Quark-Gluon Plasma Characterisation with Heavy Flavour Probes (HYBRID)

Heavy Quark Statistical Hadronization in High-energy pp Collisions

Min He

Nanjing University of Sci. & Tech., Nanjing, China

High-energy pp: Charm Statistical Hadronization

- Basic idea: charm statistical coalescence hadronization likely in the (light)quark-rich environment
 - → relative chemical equilibrium (according to statistical weights) achieved between different charm-hadron species, with charm-baryon spectrum augmented by RQM/lattice
- Implementations:
 - Grand-canonical-ensemble SHM: mini.bias pp, quantum charges conserved on average
 - Canonical-ensemble SHM:
 low-multiplicity pp, quantum charges conserved strictly
 - Generalization to the bottom-hadron sector: preliminary results

Λ_c⁺/D⁰ in mini.bias pp collisions: grand-canonical SHM

M. He & R. Rapp, PLB795(2019)117-121

Large Λ_c^+/D^0 in pp collisions

- Conventional fragmentation models consistent with e⁺e⁻: Λ_c⁺/D⁰ ~0.1-0.15 Lisovyi'16, Maciula'18, Kniehl'20
- SHM with PDG only charm-hadrons (in particular baryons) $\Lambda_c^+/D^0 \sim 0.22$ A. Andronic + P.B.-M.
- PYTHIA8: color-reconnection → enhancing baryon production

Augmented (grand-canonical) SHM

- PDG: 5 Λ_C (I=0) ,3 Σ_C (I=1),8 Ξ_C (I=1/2),2 Ω_C (I=0) missing baryons?! RQM: 18 extra Λ_C , 42 extra Σ_C, 62 extra Ξ_C, 34 extra Ω_C up to 3.5 GeV → supported by lattice PRD 84 (2011) 014025; PoS LAT. 2014 (2015) 084; PLB 737 (2014) 210
- > Grand-canonical SHM density $T_{H} = 170 \text{ MeV}$ $n_i = \frac{a_i}{2\pi^2} m_i^2 T_H K_2(\frac{m_i}{T_H})$

						210	1 H
$n_i (.10^{-4} \text{ fm}^{-3})$	D^0	D^+	D*+	D_s^+	Λ_c^+	$\Xi_c^{+,0}$	Ω_c^0
PDG(170)	1.161	0.5098	0.5010	0.3165	0.3310	0.0874	0.0064
R <u>QM(170</u>)	1.161	0.5098	0.5010	0.3165	0.6613	0.1173	0.0144
	ri	D^{+}/D^{0}	D^{*+}/D^{0}	D_{s}^{+}/D^{0}	Λ_c^+/D^0		
	PDG(170)	0.4391	0.4315	0.2736	0.2851		
	RQM(170) 0.4391	0.4315	0.2726	0.5696		

- Here, strong feeddowns of excited states all included: BR=100% to Λ_{C}^{+} for all $\Lambda_{C} \& \Sigma_{C}$ even above DN (2805 MeV) threshold
- Strangeness supp. $\gamma_s=0.6$ & charm fugacity $\gamma_c=1$

Fragmentation & decay simulations

 FONLL fragmentation of charm quarks into all kinds of charmhadrons: relative weight <-->SHM thermal densities

- Decay simulations of all excited states to ground states D^0 , D⁺, D_s⁺, Λ_C^+ , $\Xi_C \& \Omega_C$

Results: charm-mesons

- both PDG & RQM work for charm-mesons
- but with different fitted charm dσ/dy=0.855 vs 1.0 mb

Results: charm-baryons

- Λ_C⁺ favors RQM with dσ/dy=1.0 mb: low p_T enhancement from feeddowns of RQM augmented baryons
- uncertainty band: BR=50%-100% to ground state Λ_C^+ for Λ_C 's & Σ_C 's above DN (2805 MeV) threshold

Results: charm-baryons (cont.)

