Beauty and Exotica Production in Heavy Ion Collisions at the LHC

Quark-Gluon Plasma Characterisation with Heavy Flavour Probes, ECT*, Trento, Italy 15 November, 2021

MIT HIG group's work was supported by US DOE-NP

Heavy Quarks as Probes of QGP

Produced before the QGP formation

- Heavy quark diffusion coefficient (D_s) provides a direct window on the in-medium QCD force
- Hadronization of heavy quarks could be modified in the presence of QGP, recombination of heavy (and light) quarks from independent hard parton-parton interactions
- Fast moving heavy quarks: suppression of radiative energy loss due to dead-cone effect compared to light quarks

Study of Beauty Hadron

Non-prompt J/ψ R_{AA} in 0-100% PbPb at 5 TeV

- Precise measurement of beauty suppression from **non-prompt J/\psi** from b decay in PbPb
- In MinBias PbPb collisions, the results from CMS and ATLAS are consistent
- R_{AA} first decrease with p_T and then stay at around 0.4-0.5 at high p_T $(10 < p_T < 50 \text{ GeV})$
- **Non-prompt J/\psi R_{AA} (from various** beauty hadron decays) and $B^+ R_{\Delta\Delta}$ are very close to each other

Beauty R_{AA} in 0-10% PbPb at 5 TeV

- Precise measurement of beauty suppression from non-prompt J/ψ, D⁰ and μ from b decay in 0-10% PbPb
- R_{AA} results are close to each other at high p_T (although J/ψ, D⁰ and μ carry different fraction of beauty momentum)
- Some difference between non-prompt J/ψ from ATLAS and CMS, to be followed up with Run 3+4 data

GENERATED BY BOUNDINO.GITHUB.IO/HINHFPLOT

B⁺ PRL 119 (2017) 152301

NP J/ψ CMS EPJC 78 (2018) 509

Beauty and Exotica Production in HIC at the LHC

Charm and Beauty Hadron R_{AA}

- Summary of the highest precision charm and beauty hadron measurements
- Very good agreement between ALICE D \mathbb{R}_{AA} and CMS D⁰ \mathbb{R}_{AA}
- p_T<20 GeV: non-prompt J/ψ R_{AA} is significantly higher than D R_{AA}
- p_T>20 GeV: non-prompt J/ψ R_{AA} is close to D R_{AA}
- Consistent with the expectation from the mass dependence of parton energy loss

NP J/ψ CMS EPJC 78 (2018) 509 ALICE D 2110.09420

CMS D⁰ PLB 782 (2018) 474

6

Beauty Quark Hadronization

- Indication of larger B_s/B⁺ ratios in PbPb compared to pp reference
- Data are consistent with expectation from theoretical models
- Indication of larger B_s/B^+ ratio in central event, to be followed up with Run 3+4 data

arXiv:2109.01908

Charm and Beauty Hadronization

- The magnitude of D_s/D^0 and B_s/B^+ are similar in pp and PbPb collisions
- Difference between PbPb data and pp reference decreases at high p_T

Beauty Azimuthal Anisotropy

- Significant positive v_2 signals have been reported in beauty decay lepton measurements
- However, the correlation between **lepton** and **beauty** p_T (in particular, direction) is weaker at low p_T
- Lack of structure: the measured v_2 is not varying as a function of lepton p_{T}

2109 00411 ATLAS **ALICE** preliminary

Beauty Azimuthal Anisotropy

- Significant positive v₂ signals have been reported in beauty decay lepton measurements
- Indication of larger v₂ (from beauty decay leptons) compared to Y(1S)

2109.00411 ATLAS ALICE preliminary Y(1S) CMS PLB 819 (2021) 136385 Y(1S) ALICE PRL 123 (2019) 192301

Beauty Azimuthal Anisotropy

- Significant positive v_2 signals have been reported in beauty decay lepton measurements
- Indication of larger v_2 (from beauty decay leptons) compared to Y(1S)
- Indication of a smaller beauty v_2 signal in high multiplicity **pp** and **pPb** collisions

2109.00411 ATLAS ALICE preliminary CMS pPb PLB 813 (2021) 136036 ATLAS pp PRL 124 (2020) 082301

Beyond the Studies of Heavy Flavor Hadrons (I)

Physics with B_c⁺

• B_c^+ mass is below B+D mass threshold

State	J/ψ	Ψ(2S)	B _c +	Y(1S)	Y(2S)	Y(3S)
Mass (GeV)	3.10	3.68	6.27	9.46	10.02	10.36
ΔE (GeV)	0.64	0.05	0.87	1.10	0.54	0.20

- Binding energy of B_c^+ is between J/ ψ and Y(1S):
 - Sensitive to medium induced dissociation
- Very small production cross-section in pp
 - Sensitive to medium effects such as recombination of beauty with an uncorrelated charm quark
- Parton energy loss: interesting combination of beauty and charm quarks

