# Recent heavy-flavor measurements with the ATLAS detector

Qipeng Hu (LLNL)

Quark-Gluon Plasma Characterisation with Heavy Flavour Probes Nov 15<sup>th</sup>, 2021





## Heavy flavors in heavy ion collisions

- Two of the most important phenomena in HIC: collective flow and jet quenching, quantified by  $v_n$  and  $R_{AA}$
- Open heavy flavors (charm and bottom) are produced early in the collision. Heavy flavor production in vacuum can be calculated perturbatively.
- Heavy flavor production in HIC is a complicated business: transport property, energy loss, hadronization, etc. More detailed/differential R<sub>AA</sub> and v<sub>n</sub> measurements could help to constrain modeling of each part.

## Why heavy flavor (HF) muon





- Clean in central collisions
- Easy to collect with muon trigger
- Charm/bottom extracted at the same time in a correlated way

Keep in mind the hadron to muon decay

Background removed using momentum imbalance:

 $\rho = (p_{\rm T}^{\rm ID} - p_{\rm T}^{\rm MS})/p_{\rm T}^{\rm ID}$ 

Charm/bottom separation via impact parameter (DCA):  $d_0$ 





Inclusive HF muon:

- HF muon (b+c)  $v_n$  and  $R_{AA}$  at 2.76 TeV
- HF muon (b+c)  $v_2$  in p+Pb

PRC 98 (2018) 044905, arXiv, web ATLAS-CONF-2017-006

Charm/bottom muon separated:

- HF muon (b/c) v<sub>2</sub> in pp
- HF muon (b/c) v<sub>n</sub> in Pb+Pb
- HF muon (b/c) RAA at 5.02 TeV

PRL 124 (2020) 082301, arXiv, web PLB 807 (2020) 135595, arXiv, web arXiv, web

- Visit <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults</u> for more ATLAS heavy ion results
- Check out ATLAS publication web for auxiliary materials

## HF production in pp collisions





- L) Charm muon data lies at upper bond of FONLL uncertainty
- R) Bottom muon data agrees with FONLL at high  $p_T$
- Consistent with other HF measurements (e.g. ALICE D's: arXiv:2102.13601)

#### Charm and bottom muon $R_{AA}$ vs. $v_2$



- $R_{AA}(c \rightarrow \mu) < R_{AA}(b \rightarrow \mu)$ at low  $p_T$ . Difference becomes insignificant above 10 GeV
- EP method based:  $v_2(c \rightarrow \mu) > v_2(b \rightarrow \mu)$
- Both  $R_{AA}$  and  $v_2$  show strong centrality dependence



## Charm and bottom muon $R_{AA}$ vs. $v_2$



0-10%

40-60%

Other centrality bins can be found at web

arXiv:2109.00411

PLB 807 (2020) 13559

### $R_{AA}$ vs. $v_2$ — DAB-MOD comparisons



arXiv:2109.00411

PLB 807 (2020) 13559

Other centrality bins can be found at web

## Comparison with CCNU model





- **CCNU model** (2005.03330): Langevin-hydrodynamics framework + hybrid fragmentation-coalescence hadronization
- Modified Langevin with radiative Eloss
- Good agreement with data in 40-60%, while overestimate bottom muon  $R_{\rm AA}$  and  $v_2$  in 0-10%

40-60%

<sup>0-10%</sup> 



#### $R_{AA}$ vs. $v_2$ in centralities



### v<sub>3</sub> – DAB-MOD comparisons



•  $v_3(c \rightarrow \mu) > 0$ 

•  $v_3(b \rightarrow \mu) \sim 0$ 

• **DAB-MOD Langevin** with fluctuating medium under predicts charm muon  $v_3$  in the measured  $p_T$  range in central events



## Charm to bottom double ratio



- Large uncertainties on data results due to strong anti-correlation between charm and bottom muon results
- Charm is more suppressed than bottom at low p<sub>T</sub> in both 0-10% and 40-60%
- Comparable at high  $p_{T}$
- **DAB-MOD** and **DREENA-B** predict similar charm-bottom difference, larger model-data discrepancy in 0-10%

## Charm-bottom difference





Charm/bottom muon measurements

Charm/bottom muon difference

Other centrality bins can be found at web

### Compare to other experiments





- Charm muon vs. prompt D<sup>0</sup> in 0-10% in comparison to **DREENA-B** predictions for both
- Difference between charm muon and prompt D<sup>0</sup> R<sub>AA</sub> (CMS: <u>arXiv:1708.04962</u>, ALICE: <u>arXiv:1804.09083</u>) is larger than DREENA-B predicts
- Small difference between charm muon and prompt D<sup>0</sup> V<sub>2</sub> (CMS: <u>arXiv:1708.03497</u>)

## Compare to other experiments





- Bottom muon vs. non-prompt D<sup>0</sup> / non-prompt J/ψ (CMS: <u>arXiv:1712.08959</u>, ATLAS: <u>arXiv:1805.04077</u>) in 0-10% in comparison to **DREENA-B** predictions
- All B-decay results are comparable with each other, and significantly smaller than
  DREENA-B prediction

## HF muon $v_2$ in pp



- HF muon  $V_2$  measured in 2017 pp collisions at 13 TeV using muon-hadron 2PC with non-flow subtraction
- $v_2(c \rightarrow \mu) \sim v_2(\text{light})$   $v_2(b \rightarrow \mu) \sim 0$

HF muon flow in pp





- $v_2$  in *pp* looks similar to  $v_3$  in Pb+Pb
- Small droplet of QGP in high multiplicity pp collisions?
- Different interpretation for *pp* and Pb+Pb?
- Why so different for charm and bottom in *pp*?





- Decay muon serves as a powerful HF probe in HIC
- Detailed differential ATLAS results are available
- Don't hesitate to send us your calculations. We could do hadron to muon decay, and make figures for you
- What's next? Use HF muon as tool for other HF studies; a closer look at p+Pb collisions before new data collected

#### Backup Slides



## ATLAS detector



## Compare to light hadrons





## HF muon flow in small systems





 $v_n$  is called "flow" coefficient in this talk just for simplicity. Hydrodynamic flow is not the only explanation of the results



## Hadron to muon smearing in Pythia



 $p_{\rm T}$  shift and smearing

azimuthal angle smearing

pp vs. p+Pb





- Smaller  $v_2$  for muons than charged hadron in pp and p+Pb
- Similar difference between *pp* and *p*+Pb