- $\Sigma_c(2455)/D^0$ can also be accounted for within uncertainties
- But Ξ_c⁰/D⁰ much underestimated, although already twice as large as PYTHIA8(CR) ~ 0.001

Part II

System size dependence of Λ_c^+/D^0 in pp collisions: canonical SHM

Y. Chen & M. He, PLB815 (2021)136144

Λ_{c}^{+}/D^{0} : dN_{ch}/dη dependence

- Significant enhancement with increasing charged-particle multiplicity
- Might be straightforwardly consistent with statistical coalescence:
 Λ_c⁺~cqq, D⁰~cq → Λ_c⁺/D⁰ ~ q ~ dn_{ch}/dη

Canonical-ensemble SHM

Chemical factors: canonical suppression

CF	$N=10 \text{ fm}^3$	20	50	100	200
D^0	0.025877	0.066239	0.190294	0.373107	0.627886
D^+	0.025439	0.065891	0.190002	0.372841	0.627669
D_s^+	0.015805	0.053178	0.178586	0.362376	0.619125
Λ_c^+	0.016956	0.055485	0.182039	0.365923	0.622147
Ξ_c^{+0}	0.009884	0.042956	0.167943	0.352535	0.611073
Ω_c	0.003495	0.022604	0.130312	0.312514	0.576383
Λ_c^+/D^0	0.655254	0.837649	0.956620	0.980745	0.990860
$\overline{D_s^+}/D^0$	0.610774	0.802820	0.938474	0.971239	0.986047
					0.0 18

pp mid-rapidity neutral (Q,B,S,C)=(0,0,0,0) $T_H = 170 \text{ MeV}, \gamma_s = 0.6, \gamma_c = 15$

- Column at given V: CF progressively smaller for hadrons containing more charges (S, B, BS, BSS)
- Row: CF increases with volume, tending to the common residual canonical charm supp. (canonical B/S supp. diminishing)
- Relative CF: $\Lambda_{c}^{+}/D^{0} \& D_{s}/D^{0}$ increases with volume toward unity

CE-SHM densities with feeddowns

$n_j \ (\cdot 10^{-4} {\rm fm}^{-3})$	$V{=}10~{\rm fm}^3$	20	50	100	200	GCE
D^0	0.445553	1.148287	3.310131	6.495330	10.934662	17.420949
D^+	0.194705	0.503847	1.453016	2.851351	4.800262	7.647869
D_s^+	0.075040	0.252484	0.847910	1.720531	2.939551	4.747914
$\Lambda_c^+(\mathrm{BR50\%})$	0.126963	0.439135	1.497132	3.045487	5.207572	8.415360
$\Lambda_c^+(\mathrm{BR100\%})$	0.149573	0.519555	1.776775	3.617118	6.187127	10.001702
Ξ_c^{+0}	0.016539	0.071955	0.281624	0.591389	1.025276	1.678110
Ω_c	0.000756	0.004889	0.028184	0.067592	0.124662	0.216283
$\Lambda_c^+/D^0(\mathrm{BR50\%})$	0.284956	0.382426	0.452288	0.468873	0.476244	0.483060
$\Lambda_{c}^{+}/D^{0}(\text{BR100\%})$	0.335702	0.452461	0.536769	0.556880	0.565827	0.574119
D_s^+/D^0	0.168420	0.219879	0.256156	0.264887	0.268829	0.272540

pp mid-rapidity neutral (Q,B,S,C)=(0,0,0,0) $T_H = 170 \text{ MeV}, \gamma_s = 0.6, \gamma_c = 15$

- Row: density of each charm-hadron increases with volume
- Λ_C⁺/D⁰ & D_s/D⁰: marked system-size dependence: a ~40% reduction from V=200 (~GCE-SHM) to V=10 fm³

Fragmentation & decay: p_T-dependent ratios

- Splitting of Λ_C⁺/D⁰ between dN_{ch}/dη=3.9 vs 44.0 roughly reproduced, due to additional canonical baryon supp. on charm-baryons, which becomes stronger toward smaller system-size
- Similar splitting of D_s^+/D^0 by additional canonical strangeness supp.