$B_{c}^{+}R_{AA}$ compared to charged hadron, D⁰ and B

- Significance of $\mathsf{B}_{\mathsf{c}}^{+}$ signal is well above 5σ
 - First observation of B_c⁺ production in heavy ion collisions!
- Similar suppression in B_s and B_c^+
 - $B_c p_T$ is partially reconstructed (tri-muon)
 - Large experimental uncertainty to be improved with Run3+4 data.
- At low p_T : the $B_c^+ R_{AA}$ central value is higher than charged hadron h^+ , B^+ and $D^0 R_{AA}$
- At high p_T : similar suppression
 - Mass dependent medium modifications such as dead-cone and hadronization effects reduce at high p_T
 - R_{AA} of all flavor identified hadrons seem to converge above ~ 20-30 GeV

B_c⁺ R_{AA} Compared to Quarkonia at CMS

State	Ψ(2S)	Y(2S)	J/ψ	B _c +	Y(1S)
Mass (GeV)	3.68	10.02	3.10	6.27	9.46
Δ E (GeV)	0.05	0.54	0.64	0.87	1.10

Small binding energy

Large binding energy

- $B_{c}^{+} R_{AA}$ is higher than Quarkonia
 - Binding energy between J/ψ and Y(1S)
 - Large experimental uncertainties prevent
 a firm conclusion
- Recombination of charm and beauty could increase the $\rm B_{c}^{+}\,R_{AA}^{-}$
- Would be interesting to go to low $p_T < 5$ GeV with future CMS and ALICE data in Run 3+4

Beyond the Studies of Heavy Flavor Hadrons (II)

16

X(3872)

BELLE PRL 91, 262001 (2003)

PRL 98, 132002 (2007)

PRL 110, 222001 (2013)

Hybrid

X(3872): Observed by Belle (2003), its internal structure is still under debate

- Quantum number determined by CDF and LHCb data: JPC=1++
- Charmonium interpretation: abandoned, predict wrong mass with J^{PC}=1⁺⁺
- Remaining possibilities:
 - D-D^{*} hadron molecule:mass X(3872) ≈ D(1875)D^{*}(2007), large & extended state
 - Tetraquark: a compact four quark state
 - Hybrid: mixed molecule-charmonium state

Yen-Jie Lee (MIT)

Probe the Nature of X(3872)

18

Beauty and Exotica Production in HIC at the LHC

 \overline{D}^{*0}

Probe the Nature of X(3872) with Comoving Particles

Smaller dissociation probability

Larger dissociation probability

Esposito et al, arXiv: 2006.15044

X(3872) in High Multiplicity pp from LHCb

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

Non-prompt X(3872) in pp from LHCb

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

- X(3872) from b decays seems to follow a different trend
- Look forward to the future high multiplicity data from pA collisions

X(3872) and $\psi(2S)$ in $p\bar{p}$ collisions at Tevatron

- Normalized isolation distribution (1 = fully isolated, no other activities in a cone $\Delta R < 1$)
- Modest support for the hypothesis that increased hadronic activity near X(3872) suppresses its production
 PRD 102, 072005 (2020)

X(3872) in PbPb?

Prompt X(3872)/ ψ (2S) vs. multiplicity in pp

Invariant Mass Spectra in PbPb Collisions at 5 TeV

- First evidence of inclusive X(3872) production in heavy ion collisions! (statistical significance 4.2σ)
- The fact that there is a X(3872) peak is already very interesting!
- A clear ψ(2S) signal to the same final state is also observed

arXiv:2102.13048 submitted to PRL

Ratio of X(3872) to $\psi(2S)$ Yields in pp and PbPb

Ratio of X(3872) to $\psi(2S)$ Yields in pp and PbPb

X(3872) Production in Theoretical Calculations

Status of current X(3872) theoretical calculations in heavy-ion collisions

AMPT transport model

Coalescence model

- Molecule easier to be produced w/ recombination of quarks in medium
- ► N_{Molecule} > N_{Tetraquark}

Compilation from Jing Wang (MIT)

Yen-Jie Lee (MIT)

Tetraquark Molecular Eq_{init} Eq_{init} Eq_{final} Molecule Molecule Molecule Molecule

TAMU transport model

- Molecule production per event decreases from central to peripheral
- Tetraquark no centrality dependence
- ► NMolecule > NTetraquark

Beauty and Exotica Production in HIC at the LHC

- Molecule (more loosely bound) regenerated later in the evolution compared to tetraquark
- ► NMolecule < NTetraquark

Unresolved Issues for X(3872)

00

D*0

1. What is the role of multiplicity selection bias?

2. The accuracy of the current PbPb data and low p_T reach

Tetraquark (4q)

