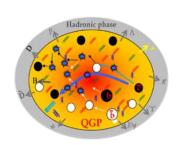


Charm dynamics in heavy-ion collisions


Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt)

In collaboration with Taesoo Song, Pierre Moreau, Wolfgang Cassing, Hamza Berrehrah, Laura Tolos, Juan Torres-Rincon, Jörg Aichelin, Pol-Bernard Gossiaux

Workshop "Quark-Gluon Plasma **Characterisation with Heavy Flavour Probes**" 15-18 November 2021 ECT* - Trento, Italy

Motivation

The goal: study of the properties of hot and dense nuclear and partonic matter by

Time

Chemical freeze-out

Pre-equilibrium

 $\tau \sim 10~fm/c$

Mixed Phase

Thermal freeze-out

Quark-Gluon Plasma

Hadrons

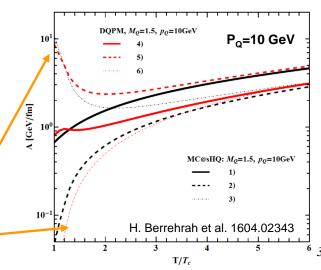
,charm probes' (or heavy quark probes)

The advantages of the 'charm probes':

- □ dominantly produced in the very early stages of the reactions in initial binary collisions with large energy-momentum transfer
- □ initial charm production is well described by pQCD FONLL
- □ heavy quark scattering cross sections are small (compared to the light quarks) → not in an equilibrium with the surrounding matter
- □ sensitive to the properties of the QGP during the expansion (and not only to its final state)

→ Hope to use 'charm probes' for an early tomography of the QGP

Dynamical description of hard probes


I. Modeling of time evolution of the ,medium' = system:

- Hadronic phase
- □ expanding fireball models ← assumption of global equilibrium
- □ ideal or viscous hydrodynamical models ← assumption of local equilibrium
- □ microscopic transport models ← full non-equilibrium dynamics!
- II. Modeling of the interaction of the hard probes with the ,medium':
- □ Fokker-Planck model, Langevin model ← transport coefficients

 $A = dp_{\rm L}/dt$, $\hat{q} = dp_{\rm T}^2/dt$

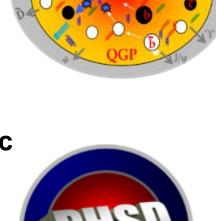
- □ linear Boltzmann models ← cross sections
- □ microscopic collision integral ← cross sections

	coupling	mass in gluon propagator	mass in external legs
1)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g}=0$
2)	$\alpha(Q^2)$	$\kappa = 0.2, m_D$	$m_{q,g} = m_{q,g}^{DQPM}$
3)	$\alpha(T)$	$\kappa = 0.2, m_D$	$m_{q,g}=0$
4)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$
5)	$\alpha(T)$	m_g^{DQPM}	$m_{q,g} = 0$
5)	$\alpha(O^2)$	m_g^{DQPM}	$m_{q,g} = m_{q,g}^{DQPM}$

Dynamical Models > PHSD

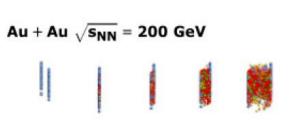
The goal:

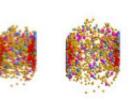
to describe the dynamics of charm quarks/mesons in all phases of HICs on a microscopic basis

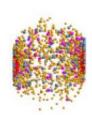

Realization:

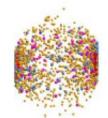
a dynamical non-equilibrium transport approach

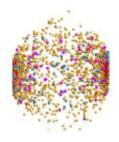
- □ applicable for strongly interacting systems,
- which includes a phase transition from hadronic matter to QGP


The tool: PHSD approach


b = 2.2 fm - Section view



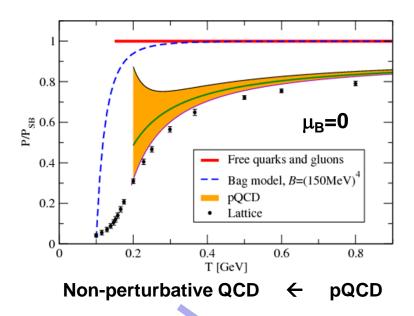

Hadronic phase



Degrees-of-freedom of QGP

For the microscopic transport description of the system one needs to know all degrees of freedom as well as their properties and interactions!

