

Benjamin Audurier - QGP characterisation with HF - Trento, 15/11/2021

Latest results of open and hidheavy-flavour production in heion collisions from LHCbIOU COLLISIOUS LLOW FHCP

*benjamin.audurier@cern.ch

Jon	I The I HCh detector
UUI	II. Selected results in pPb collisions
eavv-	III.Outlook: detector upgrade and futur
	performance
	IV. Summary

The LHCb detector

The LHCb detector

20m

3

Z

<u>10.1142/S0217751X15300227</u>

* Track reconstruction **down to** $p_T = 0$.

hadron PID

HCAL

ECAL

tracking

muon system

lumi counters

- * Excellent **p**_T and mass resolution.
- * Excellent particle identification.
- * Precision vertex reconstruction.

The LHCb detector

Can operate both in pp/pPb/PbPb and fixed-target !

<u>10.1142/S0217751X15300227</u>

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

n I - Beam 2, Beam I - Gas, Beam 2 - Gas.

Fixed-target mode: **unique at LHC**!

- Injecting gas in the LHCb VErtex LOcator (VELO) tank.
- Noble gas only : He, Ne, Ar
- Gas pressure : 10⁻⁷ to 10⁻⁶ mbar

Illustration of LHCb performances

List of (some) LHCb results

TITLE	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON	CITED
Measurement of the nuclear modification factor and prompt charged particle production in $p{ m Pb}$ and pp collisions at $\sqrt{s_{ m NN}}=5{ m TeV}$	PAPER-2021-015 arXiv:2108.13115 [PDF]	PLB	30 Aug 2021	
Study of J/ψ photo-production in lead-lead peripheral collisions at $\sqrt{s_{NN}}=5.02$ TeV	PAPER-2020-043 arXiv:2108.02681 [PDF]	PRL	05 Aug 2021	2
Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{NN}}=5$ TeV	PAPER-2021-013 arXiv:2107.03223 [PDF]	JHEP	07 Jul 2021	1
Measurement of prompt-production cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2020-048 arXiv:2103.07349 [PDF]	Phys. Rev. C103 (2021) 064905	12 Mar 2021	
Observation of multiplicity-dependent prompt $\chi_{c1}(3872)$ and $\psi(2S)$ production in pp collisions	PAPER-2020-023 arXiv:2009.06619 [PDF]	Phys. Rev. Lett. 126 (2021) 092001	14 Sep 2020	14
Observation of enhanced double parton scattering in proton-lead collisions at $\sqrt{s_{NN}}=8.16~\text{TeV}$	PAPER-2020-010 arXiv:2007.06945 [PDF]	Phys. Rev. Lett. 125 (2020) 212001	14 Jul 2020	5
Measurement of B^+ , B^0 and Λ^0_b production in $p{ m Pb}$ collisions at $\sqrt{s_{NN}}=8.16~{ m TeV}$	PAPER-2018-048 arXiv:1902.05599 [PDF]	Phys. Rev. D99 052011 (2019)	14 Feb 2019	37
First Measurement of Charm Production in its Fixed-Target Configuration at the LHC	PAPER-2018-023 arXiv:1810.07907 [PDF]	Phys. Rev. Lett. 122 (2019) 132002	18 Oct 2018	59
Study of Υ production in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2018-035 arXiv:1810.07655 [PDF]	JHEP 11 (2018) 194	17 Oct 2018	42
Prompt Λ_c^+ production in $p\mathrm{Pb}$ collisions at $\sqrt{s_{NN}}=5.02$ TeV	PAPER-2018-021 arXiv:1809.01404 [PDF]	JHEP 02 (2019) 102	05 Sep 2018	43
Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}}=110$ GeV	PAPER-2018-031 arXiv:1808.06127 [PDF]	Phys. Rev. Lett. 121 (2018) 222001	18 Aug 2018	56
Study of prompt D ⁰ meson production in pPb collisions at \sqrt{s} =5 TeV	PAPER-2017-015 arXiv:1707.02750 [PDF]	JHEP 10 (2017) 090	10 Jul 2017	101
Prompt and nonprompt J/ ψ production and nuclear modification in $p{\rm Pb}$ collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$	PAPER-2017-014 arXiv:1706.07122 [PDF]	Phys. Lett. B774 (2017) 159	21 Jun 2017	82
Study of $\psi(2S)$ production and cold nuclear matter effects in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 5$ TeV	PAPER-2015-058 arXiv:1601.07878 [PDF]	JHEP 03 (2016) 133	28 Jan 2016	59
Measurements of long-range near-side angular correlations in $\sqrt{s_{\rm NN}}=5$ TeV proton-lead collisions in the forward region	PAPER-2015-040 arXiv:1512.00439 [PDF]	Phys. Lett. B762 (2016) 473	01 Dec 2015	90
Observation of Z production in proton-lead collisions at LHCb	PAPER-2014-022 arXiv:1406.2885 [PDF]	JHEP 09 (2014) 030	11 Jun 2014	61
Study of Υ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}}=5 TeV$	PAPER-2014-015 arXiv:1405.5152 [PDF]	JHEP 07 (2014) 094	20 May 2014	88
Study of J/ψ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}} = 5$ TeV	PAPER-2013-052 arXiv:1308.6729 [PDF]	JHEP 02 (2014) 72	30 Aug 2013	191

