Psi_{Q\bar{Q}} \longrightarrow \langle r^2 \rangle \longrightarrow W^{\psi}$$

W_N : Semi-classical approach

$$W_N = \Pi_i \hbar^3 \delta(x_i - x_{i0}(t)) \delta(p_i - p_{i0}(t))$$

... but no explicit description of $W_{\rm N}$ required (as it appears in the trace)

and (less trivial) : generalisation at finite 4-velocity u; fully relativistic... to warrant orthogonality of states $Tr[W_u^{J/\psi}W_u^{\psi'}] = 0$

Remler formalism at work

Combining the expression of the Wigner's functions and substituting in the **effective** rate equation :

 $\Gamma^{\Psi}(t) = \sum_{i=1,2} \sum_{j\geq 3} \delta(t-t_{ij}) \int \frac{d^3 p_i d^3 x_i}{h^3} W^{\Psi}_{Q\bar{Q}}(p_1, x_1; p_2, x_2) \left[W_N(t+\epsilon) - W_N(t-\epsilon) \right]$

- The quarkonia production in this model is a three body process, the HQ (anti-quark) interact only by collision !!!
- The "details" of H_{int} between HQ and bulk partons are incorporated into the evolution of W_N after each collision / time step (nice feature for the MC simulation)
- $W_N(t+\epsilon)$ and $W_N(t-\epsilon)$ are NOT the equivalent of gain and loss terms in usual rate equation
- Dissociation and recombination treated in the same scheme

Then:
$$P^{\Psi}(t) = P^{\Psi}(t_0) + \int_{t_0}^t \Gamma(t') dt'$$

ubatech

NB: Also possible to generate similar relations for differential rates

for D and B mesons production)

Interaction of HQ with the QGP are

carried out by EPOSHQ (good results

Motivation The model Some Results Conclusions and Perspectives

The Q-Qbar interaction

- Not implemented up to now in EPOS-HQ
- More and more reliable calculations are becoming available for the real part of the potential (for a QQbar at rest), thanks to lattice calculations:

D. Lafferty and A. Rothkopf, PHYS. REV. D 101, 056010 (2020)

- Go for it !
- { } of N c-quarks and N cbar-quarks interacting by these potentials based on relative distance

MotivationThe modelSome ResultsConclusions and PerspectivesThe Q-Qbar dynamics...the CM strategy

• "Minor problem" #1: Classical equations of motion are unstable (in the CM):

MotivationThe modelSome ResultsConclusions and PerspectivesThe Q-Qbar dynamics...the CM strategy

• "Minor problem" #1: Classical equations of motion are unstable (in the CM):

MotivationThe modelSome ResultsConclusions and PerspectivesThe Q-Qbar dynamics...the CM strategy

• "Minor problem" #1: Classical equations of motion are unstable (in the CM):

Generic need to store / describe the trajectory of particle 2 at a time $t_{lab} > t_{lab}^2$ if one propagates particle 1 up to t_{lab}^2 by resorting to evolution in the c.m.

The Q-Qbar dynamics... the « retarded force » strategy

- Describe dynamics through retarded interactions... calibrated to map to the static potential in the infinite mass static case... obviously several prescriptions available, need discussion with IQCD experts !
- Cures all problems encountered with strategy 1 ⁽ⁱ⁾ ... but (to my knowledge): No invariant quantity associated to the retarded force... as radiation field removing part of the available energy.
- Very few schemes developed to deal with the relativistic interactions of many particles implementing constrains such as energy/angular momentum conservation.
 - Wheeler and Feynman (1949) explicitly remove the radiation field by considering advanced + retarded propagator => effect from the future on the past in the evolution equation... difficult to cope with in the present MC code

• Other schemes under investigation • For the time : center of mass strategy

Although screened, the Q-Qbar interaction has important consequences on the probability to find a Q-Qbar at close distance in the final stage of the evolution