IQCD gives QGP EoS at finite μ_B


! need to be interpreted in terms of degrees-of-freedom

pQCD:

- weakly interacting system
- massless quarks and gluons

How to learn about the degrees-of-freedom of the QGP from HICs?

- → microscopic transport approaches
- **→** comparison to HIC experiments

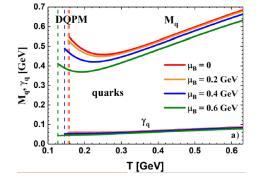
Thermal QCD = QCD at high parton densities:

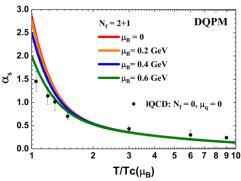
- strongly interacting system
- massive quarks and gluons
- → quasiparticles
- = effective degrees-of-freedom

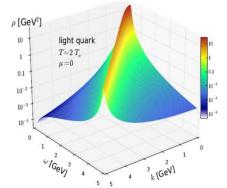
Dynamical QuasiParticle Model (DQPM)

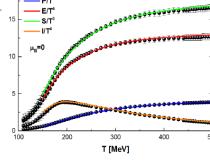
DQPM – effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS

Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons


Theoretical basis:

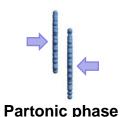

□ ,resummed single-particle Green's functions → quark (gluon) propagator (2PI) : $G_q^{-1} = P^2 - \Sigma_q$ Properties of the quasiparticles are specified by scalar complex self-energies: $\Sigma_q = M_q^2 - i2\gamma_q \omega$


 $Re\Sigma_q$: thermal masses (M_g, M_q) ; $Im\Sigma_q$: interaction widths $(\gamma_g, \gamma_q) \rightarrow$ spectral functions $\rho_q = -2ImG_q$


- introduce an ansatz (HTL; with few parameters) for the (T, μ_B) dependence of masses/widths
- evaluate the QGP thermodynamics in equilibrium using the Kadanoff-Baym theory
- fix DQPM parameters by comparison to the entropy density s, pressure P, energy density ε from DQPM to IQCD at μ_B =0

DQPM provides mean-fields (1PI) for q,g and effective 2-body partonic interactions (2PI); gives transition rates for the formation of hadrons → sQGP in PHSD

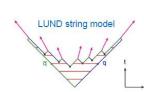
Parton-Hadron-String-Dynamics (PHSD)



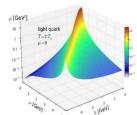
Initial A+A

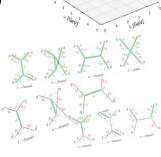
PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

collision


Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

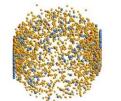
Initial A+A collisions:


N+N → string formation → decay to pre-hadrons + leading hadrons

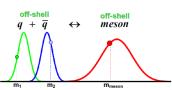


Partonic phase - QGP:

