

Charm fragmentation studies with ALICE at the LHC

Antonio Palasciano on behalf of the ALICE collaboration

QUARK-GLUON PLASMA CHARACTERISATION WITH HEAVY FLAVOUR PROBES Trento, 16/11/2021

Trento, 16/11/2021

Antonio Palasciano

Physics outline

The study of Heavy-Flavour (HF) quarks in small systems provides the reference for the understanding of their interaction with quark-gluon plasma (QGP).

In **pp** collisions:

- test pQCD calculation;
- constrain and validate fragmentation and hadronization models;
- provide a reference for larger systems, such as p-Pb and Pb-Pb.

In **p–Pb** collisions:

 their production and kinematic properties can be modified by cold nuclear matter (CNM) effects

HF-jets and HF-correlations can provide additional information than single parton studies:
 → fragmentation and hadronization mechanisms are detailed

Charm-tagged jet measurements

Trento, 16/11/2021

ALICE

• D^0 - and Λ_c^+ - tagged jets

- D^{0-} and Λ_{c}^{+} -tagged jet reconstruction:
 - ✓ Identification of charm candidates
 - $D^0 \rightarrow K^- \pi^+ + \text{conj.} (B.R. 3.95\%)$
 - $\Lambda_{\rm C}^+ \rightarrow {\rm pK}_{\rm S}^0 + {\rm conj.} \ ({\rm B.R.} \ 1.59\%)$
 - ✓ Charged particles are clusterized into jets:
 → to each D⁰ and Λ⁺_c corresponds a jet (Fastjet, anti-k_T algorithm)
- Invariant mass analysis to extract the $D^0 extrm{-}$ and $\Lambda_c^+ extrm{-}$ jet raw yield
 - \checkmark Sideband subtraction method
 - ✓ correction on jet efficiency and beauty feed-down
 - ✓ 2D unfolding $(z_{||}^{ch}, p_{T,chjet})$ for detector effects

Trento, 16/11/2021

D⁰-tagged jets production cross-section

Similar trends of the D 0 jets cross section with increasing $p_{
m T,\,ch\,jet}$ between collision energies

POWHEG hvq CT10NL0 + PYTHIA6

- \checkmark good agreement with data
- 🖌 increasing compatibility with $p_{ extsf{T, chjet}}$

POWHEG dijet + PYTHIA6

- ✓ constantly above data points
- different trend wrt POWHEG hvq

6

Trento, 16/11/2021

D⁰-tagged jets: parallel momentum fraction

From the comparison with **POWHEG**:

- A <u>softer fragmentation</u> is observed at small $z_{||}$ and small p_{T}^{\cup} and in the low- $p_{T,chjet}$ range.
- At large $p_{\mathrm{T,ch\,jet}}$ predictions are compatible within the syst. uncertainties.

Trento, 16/11/2021

Λ_c^+ -tagged jets: parallel momentum fraction

$$z_{||}^{\rm ch} = \frac{\vec{p}_{\rm ch\,jet} \cdot \vec{p}_{\Lambda_{\rm c}^+}}{\vec{p}_{\rm ch\,jet} \cdot \vec{p}_{\rm ch\,jet}}$$

The $z_{||}^{ch}$ probability density in Λ_c^+ -tagged jets has been measured with limited precision.

- > **POWHEG** and **PYTHIA8 (Monash)** :
 - ightarrow harder fragmentation than data

PYTHIA8 SoftQCD

ightarrow good agreement with data

Trento, 16/11/2021

Antonio Palasciano

8

D^{0} - and Λ_{c}^{+} -tagged jets: Radial Displacement

Addressing possible modifications of the hadronization through the radial shape of the jet

Is there a dependence of the Λ_c^+/D^0 as function of the radial distance?

 \rightarrow Are baryons produced less collimated than mesons w.r.t. the direction of the jet?

Trento, 16/11/2021

Radial Distance

Antonio Palasciano

 $(\varphi_{\rm jet},\eta_{\rm jet})$

 $(arphi_{\mathsf{tag}}, \eta_{\mathsf{tag}})$

• D⁰-tagged jets in p—Pb at $\sqrt{S_{NN}}$ = 5.02 TeV

- **POWHEG** well reproduce p-Pb measurements.
- The differential p—Pb cross section is in agreement with the pp(scaled by A) within statistical uncertainties.
- The nuclear modification factor $R_{\rm pPb} \approx 1$ over the $p_{\rm T, \, ch\, jet}$ interval.
- The D⁰-jet R_{AA} is also shown.

