Open Heavy Flavor Production at RHIC

Xin Dong (Lawrence Berkeley National Laboratory)

Au+Au event display with STAR-HFT

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

X. Dong/LBNL

Outline

Introduction:

- Heavy Quarks: Unique Probe to Characterize sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

QGP Emergent Properties

BERKELEY LAB

What is the microscopic picture of "perfect fluid"?

Heavy Flavor Quark Transport in QGP

Heavy quark transport – to probe QGP with comprehensive p_T coverage - unique insights to both perturbative and non-perturbative regimes

Heavy Quark Diffusion Coefficient

<u>2015</u>

• $2\pi TD_{s} \sim up \text{ to } 30 @ T_{c}$

To determine HQ diffusion coefficient Precision measurement of D⁰ production (R_{AA} and v₂), particularly at low p_T

$$D^0 \to K^- \pi^+$$
 $c\tau \sim 123 \mu m$
 $\Lambda_c^+ \to p K^- \pi^+$ $c\tau \sim 60 \mu m$

HotQCD white paper - arXiv: 1502.02730

Big Challenge

Combinatorial background in heavy-ion collisions

Silicon pixel detector to separate secondary decay vertex!

Instrumentation

	ALICE	ATLAS	CMS	LHCb	PHENIX	STAR
Sensor tech.	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	MAPS
Pitch size (µm²)	50x425	50x400	100x150	200x200	50x425	20x20
Radius of first layer (cm)	3.9	5.1	4.4	N/A	2.5	2.8
Thickness of first layer	1%X ₀	~1%X ₀	~1%X ₀	~1%X ₀	1%X ₀	0.4%X ₀

STAR Pixel - first application of MAPS technology in collider experiments Monolithic Active Pixel Sensor

Next generation MAPS sensor deployed for ALICE-ITS2, sPHENIX-MVTX upgrades

MAPS-based pixel detector planned for CBM, EIC tracker etc.

•••••

- Heavy Quarks: Unique Probe to Characterize sQGP
- Recent Heavy Flavor Results at RHIC
 - R_{AA} suppression parton energy loss
 - Hadrochemistry hadronization
 - Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

R_{AA} Suppression - Heavy Quark Energy Loss

- Strong suppression of heavy flavor electrons reveals the importance of collisional energy loss
 - complication: mixed contributions from various HF hadrons
- pQCD predicts the energy loss mass hierarchy $\Delta E_a > \Delta E_c > \Delta E_b$
 - hadron RAA pattern complicated by initial spectrum, fragmentation etc.

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

rrrr

D⁰ Meson R_{AA}/R_{CP} in A+A Collisions

Bottom Suppression

RHIC: hint of R_{AA}(e_B) > R_{AA}(e_D) at 3–8 GeV/c (3σ)
 Evidence of mass hierarchy of parton energy loss

- Heavy Quarks: Unique Probe to Characterize sQGP
- Recent Heavy Flavor Results at RHIC
 - R_{AA} suppression parton energy loss
 - Hadrochemistry hadronization
 - Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

Charm Hadrochemistry in ee/ep

PDG 2018

ZEUS, JHEP 1309 (2013) 058

$$2\sigma_{c\bar{c}} = D^0 + D^+ + D_s^+ + \Lambda_c^+ + \text{c.c.}$$

60.8% 24.0% 8.0% 6.2%
Lisovyi, et. al. EPJ C 76 (2016) 397

D_s^+/D^0 Enhancement in Heavy Ion Collisions

STAR, PRL 127 (2021) 092301, CMS, PAS-HIN-18-017 ALICE, JHEP 1810 (2018) 174, EPJC77 (2017) 550

- D_s^+/D^0 significantly higher than fragmentation baseline from PYTHIA
- Models with coalescence hadronization + strangeness enhancement qualitatively reproduce the data

Λ_c^+/D^0 Enhancement in Heavy Ion Collisions

- Λ_c/D ratio comparable to light/strange hadrons in A+A collisions
- Λ_c/D enhancement w.r.t the PYTHIA predictions (w/ and w/o CR)

- Coalescence models qualitatively reproduce the large Λ_c/D ratio

Charm Hadrochemistry

SHM: THERMUS calculations chemical FO parameters from the fit to light/strange hadrons

at RHIC top energy

- Total charm cross section follows ~ N_{bin} scaling from p+p to Au+Au
- However, charm hadrochemistry changes considerably in Au+Au collisions!