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

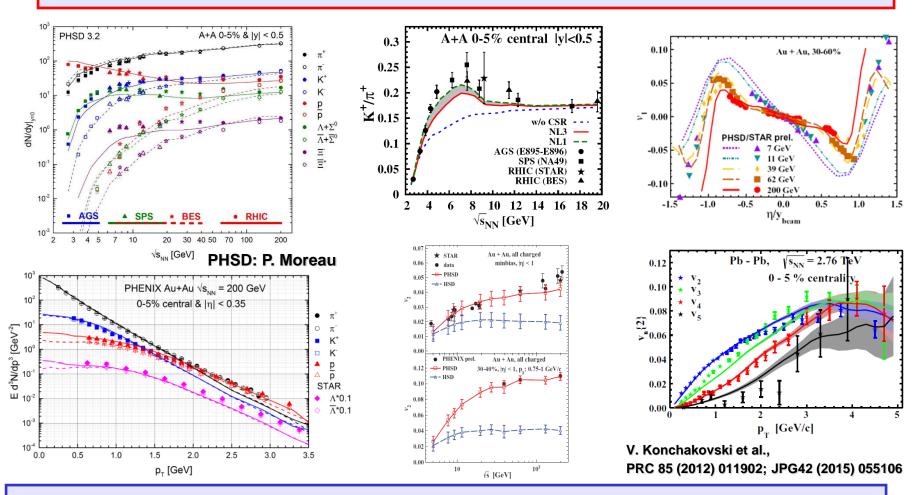


- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential
- Interactions: (quasi-)elastic and inelastic collisions of partons

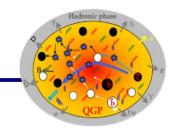


Hadronic phase

Hadronization


- ☐ Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation
- Hadronic phase: hadron-hadron interactions off-shell HSD

Non-equilibrium dynamics: description of A+A with PHSD


Important: to be conclusive on charm observables, the light quark dynamics must be well under control!

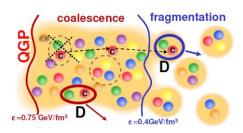
 \square PHSD provides a good description of ,bulk' observables (y-, p_T-distributions, flow coefficients v_n, ...) from SIS to LHC energies

Charm dynamics in PHSD

Experimental data

s1/2 (GeV)

Dynamics of heavy quarks in A+A:


- 1. Production of heavy (charm and bottom) quarks in initial binary collisions + shadowing and Cronin effects
- 2. Interactions in the non-perturbative QGP according to the DQPM: elastic scattering with off-shell massive partons Q+q→Q+q

 → collisional energy loss

3. Hadronization: c/cbar quarks →D(D*)-mesons:
Dynamical hadronization scenario for heavy quarks :

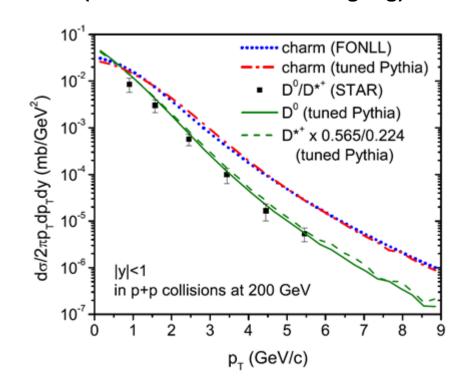
coalescence with < r > = 0.9 fm & fragmentation $0.4 < \epsilon < 0.75 \text{ GeV/fm}^3$ $\epsilon < 0.4 \text{ GeV/fm}^3$

4. Hadronic interactions:

D+baryons; D+mesons based on G-matrix and effective chiral Lagrangian approach with heavy-quark spin symmetry (>200 channels) (Juan Torres-Rincon, Laura Tolos)

^{*} PHSD references on charm dynamics:

Charm production in NN collisions

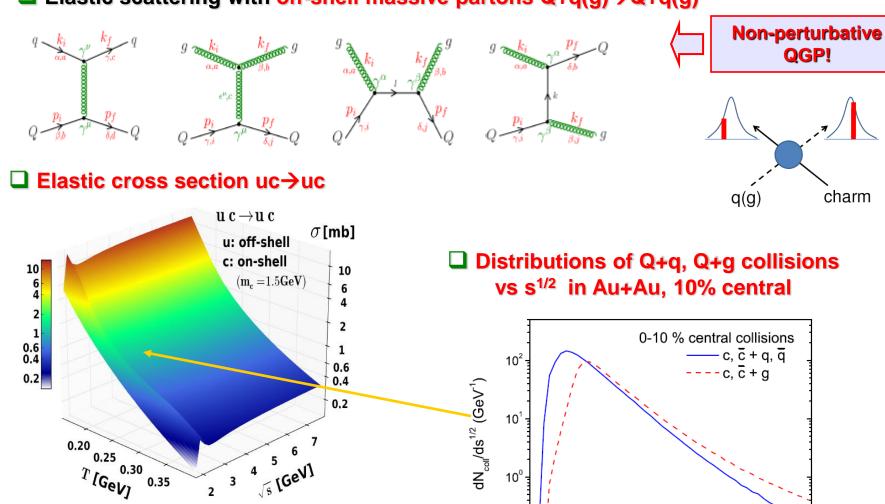

☐ A+A: charm production in initial NN binary collisions: probability

$$P = \frac{\sigma(c\bar{c})}{\sigma_{NN}^{inel}}$$

The total cross section for charm production in p+p collisions $\sigma(cc)$

Alice_ATLAS (a) 10⁴ LHCb STAR Alice 10³ PHENIX 2011 $\sigma_{pp}(c\overline{c})$ (μb) PHENIX 2017 10² E653 (pA) NA16 (pA) 7 E743 (pA) E769 (pA) 10° Experimental data 10⁻¹ **PHSD** 10⁻² 10¹ 10² 10^{3} 10⁴ s^{1/2} (GeV)

Momentum distribution of heavy quarks: use ,tuned' PYTHIA event generator to reproduce FONLL (fixed-order next-to-leading log) results


T. Song, W.Cassing, P.Moreau and E.Bratkovskaya, PRC 97 (2018) 064907

T. Song et al., PRC 92 (2015) 014910, PRC 93 (2016) 034906, PRC 96 (2017) 014905

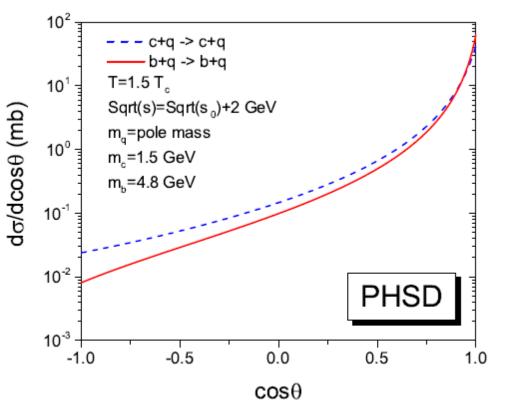
Heavy quark scattering in the QGP (DQPM)

□ Elastic scattering with off-shell massive partons Q+q(g)→Q+q(g)

10⁻¹

3

s^{1/2} (GeV)


5

H. Berrehrah et al, PRC 89 (2014) 054901; PRC 90 (2014) 051901; PRC90 (2014) 064906

Heavy quark scattering in the QGP

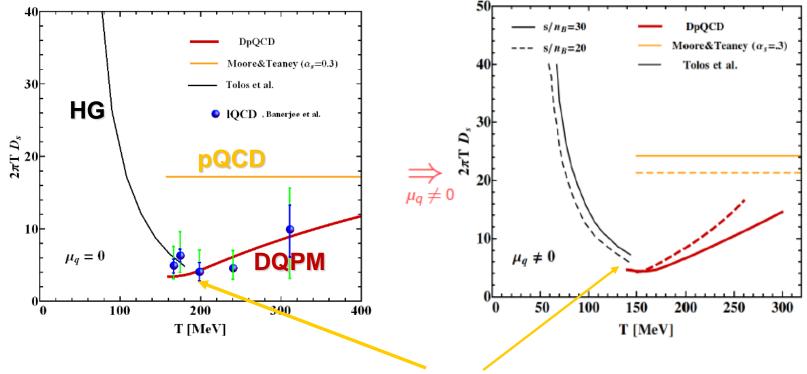
□ Differential elastic cross section for cq \rightarrow cq, bq \rightarrow bq for s $^{1/2}$ =s $_0$ $^{1/2}$ +2GeV at 1.5T_C

■ DQPM - anisotropic angular distribution

Note: pQCD - strongly forward peaked

Differences between DQPM and pQCD:
less forward peaked angular distribution
leads to more efficient momentum transfer