3. Consistency between theoretical calculations: Relevance of coalescence hadronization, model dependence and absolute branching fractions

Unresolved Issues for X(3872)

Hybrid

- 1. What is the role of multiplicity selection bias?
 - Change the source of comoving particles using ep, eA, pp, pA collisions
- 2. The accuracy of the current PbPb data
 - Large dataset from Run 3 and Run 4 at the LHC; new detectors such as large acceptance CMS tracker in Run 4 and future ALICE 3.
- 3. Consistency between theoretical calculations: Relevance of coalescence hadronization, model dependence and absolute branching fractions
 - Stress test with system size scan: from ep, eA, pp, pO, OO to PbPb
 - Centrality dependence

Studies of X(3872) in HI and future EIC

Summary

• Beauty Hadron:

- Observation of mass dependence of parton energy loss
- Indication of modified beauty hadronization via B_s/B^+ in PbPb
 - Similar to that was observed in $\rm D_s/\rm D^0$
- Beauty hadron v₂ in PbPb via HF leptons
- Interesting to follow up with fully reconstructed b mesons and baryons in Run 3+4

• B_c⁺ Meson:

- First observation in PbPb, larger R_{AA} than B⁺ and quarkonia
- Intriguing new R_{AA} results, sensitive to recombination effect (of beauty and charm)

• X(3872) Hadron:

- First evidence of X(3872) production in PbPb, X(3872)/ψ(2S) decrease with multiplicity in pp
- Exciting new probe which is sensitive to comoving particles and recombination effects
- X(3872) internal structure: inconclusive due to the current experimental accuracy and model dependence
- Many interesting issues to be followed up with future large data in various collision systems

Thank You!

Backup Slides

LHCb HI samples

Fixed-target mode samples

- Large variety of samples to study ! *
- **Two new samples** : PbNe at $\sqrt{s_{NN}}$ = 68.6 GeV and PbPb at $\sqrt{s_{NN}}$ = 5.02 TeV *

35

Benjamin Audurier (QM'19)

Yen-Jie Lee (MIT)

X(3872) peak in LHCb pPb sample

Charmonium R_{AA} in PbPb and pp

- Can not be explained by nPDF or coherent energy loss model
- Final state effects from comoving (local) medium?

PbPb EPJC 78 (2018) 509

pPb arXiv:1805.02248

Upsilon suppression

• Origin of the sequential suppression in high multiplicity pp events?

Beauty and Exotica Production in HIC at the LHC

Beauty and Exotica Production in HIC at the LHC

A next-generation LHC heavy-ion experiment

- Proposed after Run 5, optimized for heavy flavor meson and baryon reconstruction; detection of very low p_T charged particles
- Wide pseudorapidity coverage (up to 4 units), most likely equipped with forward tracking stations
- Could shed new light on the nature and structure of the X, Y, Z
- X(3872) yield is expected to be particularly enhanced at low transverse momenta (p_T <4 GeV/c)

See this documentation for details (Link)

$B_c R_{AA}$ in PbPb at 5.02 TeV

Beauty and Exotica Production in HIC at the LHC

Invariant Mass Spectra in pp Collisions at 7 TeV

Upsilon Suppression in High Multiplicity Events

• Origin of the sequential suppression in high multiplicity pp events?

Relative Modification of X(3872) / ψ (2S) at EIC

$$\frac{R_{eA}^{X(3872)}}{R_{eA}^{\psi(2S)}} = \frac{\sigma_{eA}^{X}}{\sigma_{eA}^{\psi}} / \frac{\sigma_{ep}^{X}}{\sigma_{ep}^{\psi}}$$

- Little difference in suppression between model of compact X(3872) and $\psi(2S)$, as expected.
- Large difference between model of molecular X(3872) and $\psi(2S)$.

Matt Durham (LANL)

- The EIC has the potential to provide decisive discrimination between exotic structure models.
 - X(3872) is only an example, technique can be applied to other exotics as well.
 - This work is supported by LANL Lab Directed R&D

* See Matt Durham's presentation in EF06/07 meeting (Link)

Non-prompt J/ψ R_{AA}

Beauty R_{pPb} at the LHC

1.5 1.0 R_{pA} Q 0.5 **o** (b→) J/ψ ATLAS *pPb* 5.02 TeV, -2 < ycm < 1.5 **o** (b→) J/ψ CMS *pPb* 5.02 *TeV*, 0 < ycm < 0.9 ■ B[±] CMS *pPb* 5.02 *TeV*, |y| < 2.4 ♦ **B**[±] LHCb *pPb* 8.16 TeV, 2.5 < ycm < 3.5 0.0 10 20 30 50 60 40 0 p⊤ (GeV/c)

B_c Signal in Tri-muon Mass Spectra

• Fit uncertainty 20%

centrality 0 - 20% (*p*_T-integrated)

47