Results : J/ ψ initial production

$$P^{\Psi}(t) = P^{\Psi}(t_0) + \int_{t_0}^t \Gamma(t') dt'$$

centrality	$\langle N_{ m coll} angle$	$\left. \frac{dN_{\rm c\bar{c}}}{dy} \right _{y=0}$	$\left.\frac{dN_{J/\psi}^{\text{prim}}}{dy}\right _{y=0}$	$\frac{\frac{dN_{J/\psi}^{\text{prim}}}{dy}\Big _{y=0}}{\frac{\frac{dN_{c\bar{c}}}{dy}\Big _{y=0}}{dy}}$
0-20%	1256.1	31.6373	0.07741	$2.4467 \cdot 10^{-3}$
10-30%	748.8	17.618	0.05972	$3.3897 \cdot 10^{-3}$
20-40%	431.3	10.670	0.03620	$3.3927 \cdot 10^{-3}$
30-50%	232	6.8539	0.0244	$3.5629 \cdot 10^{-3}$
40-60%	113.5	3.6448	0.0166	$4.5543 \cdot 10^{-3}$

Not increasing with centrality, contrarily to

Taesoo .S, J.Aichelin and E.Bratkovskaya , PRC 96. 014907 (2017)

Apparent contradiction just due to the choice of the basis.

Results : J/ ψ initial production

$$P^{\Psi}(t) = P^{\Psi}(t_0) + \int_{t_0}^t \Gamma(t') dt'$$

Now distributed over the initial stage of the AA collision (until local T < T_{dissoc}^{Ψ})

- Without interaction potential between c and cbar, the collisions with the medium manage to destroy the native J/ψ .
- With the interaction potential between c and cbar « on », one observes a steady rate of J/ ψ creation (reduction of Γ^{col} , increase of Γ^{local} wrt potential « off »)
- No adiabaticity, but no instantaneous formation either.

- Final p_T distribution in agreement with ALICE data (caution : no feed down from higher states up to now)
- R_{AA} just in moderate agreement with the data... but this is mostly due to the modeling of J/ ψ production in pp (also based on the same approach of coalescence of c-cbar production)

- Similar « rise and fall » as in data
- Simulation at forward rapidity to be done in a near future.

- Compatible with v₂ measured at mid-rapidity (large error bars)
- Right panel : Theorist crime : comparing prediction at mid-y with v₂ measured in the di-muons arms ... at least, not « v₂ deficit » from theory.

Results : diagonal vs off-diagonal

- « diagonal » correspond for us to c and cbar formed in the same NN collision, what is called « primordial » in other approaches
- => Decomposition of 2 main observables:

- Off-diagonal production dominates at low p_T.
- Diagonal contribution increases with larger p_T ($\Delta E/E$ decreases)

- Large v₂ from off-diagonal component
- ... but substantial flow from the diagonal contribution either !!!

- Most of the transport models have considered up to now that primordial charmonia can just be destroyed (with a small probability), but not deflected.
- In our approach, we have investigated the consequences of considering the opposite limit... with somehow too large v₂ resulting from this prescription...

Correlation is built as soon as T < T_{dissoc}, and is strengthened with cooling temperature

Perspectives

• Short term :

Motivation

- Need to include higher states feed down + shadowing
- Include the model in EPOS4 and look at RHIC
- Mid term : consequences of our model for Bc production
- Long term : better color dynamics , Q-Qbar distance as a parameter in the Q QGP dynamics

Back-up

MotivationThe modelSome ResultsConclusions and PerspectivesPreliminary results for J/ψ production in Pb-Pb

Word of caution: Exploratory phase => not meant to have an exact comparison with exp. data

Effect of cham abundance in phase space (x2):

- Correct trends for charm recombination
- Absolute value too small

Missing ingredient for semiquantitative agreement:

Interactions between Q & Qbar (real part of the potential, not implemented in EPOSHQ)

Equivalent pp

Ratio # diag / # tot for semi-central