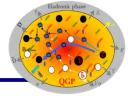
→ Smaller number (compared to pQCD) of elastic scatterings with massive partons leads to a larger energy loss


! Note: radiative energy loss is NOT included yet in PHSD, it is expected to be small (at low p_T) due to the large gluon mass in the DQPM

Charm spatial diffusion coefficient D_s in the hot medium

• D_s for heavy quarks as a function of T for $\mu_q=0$ and finite μ_q assuming adiabatic trajectories (constant entropy per net baryon s/n_B) for the expansion

$$D_s = lim(\vec{p} \rightarrow 0) \frac{T}{M n_{\rm D}}$$
 where $\eta_{\rm D}$ = A/p; A(p,T) = drag coefficient


 \Box T < T_c: hadronic D_s

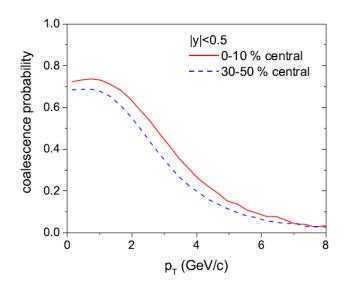
L. Tolos , J. M. Torres-Rincon, PRD 88 (2013) 074019; 2109.08204

Continuous transition at T_C!

Hadronization of heavy quarks in A+A

PHSD: if the local energy density $\varepsilon \rightarrow \varepsilon_{\rm C}$ \rightarrow hadronization of heavy quarks to hadrons

T. Song et al., PRC 93 (2016) 034906


Dynamical hadronization scenario for heavy quarks:

coalescence with <r>=0.9 fm & $0.4 < \epsilon < 0.75 \text{ GeV/fm}^3$

fragmentation ε < 0.4 GeV/fm³

coalescence fragmentation $\varepsilon = 0.75 \text{ GeV/fm}^3$ $\varepsilon = 0.4 \text{GeV/fm}^3$

Coalescence probability in Au+Au at LHC

Coalescence probability

$$\quad \text{for } c + \overline{q} \to D$$

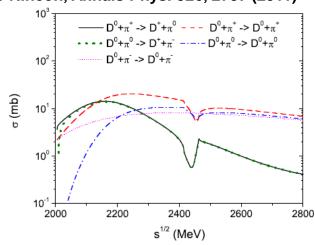
pability
$$f(m{
ho},\mathbf{k}_
ho)=rac{8g_M}{6^2}\exp\left[-rac{m{
ho}^2}{\delta^2}-\mathbf{k}_
ho^2\delta^2
ight]$$

$$\rho = \frac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2)$$

where
$$\rho = \frac{1}{\sqrt{2}}(\mathbf{r}_1 - \mathbf{r}_2), \quad \mathbf{k}_{\rho} = \sqrt{2} \; \frac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{m_1 + m_2}$$

Width $\delta \leftarrow$ from root-mean-square radius of meson <r>:

$$\langle r^2 \rangle = \frac{3}{2} \frac{m_1^2 + m_2^2}{(m_1 + m_2)^2} \delta^2$$


D-meson scattering in the hadronic phase

1. <u>D-meson scattering with mesons</u>

L. M. Abreu, D. Cabrera, F. J. Llanes-Estrada, J. M. Torres-Rincon, Annals Phys. 326, 2737 (2011)

Model: effective chiral Lagrangian approach with heavy-quark spin symmetry

Interaction of D=(D⁰,D⁺,D⁺_s) and D*=(D*⁰,D*⁺,D*⁺_s) with octet (π ,K,Kbar, η)

2. <u>D-meson scattering with baryons</u>

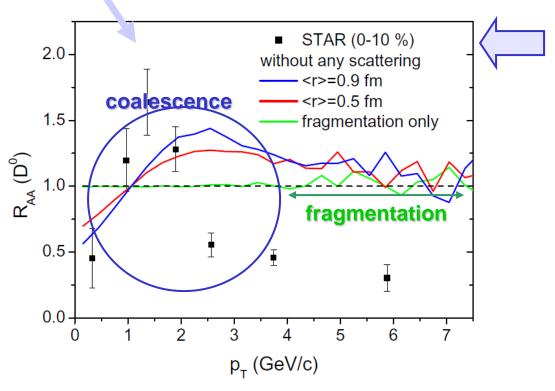
C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo, L. Tolos, Phys. Rev. D 87, 074034 (2013)