<u>All results can be found at</u> <u>the LHCb Public results</u>

Selected results in pPb collisions

χ_{c2}/χ_{c1} production in pPb

- * χ_c is a charmonium -> same physics motivation as for others $c\bar{c}$ states.
- * In addition, feed-down from χ_c represents ~30% of the prompt J/ψ production.
- * Experimentally, χ_c measurement is challenging $(\chi_c \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) + \gamma)$

Phys. Rev. C 103, 064905

- First χ_c measurements in heavy-ion data at the LHC.
- * χ_{c2}/χ_{c1} compatible with unity both in pPb and Pbp collisions with large statistical uncertainties.
- * pPb results compatible with pp@7TeV results.

χ_{c2}/χ_{c1} production in pPb

Phys. Rev. C 103, 064905

Baryon-to-meson ratio in pPb collisions

- **Beauty mesons and baryon measured in pPb/ Pbp** collisions at $\sqrt{s_{NN}} = 8$ TeV.
 - Flat $\sigma(B^0) / \sigma(B^+)$ ratio versus p_{T_-}
 - p_T dependance observed for the $\sigma(\Lambda^{0}_b)/$ $\sigma(B^0)$ ratio.
 - Hint of a relative Λ_b^0/B^0 suppression in Pbp collisions compared to pp?
- Extensive studies show **good agreement** * between data and HELAC-onia predictions with several sets of nPDFs.

Baryon-to-meson ratio in pPb collisions

- Charm mesons and baryon measured in • **pPb/Pbp** collisions at $\sqrt{s_{NN}} = 8$ TeV.
- No strong dependance of the relative * Λ_{c}^{+}/D^{0} ratio is observed versus p_{T} and rapidity.
 - Decreasing trend versus p_T in pPb.
- **Good description of the nuclear** * modification factors and forward-to**backward ratios** with various nPDFs sets.
 - within large model uncertainties ...
- **Tensions between models and data** at higher p_T in pPb collisions.
 - Data fluctuation ?
 - Additional effect ?

Open-charm production in pPb collisions

- * Preliminary results for D⁰ cross-section in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV up to $p_T = 16$ GeV/c.
- * **Improved statistics** by factor 20 compared to previous LHCb results.
- * Tension between data and nPDFs predictions. Additional effects required.
- * Analysis ongoing for other open-charm stats !

12

VELO saturation \rightarrow loss of tracking efficiency

Studies in PbPb limited to 60% less central collisions.

VELO saturation \rightarrow loss of tracking efficiency

Outlook: detector upgrade and futur performance

LHCb detector : season 3 (2022)

New electronics for muon and calorimeter systems

[CERN-LHCC-2012-007]

- 20m
 - Upgrade based on pp collision requirements :
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu \approx 5$
 - **Replace the entire tracking system.**
 - Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.

Run 3 prospects for heavy-ion physics with LHCb

HELAC-Onia + *EPPS16 nPDF predictions*

- * Studies in this document :
 - D0-D0 correlations.
 - B+ meson productions.
 - Drell-Yan production
- * Results obtained assuming similar systematics as in Run 2.
 - Dominated by tracking uncertainties and branching ratios in this scenario.
 - **Projections show valuable inputs for** nPDF fit with limited data taking periods.

LHCb fixed-target program evolution

Projectio	on of ~1 year data taking	in parallel mode	
Int. Lumi	•	80 pb-1	* SMC
C		007	[-500
Sys.error	of J/Ψ xsection	~3%	
J/Ψ	yield	28 M	→ UJ ₁
D^0	yield	280 M	
$\widetilde{\Lambda}_c$	yield	2.8 M	CU
Ψ'	yield	280 k	
$\Upsilon(1S)$	yield	24 k	
$DY \mu^+\mu^-$	- yield	24 k	ac

- **OG 2** (<u>TDR</u>) : Standalone gas storage cell covering $z \in$ 0;-300] mm :
- **p to x100 higher gas density** with same gas flow of irrent SMOG.
- as feed system measures the **gas density with few** % curacy.
- Possibility to run in parallel of pp collisions and inject non noble Gaz.