Trento, 16/11/2021

HF-electron jets in p—Pb at $\sqrt{S_{NN}}$ = 5.02 TeV

In p—Pb, possible modification to the jet shape or spectrum could evidence cold nuclear matter effects.

- *jet broadening*: dependence on *R* (jet cone size)
- *jet suppression*: modification to the $p_{T, jet}$ spectrum

Trento, 16/11/2021

Trento, 16/11/2021

 $R_{
m pPb}$

2.5

0.5

ALI-PREL-322365

ALICE Preliminary

10

 $R_{\rm pPb}$

p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Charged Jets, Anti- k_{τ}

with c,b \rightarrow e, 4 < $p_{_{T,o}}$ < 18 GeV/c

20

30

not dependent on jet R

• HF-electron jets in p—Pb at $\sqrt{s_{NN}}$ = 5.02 TeV

 $R = 0.3, |\eta^{\text{jet}}| < 0.6, |\gamma^{\text{e}}| < 0.6$

 $R = 0.4, |\eta^{\text{jet}}| < 0.5, |y^{\text{e}}| < 0.6$

 $R = 0.6, |\eta^{\text{jet}}| < 0.3, |\gamma^{\text{e}}| < 0.6$

 $p_{\rm T,ch\,jet}^{50}({\rm GeV}/c)$

In p—Pb, possible modification to the jet shape or spectrum could evidence cold nuclear matter effects.

- *jet broadening*: dependence on R (jet cone size)
- *jet suppression*: modification to the $p_{T, jet}$ spectrum

No evidences of modification of the jet in small system

Azimuthal correlations

Trento, 16/11/2021

Final state particles are studied by means of their angular distribution with respect to the direction of the tagged D meson

By relating an HF hadron to other particles produced in the same event, information can be retrieved about:

- ➤ the fragmentation of the tagged HF quark;
- ➤ the fragmentation of the other HF quark;
- ➤ the underlying event.

Differential description of the peaks shape with $p_{_{
m T}}^{_{
m assoc}}$

• Characterization of the jet shape and its composition

In **p**—**Pb**, find modifications to the correlation shape induced by CNM effects.

Trento, 16/11/2021

How are they extracted?

- Reconstruction of D-meson candidates
 - $D^0 → K^-π^+ + conj.$ (B.R. 3.95%) $D^+ → K^-π^+π^+ + conj.$ (B.R. 9.38%) $D^{*+} → D^0π^+ → K^-π^+π^+ + conj.$ (B.R. 2.67%)
- Identification of associated (charged) particles
 - → 2D correlations are computed ($\Delta \varphi$, $\Delta \eta$)
- Sideband subtraction;

Corrections for:

- Event Mixing: limited detector acceptance and detector spatial inhomogeneities
- Reconstruction and tracking efficiency
- Contamination from secondary particles
- Beauty feed-down contribution

Trento, 16/11/2021

The azimuthal correlations are then fitted considering:

- a generalized gaussian ($\Delta \varphi = 0$);
- a standard gaussian ($\Delta \varphi = \pi$), •
- constant baseline ٠

providing an estimation of the yields and the widths of the two peaks.

Consistent values of the yield and peak width in pp and p-Pb collisions are observed in all kinematic ranges.

 \rightarrow no significant impact from cold-nuclearmatter effects on the charm fragmentation arises with current statistics.

Trento, 16/11/2021

D-h as function of the collision centrality

p-Pb distribution shapes are compatible within statistical uncertainties. The yield and peak width do not show a dependence on the collision centrality

→ No apparent modification to the charm fragmentation

Electron sources are:

- semi-leptonic decays of heavy-flavour hadrons
- background contributions mainly come from:
 - Dalitz decays of light neutral mesons
 - photon conversion in the detector material

Starting from the inclusive e spectrum, **e-h** correlation distributions are built. Several corrections are performed:

- Event-Mixing,
- Efficiency,
- Contamination from:
 - secondary particles;
 - hadrons;
 - non-HFe.

Their contribution to the measured e-h correlation distribution is evaluated and subtracted after a proper normalization to get the HFe-h correlation distributions.

Trento, 16/11/2021

HFe-h azimuthal correlation distributions are fitted with two generalized gaussian after the baseline has been subtracted.

PYTHIA8 predictions well reproduce the shape of the correlation distributions

HFe-h azimuthal correlation distributions are fitted with two generalized gaussian after the baseline has been subtracted.

PYTHIA8 predictions well reproduce the shape of the correlation distributions

- NS yield predictions are in agreement with data
- AS yield is slightly underestimated at low- $p_{\mathrm{T}}^{\mathrm{assoc}}$
- both NS and AS widths are underestimated by predictions.