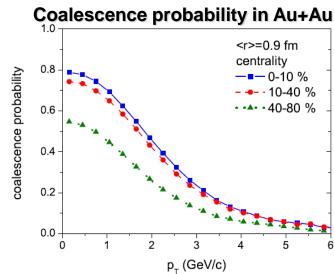
Model: G-matrix approach: interactions of $D=(D^0,D^+,D^+_s)$ and $D^*=(D^{*0},D^{*+},D^{*+}_s)$ with nucleon octet $J^P=1/2^+$ and Delta decuplet $J^P=3/2^+$

Unitarized scattering amplitude → solution of coupled-channel Bethe-Salpeter equations:

$$T = T + VGT$$

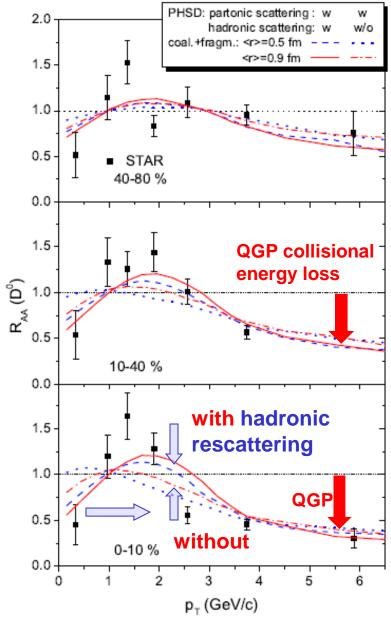
D⁰+n -> D⁰+n -- D⁰+p -> D⁰+p D⁰+p -> D⁺+n -- D⁰+n -> D*⁰+n D*⁰+n -> D⁰+n -- D⁰+n -> D*⁰+n 10¹ 10¹ 10² 2800 3000 3200 3400 3600 s^{1/2} (MeV)


→ Strong isospin dependence and complicated structure (due to the resonance coupling) of D+m, D+B cross sections!


R_{AA} at RHIC - coalescence vs fragmentation

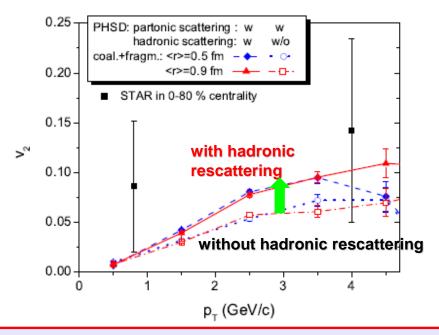
Influence of hadronization scenarios: coalescence vs fragmentation

! Model study: without any rescattering (partonic and hadronic)


$$R_{AA}(p_T) \equiv \frac{dN_D^{Au+Au}/dp_T}{N_{binary}^{Au+Au} \times dN_D^{p+p}/dp_T}$$

- Expect: no scattering: R_{AA}=1
- \square Hadronization by fragmentation only (as in pp) \rightarrow R_{AA}=1
- \square Coalescence (not in pp!) shifts R_{AA} to larger $p_T \rightarrow$, nuclear matter effect
- ☐ The hight of the R_{AA} peak depends on the balance: coalescence vs. fragmentation

