

First measurement of $\Sigma_c^{0,++}$ production in hadronic collisions at the LHC

Mattia Faggin, University and INFN, Padova (Italy)

On behalf of the ALICE Collaboration

Workshop Quark-Gluon Plasma Characterisation with Heavy Flavour Probes

Trento - 16th November 2021

Heavy flavour (HF) production in pp collisions

- The measurements of the HF hadron production are fundamental tests of pQCD calculations
- The standard description in pp collisions is based on the factorization theorem

 → Fragmentation functions assumed universal among energy and collision systems and constrained from e⁺e⁻ and ep measurements
- Ratios of particle species \rightarrow ratios of fragmentation fractions, sensitive to HF quark hadronization $f(\mathbf{c} \rightarrow \mathbf{H}_{\mathbf{c}}) = \sigma(\mathbf{H}_{\mathbf{c}})/\sigma(\mathbf{c}\bar{\mathbf{c}})$

Heavy flavour (HF) production in pp collisions $\sqrt{s} = 5.02 \text{ TeV}$

- Fragmentation functions constrained from e⁺e⁻ measurements
- Theoretical models based on a factorisation approach describe the meson production within large uncertainties
- D-meson cross section on the upper edge of FONLL prediction
- D-meson ratios independent among collision systems and vs. $p_{\rm T}$

- Fragmentation functions constrained from e⁺e⁻ measurements
- Theoretical models based on a factorisation approach describe the meson production within large uncertainties
- D-meson cross section on the upper edge of FONLL prediction
- D-meson ratios independent among collision systems and vs. $p_{\rm T}$

- Beauty baryon-to-meson:
 - \blacktriangleright Decreasing trend vs. $p_{\rm T}$
 - > Enhancement at low p_T with respect to $B_s^+/(\overline{B}^0 + B^-)$

 $\rightarrow \times$ 2.5 - 5 enhancement in pp collisions compared to e^+e^-

→ Further mechanisms playing a role? → Non-universality of fragmentation functions?

6

The role of
$$\Lambda_{c}^{+}$$
 and $\Sigma_{c}^{0,+,++}$

$$f(m) = a_{0} \exp(a_{1}m)$$

$$S = -1$$

$$S = -2$$

$$f(m) = a_{0} \exp(a_{1}m)$$

$$S = -1$$

$$S = -2$$

$$f(m) = a_{0} \exp(a_{1}m)$$

$$S = -1$$

$$S = -2$$

$$f(m) = a_{0} \exp(a_{1}m)$$

$$S = -1$$

$$S = -2$$

Belle, $e^+e^- \sqrt{s} = 10.52 \text{ GeV}$ (Phys. Rev. D 97, 072005)

- In conventional fragmentation: ٠
 - \succ charm picks up a spin-0 (ud)₀ diquark → Λ⁺_c (*I* = 0)
 - \succ charm picks up a spin-1 (ud)₁ diquark $\rightarrow \Sigma_{c}^{+}$ (I = 1)
- $(ud)_1$ mass much larger than $(ud)_0$ \Rightarrow production of Σ_c states expected to be suppressed compared to Λ_c^+
- $\Sigma_{\rm c}$ -state production suppressed by ~3-4 times that of excited $\Lambda_{\rm c}^+$ states in e⁺e⁻ collisions at $\sqrt{s} = 10.52$ GeV

$\Lambda_c^+ \to p K^- \pi^+$ reconstruction in ALICE

<u>P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)</u>

	Mass (MeV/ c^2)	<i>cτ</i> (μm)	Decay (BR)
$\Lambda_{\rm c}^+$	2286.46 ± 0.14	60.7	pK $^{-}\pi^{+}$ ((6.28 \pm 032)%)

- Variables linked to the displaced decay topology exploited
- Secondary vertex: 3D point of closest approach among identified p, K^-, π^+ tracks

$\Lambda_c^+ \rightarrow p K^- \pi^+$ reconstruction in ALICE

<u>P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)</u>

	Mass (MeV/ c^2)	<i>cτ</i> (μm)	Decay (BR)
$\Lambda_{\rm c}^+$	2286.46 ± 0.14	60.7	pK $^{-}\pi^{+}$ ((6.28 \pm 032)%)