SMOG2 installed and ready to go !

- * LHCb : a performant heavy-flavour detector **at forward rapidity** :
 - Large catalog of precise measurements in pp collisions.
 - Increasing number of results in pPb and fixed-target collisions.

- * LHCb : a performant heavy-flavour detector **at forward rapidity** :
 - Large catalog of precise measurements in pp collisions.
 - Increasing number of results in pPb and fixed-target collisions.
- * Many analysis ongoing which should be ready soon
 - D mesons studies in pPb collisions at 8 TeV.
 - Λ_c^+/D^0 ratio in peripheral PbPb collisions.
 - J/ψ and D⁰ measurements in PbNe fixed-target collisions.

- * LHCb : a performant heavy-flavour detector **at forward rapidity** :
 - Large catalog of precise measurements in pp collisions.
 - Increasing number of results in pPb and fixed-target collisions.
- * Many analysis ongoing which should be ready soon
 - D mesons studies in pPb collisions at 8 TeV.
 - Λ_{c}^{+}/D^{0} ratio in peripheral PbPb collisions.
 - J/ψ and D⁰ measurements in PbNe fixed-target collisions.
- * The futur LHC Run 3 will help us to improve the quality of the data:
 - the luminosity !
 - The evolution of the fixed-target program will give unique possibilities to the LHCb physics program.
 - Better performances expected for Run 3 in high-multiplicity collisions.

Installation of the brand new detector with improved performances currently ongoing to cope with the increase of

- * LHCb : a performant heavy-flavour detector **at forward rapidity** :
 - Large catalog of precise measurements in pp collisions.
 - Increasing number of results in pPb and fixed-target collisions.
- * Many analysis ongoing which should be ready soon
 - D mesons studies in pPb collisions at 8 TeV.
 - Λ_{c}^{+}/D^{0} ratio in peripheral PbPb collisions.
 - J/ψ and D⁰ measurements in PbNe fixed-target collisions.
- * The futur LHC Run 3 will help us to improve the quality of the data:
 - the luminosity !
 - The evolution of the fixed-target program will give unique possibilities to the LHCb physics program.
 - Better performances expected for Run 3 in high-multiplicity collisions.

Installation of the brand new detector with improved performances currently ongoing to cope with the increase of

Extended capabilities of the detector = expansion of the physics program !

Back-up slides

Double charm production in pPb

- J. Gaunt, Quarkonia as Tools 2020 workshop
- * Why Double Parton Scattering (DPS)?
 - To study the underlying event.
 - To access Double Transverse Momentum Dependent Parton distributions (JHEP 1203 (2012) 089).

⇒ ...

* DPS cross-section parametrisation, assuming two independent hard collisions :

$$\sigma_{\rm eff} \propto rac{\sigma^A \sigma^B}{\sigma_{\rm DPS}^{AB}}$$

Related to the geometry of the collision and independent of the final state (?)

Double charm production in pPb

- J. Gaunt, Quarkonia as Tools 2020 workshop
- * Why Double Parton Scattering (DPS)?
 - To study the underlying event.
 - To access Double Transverse Momentum Dependent Parton distributions (JHEP 1203 (2012) 089).

. . .

* DPS cross-section parametrisation, assuming two independent hard collisions :

$$\sigma_{\rm eff} \propto rac{\sigma^A \sigma^B}{\sigma_{\rm DPS}^{AB}}$$

Related to the geometry of the collision and independent of the final state (?)

- * $\sigma_{\rm eff}$ final state dependent ? (mind the large uncertainties).
- * Is σ_{eff} interpretation correct ?
- * $\sigma_{\rm eff}$ can also be measured in pA collisions and compared to pp collisions with simple scaling (arXiv:1708.07519).

Double charm production in pPb

- * LHCb has measured prompt double open-charm / open-charm + J/ ψ production in pPb@8.16TeV.
 - Combined pairs from the same event and corrected from acceptance/efficiency.

- * LHCb has measured prompt double open-charm / open-charm + J/ ψ production in pPb@8.16TeV.
 - Combined pairs from the same event and corrected from acceptance/efficiency.

agreement with the theory model.

* $\sigma_{\text{eff,pPb/Pbp}}(J/\psi-D^0) < \sigma_{\text{eff,pPb/Pbp}}(D^0-D^0)$: similar to pp case.

* $\sigma_{\rm eff,pPb} > \sigma_{\rm eff,Pbp}$