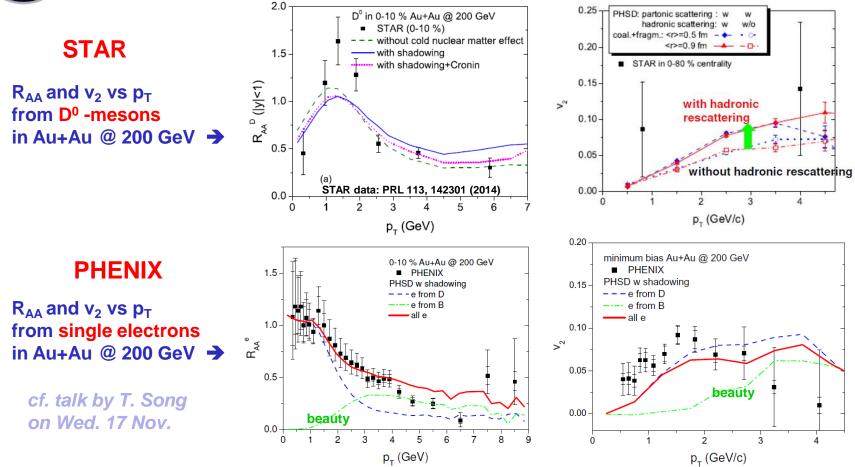
R_{AA} at RHIC: hadronic rescattering



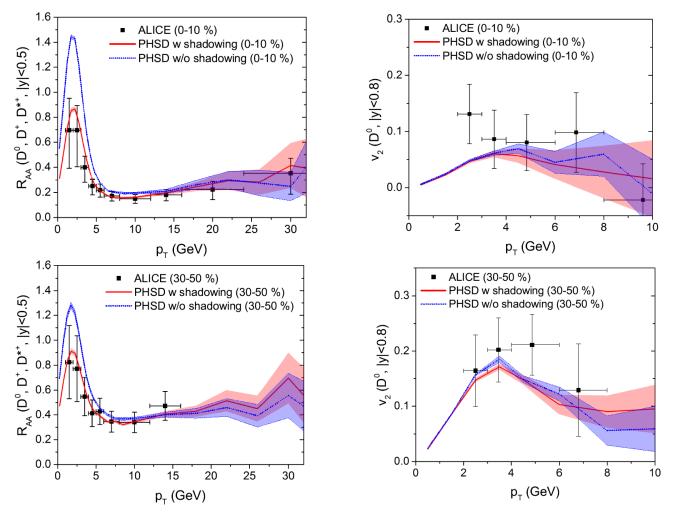
Influence of hadronic rescattering:

Central Au+Au at $s^{1/2}$ = 200 GeV : N(D,D*) ~30

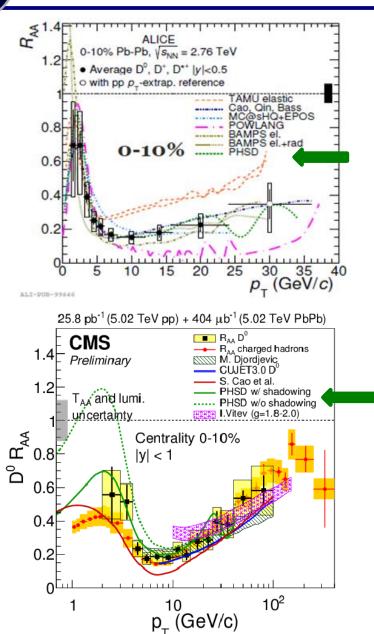
N(D,D*+m) ~56 collisions N(D,D*+B,Bbar) ~10 collisions


→ each D,D* makes ~ 2 scatterings with hadrons

- \blacksquare Hadronic rescattering moves R_{AA} peak to higher p_T !
- substantially increases v₂ at larger p_T


PHSD vs charm observables at RHIC

- \Box The exp. data for the R_{AA} and v₂ are described in the PHSD by QGP collisional energy loss due to elastic scattering of charm guarks with massive guarks and gluons in the QGP
- + by the dynamical hadronization scenario "coalescence & fragmentation"
- + by strong hadronic interactions due to resonant elastic scattering of D,D* with mesons and baryons
- \Box Feed back from beauty contribution becomes dominant for single electrons R_{AA} and v_2 at $p_T > 3$ GeV


Charm R_{AA} at LHC: PHSD vs ALICE

- ☐ in PHSD the energy loss of D-mesons at high p_T can be dominantly attributed to partonic scattering
- □ Shadowing effect suppresses the low p_T and slightly enhances the high p_T part of R_{AA}
- \square Hadronic rescattering moves R_{AA} peak to higher p_{T_i} increases v_2