Introduction:

- Heavy Quarks: Unique Probe to Characterize sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity sQGP transport coefficient

• Future Heavy Flavor Program at RHIC

Collectivity - Radial Flow

(Tsallis) Blast-Wave fits

STAR, PRC 99 (2019) 034908

rrrrr

- collectivity from partonic stage interactions

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

X. Dong/LBNL

D⁰ Meson v₂ in A+A Collisions

STAR, PRL 118 (2017) 212301

• $v_2(D)$ follows the $(m_T-m_0)/n_q$ scaling as light hadrons

Evidence of charm quarks reaching local thermal equilibrium!

- Large D⁰ v₂ ordinated from charm quark diffusion in QGP
- 3D viscous hydro consistent with D⁰ v₂ data up to 4 GeV/c

D⁰ v₂ Compared with Model Calculations

 pQCD calculation and T-Matrix with F-pot. cannot reproduce the data - heavy quarkonium R_{AA} data disfavors F-pot.

Charm Spatial Diffusion Coefficient

<u>2015</u>

<u>2019</u>

XD, Y-J Lee & R. Rapp, Ann. Rev. Nucl & Part. Sci. 69 (2019) 417

Strongly interacting QGP!

sQGP Transport Parameters

 $2\pi TD_s$: Y. Xu et al, PRC 97 (2018) 014907 η/s : J. Bernhard et al, Nature Physics 115 (2019) 1113

- Charm quark $2\pi TD_s \sim 2-5$ at near T_c
 - consistent with quenched lattice calculations

momentum/temperature dependence? charm vs. bottom universality?

*D*⁰ v₁ - T-dependent sQGP Properties

S. Chatterjee & P. Bozek, PRL 120 (2018) 192301

D^0/\overline{D}^0 v₁ difference - Access to Initial B Field

23

First Look at the Bottom v₂

• TPC and FMS (2.5 < η < 4.0) methods provide consistent results Evidence of non-zero bottom v_2 (3.4 σ)

Introduction:

- Heavy Quarks: Unique Probe to Characterize sQGP

Recent Heavy Flavor Results at RHIC

- R_{AA} suppression parton energy loss
- Hadrochemistry hadronization
- Collectivity
 sQGP transport coefficient
- Future Heavy Flavor Program at RHIC

ALICE-ITS2 and sPHENIX MVTX

rrrrr

BERKELEY LAB

Next generation fast MAPS detector

	HFT	ITS2/MVTX
thickness	0.4% X ₀ -	$\rightarrow 0.3\% X_0$
integration ti	me 186 <i>µs</i> ·	\rightarrow < 10 μs
==> backgro	und reduced	d by > x10

Precision Measurement of Open-Bottom at RHIC

Fruitful Charm/Bottom Physics

.....

Summary

.....

BERKELEY LAB

charm quarks in medium

- significant energy loss
- significant collectivity
- coalescence hadronization

• 2*πTD_s* ~ 2-5 @ T_c

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	н	IF Phase	-1	рр	CME		BES-II		HF Phase-II
LHC	LS1	Run-2			LS	62		Run-3	

Next generation MAPS pixel detectors: MVTX@sPHENIX, ITS2@ALICE, Precision open bottom Heavy flavor baryons and correlations

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

X. Dong/LBNL

Backup

Uniqueness of Heavy Flavor Quarks

STAR Heavy Flavor Tracker (HFT)

G. Contin et al, NIMA 907 (2018) 60

Detector	Radius (cm)	Pitch Size R/φ - Z (μm - μm)	Thickness
Silicon Strip Detector	22	95 / 40000	1% X ₀
Intermediate Silicon Tracker	14	600 / 6000	1.3%X ₀
DiVal	8	20.7 / 20.7	0.5%X ₀
FIAEL	2.8	20.7 / 20.7	0.4%X ₀ *