- Variables linked to the displaced decay topology exploited
- Secondary vertex: 3D point of closest approach among identified p, K^-, π^+ tracks

Examples

- Distance between beam interaction point and secondary vertex
- Intrinsic displacement of Λ_c^+ baryons

$\Lambda_c^+ \rightarrow p K^- \pi^+$ reconstruction in ALICE

<u>P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)</u>

	Mass (MeV/ c^2)	<i>cτ</i> (μm)	Decay (BR)
$\Lambda_{\rm c}^+$	2286.46 ± 0.14	60.7	pK $^{-}\pi^{+}$ ((6.28 \pm 032)%)

- Variables linked to the displaced decay topology exploited
- Secondary vertex: 3D point of closest approach among identified p, K^-, π^+ tracks

Examples

- Distance between beam interaction point and secondary vertex
- Intrinsic displacement of Λ_c^+ baryons

Cosine of pointing angle ($\cos \theta_p$)

- Angle between the Λ_c^+ flight-line and the reconstructed momentum
- $\cos \theta_{\rm p} = 1$ for signal (smearing due to resolution)

Total likelihood = product of detector probabilities **Posterior probability** from the **Bayes' theorem**: $P(\vec{S}|H_i)C($ $\sum_{k=\mathrm{e},\mu,\pi,\dots} P(\vec{S}|H_k)$ Prior \leftrightarrow measured p, K⁻, π^+ relative abundances

- $P_{\alpha}(S_{\alpha}|H_i) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(S_{\alpha} \widehat{S}_{\alpha}(H_i)\right)^2}{2\sigma^2}}, \quad i: \text{ species, } \alpha: \text{ detector}$

Method to better exploit the PID capabilities of the full

apparatus (TPC and TOF in this analysis)

Likelihood

 $P(H_i | \vec{S})$

٠

•

 $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$: Bayes PID

p

 $\sqrt{s} = 7 \text{ TeV}$

 \times 7 more background rejection ٠

n

Eur. Phys. J. Plus 131 (2016) 168

 \times 3 larger signal-to-background ٠

$\Lambda_c^+ \to p K_s^0$ reconstruction in ALICE

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

- Λ_c^+ secondary vertex not reconstructed $\rightarrow K_s^0$ propagation to primary vertex not precise enough
- Exploited variables (examples):
 - "bachelor" proton track:
 - \rightarrow Impact parameter
 - $\rightarrow \cos \theta^*$ (angle in Λ_c^+ rest frame w.r.t. Λ_c^+ momentum)
 - \rightarrow PID in TPC, TOF

 \succ K⁰_s:

- \rightarrow Invariant mass
- $\rightarrow \cos \theta_p$
- $\rightarrow c \tau$

BDT (AdaBoost, XGBoost) applied to optimise the signalto-background separation

13

Mattia Faggin - University and INFN, Padova, Italy

- Correction for fraction of prompt baryons out of all reconstructed
- Correction based on MC simulations ($\alpha_v(\operatorname{acc} \times \varepsilon)$), FONLL calculations (b-quark cross section) and LHCb measurements (b-quark fragmentation functions)

efficiency from MC simulations $\alpha_{v}(\operatorname{acc} \times \varepsilon)$ \rightarrow

Final result: average of cross sections measured • exploiting the $\Lambda_c^+ \rightarrow pK^-\pi^+$ channel (this work) and the $\Lambda_c^+ \rightarrow p K_s^0$

- Λ_c^+/D^0 and $\Sigma_c^{0,+,++}/D^0$ ratios significantly enhanced with respect to e^+e^- collisions \rightarrow Larger increase for the $\Sigma_c^{0,+,++}$ baryons compared to Λ_c^+
- New models in agreement with the measurements:
 - 1. PYTHIA CR-BLC: baryon formation enhanced by "junction" topologies (enhanced colour-reconnection)
 - 2. SHM+RQM: statistical hadronization governed by the mass + enhanced set of higher-mass excited charm hadron states decaying in the ground state ones
 - 3. QCM: a charm quark combines with equal-velocity light ones (\rightarrow thermal weights to govern hadron abundances)
 - 4. Catania: formation of hot QCD matter at finite temperature? Coalescence + fragmentation