PHSD vs charm observables at LHC (predictions)

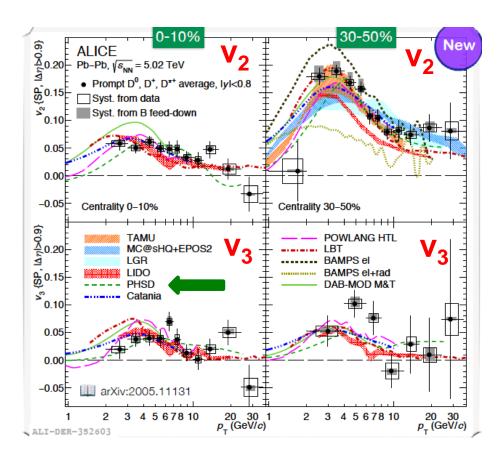
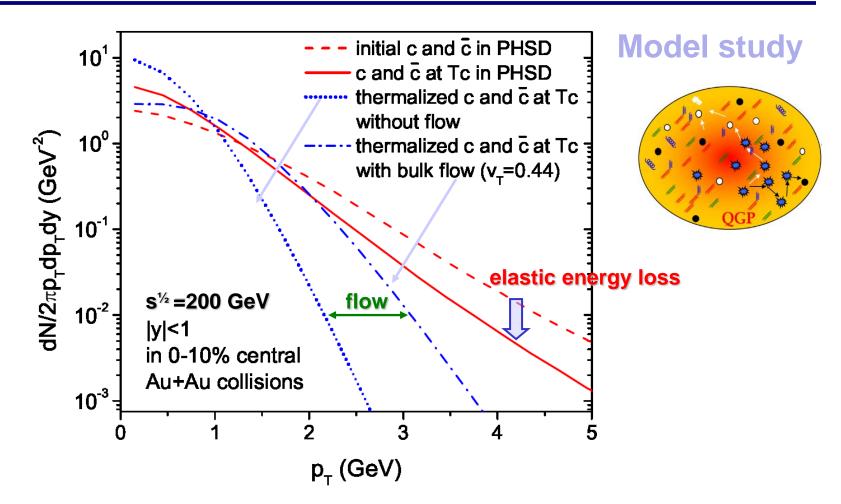
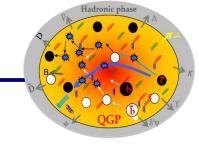



Fig. from the talk by Stefano Trogolo at HP-2020

T. Song et al., PRC 92 (2015) 014910, PRC 93 (2016) 034906, PRC 96 (2017) 014905


Thermalization of charm quarks in A+A?

- Scattering of charm quarks with massive partons softens the p_T spectra
 - → elastic energy loss
- \Box Charm quarks are close to thermal equilibrium at low p_T < 2 GeV/c

Summary

- □ PHSD provides a microscopic description of non-equilibrium charm dynamics in the partonic and hadronic phases
- \square Partonic rescattering suppresses the high p_T part of R_{AA}, generates v₂
- □ Hadronic rescattering moves R_{AA} peak to higher p_T, increases v₂
- \Box The structure of R_{AA} at low p_T is sensitive to the hadronization scenario, i.e. to the balance between coalescence and fragmentation
- □ Shadowing effects suppress R_{AA} at LHC at low transverse momenta, Cronin effect slightly increases R_{AA} above $p_T > 1$ GeV
- □ The exp. data for the R_{AA} and v₂ at RHIC and LHC are described in the PHSD by QGP collisional energy loss due to the elastic scattering of charm quarks with massive quarks and gluons in the QGP phase
 - + by the dynamical hadronization scenario "coalescence & fragmentation"
 - + by strong hadronic interactions due to resonant elastic scattering of D,D* with mesons and baryons
- □ Feed back from beauty contribution for R_{AA}^e and v_2^e from single electrons for Au+Au at 200 GeV becomes dominant for $p_T > 3$ GeV