Trento, 16/11/2021

Azimuthal correlations between heavy-flavour decay electrons with charged particles are computed in two multiplicity classes considering p-Pb collisions:

- HM (high multiplicity, 0-20%)
- LM (low multiplicity, 60-100%)

The jet-induced correlation peaks are removed by subtracting the LM from the HM distribution and fitting the resulting distribution with a Fourier decomposition.

Azimuthal Anysotropy is found: $v_{2\Delta} = 0.0040 \pm 0.0007 (stat)$

Trento, 16/11/2021

10.1103/PhysRevLett.122.072301 ALICE 0.2 $(c,b) \rightarrow e, |\eta| < 0.8, |\Delta \eta| < 1.2$ p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Charg. part., $|\eta| < 0.8, 0.8 < |\Delta \eta| < 1.6$ (0-20%) - (60-100%) μ , p-going -4 < η < -2.5, 1.5 < $|\Delta \eta|$ < 5 0.15 + μ , Pb-going $-4 < \eta < -2.5$, $1.5 < |\Delta \eta| < 5$ 0. 0.05 2 3 $p_{_{T}}$ (GeV/c) ALI-PUB-310817

Azimuthal correlations between heavy-flavour decay electrons with charged particles are computed in two multiplicity classes considering p-Pb collisions:

- HM (high multiplicity, 0-20%)
- LM (low multiplicity, 60-100%)

HFe ν_2 is larger than zero

(about 5σ significance in $1.5 < p_{_{
m T}}^e < 4~{\rm GeV/c}$)

→ Comparable with charged particles and muons

Can this be interpreted as a final state effects ?

Trento, 16/11/2021

- HF-tagged jets:
 - ✓ Most of theoretical predictions successfully describe the experimental cross section;
 - ✓ softer fragmentation at low $p_{T, chiet}$ is observed with respect to model predictions;
 - Hints of possible modifications of hadronization through radial displacement measurements;
 - \checkmark no modification in HF-tagged jets induced by CNM in p-Pb;
- HF-h azimuthal correlation distribution:
 - ✓ Fragmentation differential study vs $p_{_{T}}^{^{D}}$ and $p_{_{T}}^{^{assoc}}$;
 - ✓ D-h: negligible impact observed with current statistics of CNM;
 - ✓ HFe-h first measurements in pp at \sqrt{s} =5.02 TeV;
 - ✓ Anisotropic flow for HFe in p−Pb, possible final state effect.

Thanks for your attention

Trento, 16/11/2021

D⁰-tagged jets in Pb-Pb at $\sqrt{S_{NN}}$ = 5.02 TeV

- \checkmark Strong suppression of D⁰-tagged jets in central Pb–Pb collisions.
- ✓ D⁰-jets R_{AA} compatible within statistical uncertainties with R_{AA} from D mesons

Antonio Palasciano

ALICE

Comparison of NS yields and widths with several model predictions

→ Different shower ordering, hadronisation approach, MPI treatment, UE description

NS yields:

- •PYTHIA8 and POWHEG+PYTHIA8 both provide an overall good description
- •About 10% larger yields for POWHEG NLO w.r.t. LO → more collinear production via GS
- •HERWIG tends to underestimate the NS yields at low $p_T(D)$ and at high $p_T(assoc)$
- $\bullet \mbox{EPOS}$ overestimates the yields over the whole \mbox{p}_{T} range

NS widths:

• Overall, all models describe the peak width within uncertainties

Trento, 16/11/2021

26

Azimuthal correlations of heavyflavour decay electrons and charged particles in central (0-20%) and semi-central(20-50%) Pb—Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

0-20% central

20-50% central

Trento, 16/11/2021

Azimuthal correlations of heavyflavour decay electrons and charged particles in central (0-20%) and semi-central(20-50%) Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Near-side yields in 0-20% and 20-50% Pb–Pb collisions compared to p–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

- ✓ Hint of enhancement of yield in central Pb — Pb collisions at low-p_T^{assoc}
- ✓ Hints of NS yield hierarchy among collision systems, at low p_T^{assoc}, with large uncertainties

Trento, 16/11/2021

Azimuthal correlations of heavyflavour decay electrons and charged particles in central (0-20%) and semi-central(20-50%) Pb – Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.

Near-side yields in 0-20% and 20-50% Pb–Pb collisions compared to p–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV

- ✓ Hint of enhancement of yield in central Pb – Pb collisions at low-p_T^{assoc}
- ✓ Hints of NS yield hierarchy among collision systems, at low p_T^{assoc}, with large uncertainties
- ✓ Ratio ~1 at high- $p_{\rm T}$