- Λ_c^+/D^0 and $\Sigma_c^{0,+,++}/D^0$ ratios significantly enhanced with respect to e^+e^- collisions \rightarrow Larger increase for the $\Sigma_c^{0,+,++}$ baryons compared to Λ_c^+
- New models in agreement with the measurements:
 - **1. PYTHIA CR-BLC**: baryon formation enhanced by "junction" topologies (enhanced colour-reconnection)
 - 2. SHM+RQM: statistical hadronization governed by the mass + enhanced set of higher-mass excited charm hadron states decaying in the ground state ones
 - 3. QCM: a charm quark combines with equal-velocity light ones (\rightarrow thermal weights to govern hadron abundances)
 - 4. Catania: formation of hot QCD matter at finite temperature? Coalescence + fragmentation

 \rightarrow Larger increase for the $\Sigma_c^{0,+,++}$ baryons compared to Λ_c^+

- New models in agreement with the measurements:
 - **1. PYTHIA CR-BLC**: baryon formation enhanced by "junction" topologies (enhanced colour-reconnection)
 - 2. SHM+RQM: statistical hadronization governed by the mass + enhanced set of higher-mass excited charm hadron states decaying in the ground state ones
 - **3.** QCM: a charm quark combines with equal-velocity light ones (\rightarrow thermal weights to govern hadron abundances)
 - 4. Catania: formation of hot QCD matter at finite temperature? Coalescence + fragmentation

- Λ_c^+/D^0 and $\Sigma_c^{0,+,++}/D^0$ ratios significantly enhanced with respect to e^+e^- collisions \rightarrow Larger increase for the $\Sigma_c^{0,+,++}$ baryons compared to Λ_c^+
- New models in agreement with the measurements:
 - 1. PYTHIA CR-BLC: baryon formation enhanced by "junction" topologies (enhanced colour-reconnection)
 - 2. SHM+RQM: statistical hadronization governed by the mass + enhanced set of higher-mass excited charm hadron states decaying in the ground state ones
 - **3.** QCM: a charm quark combines with equal-velocity light ones (\rightarrow thermal weights to govern hadron abundances)
 - 4. Catania: formation of hot QCD matter at finite temperature? Coalescence + fragmentation

• First measurement of Λ_c^+ fraction from $\Sigma_c^{0,+,++}$ decays in pp collisions at the LHC: **0**. **38** ± **0**. **06**(**stat**.) ± **0**. **06**(**syst**.)

No more «di-quark» penalty factor for $\Sigma_c^{0,+,++}$ formation

Canonical fragmentation in pp collisions at the TeV scale fully overcome by new hadronization processes?

- $\Xi_c^{0,+}/D^0$ significantly larger in pp collisions at TeV scale than e^+e^- collisions
- $\Xi_c^{0,+}/D^0$ significantly underestimated by all the models describing $\Lambda_c^+, \Sigma_c^{0,+,++}/D^0$ ratios \rightarrow only Catania (coalescence + fragmentation) gets close to the data
- $\Xi_{c}^{0,+}/\Sigma_{c}^{0,+,++}$ ratio in line with PYTHIA Monash ($\leftrightarrow e^{+}e^{-}$) \rightarrow similar suppression in $e^{+}e^{-}$ for $\Xi_{c}^{0,+}$ and $\Sigma_{c}^{0,+,++}$? \rightarrow matter of similar (di-quark) mass? ($m(uu, ud, dd)_{1} \simeq m(us)_{0}$)

Summary

- Standard picture for the **heavy flavour production** in pp collisions based on the factorization approach, assuming **universal fragmentation functions**
- Recent results from LHC show that this assumption is no more valid in hadronic collisions at LHC
- Joint effort between theory and experiments to investigate the baryon enhancement in hadronic collisions

Summary

- Standard picture for the **heavy flavour production** in pp collisions based on the factorization approach, assuming **universal fragmentation functions**
- Recent results from LHC show that this assumption is no more valid in hadronic collisions at LHC
- Joint effort between theory and experiments to investigate the baryon enhancement in hadronic collisions

Run 3, 4 data taking starting in early 2022

- \rightarrow larger statistics
- \rightarrow upgraded detectors

23

Thank you very much for the attention!

Backup