- First application of Monolithic Active Pixel Sensor (MAPS) at a collider experiment
- MAPS technology widely used/planned in NP experiments

- ALICE ITS2/ITS3, sPHENIX MVTX, CBM MVD, EIC Si Tracker

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

rrr

Charm Baryons in p+p Collisions

- Λ_c/D in p+p > Λ_c/D in ee/ep at LHC
 - PYTHIA with CR + baryon junction agrees with data
- New Ξ_c/D ratio > PYTHIA tune

More detail investigation on charm baryon production mechanism in hadronic collisions Charm baryon to total charm cross section in p+p?

Bottom Quark Hadronization

CMS arXiv:2109.01908

rrrr

LHCb, PRD 100 (2019) 031102

- Hint of B_s/B^+ enhancement in PbPb collisions
 - coalescence hadronization for bottom quarks in QGP
 - better precision to constrain the bottom hadronization
- Λ_b/B ratio enhanced at low pT in p+p similar to Λ_c/D
 - more investigation to understand HQ baryon states production

D⁰ Radial Flow

Summary of D⁰ v₂ and R_{AA} at RHIC and LHC

BERKELEY LAB

Comparison with PHENIX Measurements

Consistent with PHENIX data with much improved precision

Statistical Hadronization

	Feeddov	vn contrib	ution to <i>i</i>	Λ_c
r_i	D^+/D^0	D^{*+}/D^0	D_s^+/D^0	Λ_c^+/D^0
PDG(170) PDG(160) RQM(170)	$0.4391 \\ 0.4450 \\ 0.4391 \\ 0.4450$	0.4315 0.4229 0.4315	0.2736 0.2624 0.2726	0.2851 0.2404 0.5696
RQM(160)	0.4450	0.4229	0.2624	0.4409

M. He & R. Rapp, PLB 795 (2019) 117

SHM: $\Lambda_c/D^0 \sim 0.25-0.3$ (PDG states)

However, ratio can be doubled when including charm baryon resonances

- existence of unmeasured charm baryon resonances supported by Lattice QCD calculation

A. Bazavov et al, PLB 737 (2014) 210

A. Andronic et al., arXiv:0710.1851

O

rrrrr

Theory Uncertainties

Rapid developments among theorists to resolve/understand trivial/non-trivial differences between different models

EMMI Rapid Reaction Task Force Jet-HQ Working Group

- R. Rapp et al., NPA 979 (2018) 21
- S.S. Cao et al., PRC 99 (2019) 054907

Heavy Flavor Program at RHIC

	2014	2015	2016	2017	2018	2019	2020	2021	2022+
RHIC	н	IF Phase	-1	рр	CME		BES-II		HF Phase-II
LHC	LS1	Run-2			LS	62		Run-3	

Next generation MAPS pixel detectors: ITS2@ALICE, MVTX@sPHENIX Precision open bottom Heavy flavor baryons and correlations

ECT* Workshop on QGP Characterization with HF Probes, 11/15-19, 2021

.....

BERKELEY LAB

LHC Projections and HF Program in Near Future

RHIC (2023 -) and LHC Run3 (2022 -)

Precision measurement of charm/bottom RAA and v2, and hadrochemistry

- parton energy loss (transition between collisional vs. radiative)
- charm/bottom quark spacial diffusion coefficient
- charm/bottom quark hadronization

HQ correlations, HQ-in-jet etc.

ALICE

Specifications

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)
Technology node	180 nm	65 nm
Silicon thickness	50 μm	20-40 μm
Pixel size	27 x 29 μm	O(10 x 10 µm)
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm
Front-end pulse duration	~ 5 µs	~ 200 ns
Time resolution	~ 1 µs	< 100 ns (option: <10ns)
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)
Detection efficiency	>99%	> 99%
Fake hit rate	< 10 ⁻⁷ event/pixel	$< 10^{-7}$ event/pixel
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$	$10^{14} 1 \text{ MeV } n_{eq}/cm^2$
TID radiation tolerance	3 MRad	10 MRad