Part III

Λ_b⁰/B⁻ in mini.bias pp collisions: grand-canonical SHM

preliminary results

Augmented (grand-canonical) SHM

- PDG: 5 B, 4 B_s, 3 Λ_b, 2 Σ_b, 4 Ξ_b, 1 Ω_b RQM: 25 B, 20 B_s, 30 Λ_b, 46 Σ_b, 75 Ξ_b, 42 Ω_b^{Ebert et al., PRD 84 (2011) 014025}
- Grand-canonical SHM density T_H=170 MeV

$$n_i = \frac{d_i}{2\pi^2} m_i^2 T_H K_2(\frac{m_i}{T_H})$$

$n_i \ (\cdot 10^{-12} \ {\rm fm}^{-3})$	B^-	$ar{B}^0$	\bar{B}^0_s	Λ_b^0	Ξ_b^{0-}	Ω_b^-
PDG(170MeV)	1.0094	1.0089	0.29308	<u>0.3159</u> 0	0.10097	0.0023406
RQM(170MeV)	1.2045	1.2041	<u>0.3251</u> 3	<u>0.61702</u>	<u>0.1954</u> 8	0.0063204

r_i	\bar{B}^0/B^-	\bar{B}^0_s/B^-	Λ_b^0/B^-	Ξ_b^{0-}/B^-
PDG(170MeV)	0.9995	0.2903	0.3129	0.10003
RQM(170MeV)	0.9996	0.2699	0.5123	0.1623

- Strangeness supp. $\gamma_s=0.6$ & bottom fugacity $\gamma_b=1$
- Feeddowns to ground states: BR's systematics ---

Strong decay systematics: BR's estimation

Counting all possible diagrams once above the threshold

- Probability of producing a q-qbar pair ∝ exp(-2m/T_H)
 ⇒ exp(-2m_q/T_H) : exp(-2m_s/T_H) = 1 : 1/3 [m_q~8, m_s~100 MeV]
 → diagrams involving s-sbar counted as 1/3
- E.g. BR(B^{-*} \rightarrow B⁻+ π^0)=1/(1+1+1/3)=43% BR(B^{-*} \rightarrow B⁰bar+ π^-)=1/(1+1+1/3)=43% BR(B^{-*} \rightarrow B⁰_sbar+ π^0)=1/3/(1+1+1/3)=14%

Strong decay systematics: BR's estimation

Counting all possible diagrams once above the mass threshold

- E.g. $BR(\Lambda_b^{0^*} \rightarrow \Sigma_b + \pi^- \rightarrow \Lambda_b^{0} + 2\pi) = 3/(3+2+2^*1/3+1/3) = 54\%$ $BR(\Lambda_b^{0^*} \rightarrow B^- + p) = 1/(3+2+1/3+2^*1/3) = 16\%$ $BR(\Lambda_b^{0^*} \rightarrow \Xi_b + K) = 2/3/(3+2+1/3+2^*1/3) = 11\%$ $BR(\Lambda_b^{0^*} \rightarrow B_s^{0} \text{bar} + \Lambda) = 1/3/(3+2+1/3+2^*1/3) = 6\%$
- Results comparable to (limited) results computed in ³P₀ model Sun et al., PRD 89(2014)054026; Mu et al., CPC 38(2014)113101

Fit of p_T-spectra & cross sections

 FONLL b-quark spectrum + FF D(z) = (α + 1)(α + 2)x^α(1 - x) into all states + decay simulations → ground states p_T-spectra

- 7 & 13 TeV data better fitted than 8 TeV (with same parameters)
- dσ^{bbbar}/dy=34.55 μb (7 TeV) & 68.87 μb (13 TeV) for 2<y<2.5

Bottom hadro-chemistry: ratios

- $B_{s}^{0}bar/B^{-} & \Lambda_{b}^{0}/B^{-}$ almost unchanged from 7 to 13 TeV
- PDG-only curves far off; RQM states needed

Summary & Outlook

- High-energy pp collisions: HQs (charm & bottom) hadronization into open-HF hadrons is of statistical nature
 - "missing" HF-baryons (in particular) essential
 - p_T -dependent hadro-chemistry ratios decently described
- Baseline for study of HF production in heavy ion collisions
 - same particle spectrum to be used
 - modification of p_T -dependent hadro-chemistry