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QCD shear viscosity

C(τ) =
1
T5 ∫ d ⃗x ⟨TR

12(0, ⃗0 )TR
12(τ, ⃗x )⟩ = ∫

+∞

−∞
dωK(τ, ω)ρ(ω)

 is defined from Euclidean correlation function of the renormalized spatial 
EMT

ρ(ω)

In lattice calculation,  
(1)  is measured by generated configurations  
(2)   is estimated.

C(τ)
ρ(ω)

Shear viscosity is given by the spectral function

η(T ) = π
dρ(ω)

dω
|ω=0

Here, . It is independent of the Monte Carlo data.K(τ, ω) =
cosh (ω( 1

2T − τ))
sinh( ω

2T )

Around T=Tc (hadron/quark-gluon plasma phase transition), a small  has 
been suggested in RHIC experiment.  
But in the theoretical side, it is hard to determine .

η/s

η/s



Three difficulties to obtain the shear viscosity
(i)  How to define the renormalized EMT on the lattice   
(ii)  How to improve a bad signal-to-noise ratio of the correlation function of EMT  
(iii) How to estimate  from the limited number of the data ρ(ω) C(τ)

As for (iii), the sparse modeling method is powerful.
H. Shinaoka, J. Otsuki, M. Ohzeki, K. Yoshimi, Phys. Rev. B 96 (2017) 035147 [arXiv:1702.03054]. 
J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302 [arXiv:1702.03056].

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki, Phys.Rev. D90 (2014) 1, 011501

(i)EMT is generator of general covariance, but the covariance is 
explicitly broken on the lattice. 

(ii) EMT has the same quantum number with QCD vacuum. 

(iii) In finite T QCD, we have a few number of data,   (~ ). 
Serious inverse problem appears.

C(τ) 𝒪(10)

As for (i) and (ii), the gradient flow method looks promising.



Gradient flow method



Renormalized EMT
(i)  How to define the renormalized EMT  

Quantum field theory 
(UV divergence)

perturbation with dim. 
reg. 

+YM gradient flow  
(general covariance OK!)

lattice reg. 
+Wilson flow 
(with a->0 limit)

At finite flow time, UV finite!

Luescher and Weisz, JHEP 1102, 051(2011)  
Suzuki, PTEP 2013, no8, 083B03 
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Renormalized EMT is given by 

 : flow-time t

x = (τ, ⃗x )



Gradient flow as a smearing
(ii) How to improve a bad signal-to-noise ratio of the correlation function of EMT

As for (ii), gradient flow is a continuous stout smearing (=block spin tranf.),  
so that it reduces the statistical errors. 
The link op. around  are smeared.|x | ≲ 8t

Note that there is a fiducial window of flow-time

2a <
�

8t < N�a/2

 should be longer than lattice spacing 
we want to avoid an over-smeared regime
t

theoretically,

Actually, the data show a plateau.

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki Phys.Rev. D90 (2014) 1, 011501

One point fn. of EMT



Two-point fn. of EMT 
using the gradient flow method

C(τ) =
1
T5 ∫ d ⃗x ⟨TR

12(0, ⃗0 )TR
12(τ, ⃗x )⟩



Improvement of signal-to-noise ratio
In these statistics, 2000-5000 configurations,  are highly fluctuatedC(τ)

Some non-smeared data take negative value because of the large fluctuation. 
But smeared  correctly take positive value with small statistical errors.C(t, τ)



Flow-time dependence of  C(t, τ)

the data  is over-smeared, since the smeared regime of  
overlaps  in  measurement. 
We would like to eliminate them from analysis to estimate .

τ ≲ 8t T12(τ, ⃗x )

T12(0, ⃗0 ) ⟨TR
12(0, ⃗0 )TR

12(τ, ⃗x )⟩
ρ(ω)

T12(τ, ⃗x )T12(0, ⃗x )

|x | ≲ 8t

Image on the lattice
Lattice size: , parameter: 643 × 16 β = 6/g2

0 = 6.93

(1) Errors get smaller in whole -regime  
(2) Slope is changed in shorter -regime. 

τ

τ

over-smeared



Sparse modeling method



Gradient flow makes (iii) harder
(i)  How to define the renormalized EMT   
(ii)  How to improve a bad signal-to-noise ratio of the correlation function of EMT  
(iii) How to estimate  from the limited number of the data ρ(ω) C(τ)

As explained, the flowed  in short range are deformed by over-smearing. 
If we eliminate the over-smeared data, then the situation gets worse.

C(τ)

As for (i) (ii), the gradient flow method looks promising.
On the other hand, the gradient flow method makes (iii) harder.

C(τ) = ∫
+ωcut

−ωcut

dωK(τ, ω)ρ(ω)integral equation

a set of linear eqs.

Essential difficulty (iii) comes from the smallness of the # of data points . C(τ)

C(τ1)
C(τ2)

⋯
C(τNτ

)

=

K11 K12 ⋯ K1Nω

K21 K22 ⋯ K2Nω
⋯ ⋯ ⋯ ⋯

KNτ1 KNτ2 ⋯ KNτNω

ρ1
ρ2
⋯
⋯
⋯
⋯
ρNω

 If , then several possible solutions are allowed.Nτ < Nω



Solve the inverse problem
We need a powerful tool to find  from very limited data of ρ(ω) C(τ)

Until now, several estimation methods,  from , have been proposed.  
- fitting the data using some functional form of   
     e.g., Breit-Wigner ansatz 
- find a likely function based on Bayesian statistics  
     e.g., maximum entropy method

ρ(ω) C(τ)

ρ(ω)
ρ(ω)

ω
=

F
1 + b2(ω − ω0)2

+
F

1 + b2(ω + ω0)2

Sparse-modeling (SpM) method  
(1) perform the SVD of kernel matrix 
    It is independent of Monte Carlo data 
(2) transform vectors  and  into the IR (SVD) basis using unitary matrices, 

    the rank of  becomes the same with ( ) 
(3) add  regularization term to the optimization problem to be consistent with 
a reduction of modes  

⃗C ⃗ρ

⃗ρ ′ ⃗C ′ = Nτ

L1

Kij = UikSklV†
lj

 :  diagonal matrix 
 :  unitary matrix 
 :  unitary matrix

S Nτ × Nω

U Nτ × Nτ

V Nω × Nω
{



 and  in the IR basisC(τ) ρ(ω)
Original optimization problem .  Here K is not diagonal. 

The errors of  and  are not linearly related each other. 

But in the IR basis, . Here, S is diagonal. 

Then a linear relationship  for each -th component exists.

F( ⃗ρ ) ≡
1
2

∥ ⃗C − K ⃗ρ ∥2
2

C(t, τ) ρ(ω)

F( ⃗ρ ′ ) ≡
1
2

∥ ⃗C ′ − S ⃗ρ ′ ∥2
2

[ ⃗C ′ ]l = sl[ ⃗ρ ′ ]l l

The statistical error indicates an expected relationship: 
ΔC′ l ∼ slΔρ′ l
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    (input)  C′ l = [Ut ⃗C ]l    (output)   ρ′ l = [Vt ⃗ρ ]l



SpM  

cost function: F( ⃗ρ ′ ) ≡
1
2

∥ ⃗C ′ − S ⃗ρ ′ ∥2
2 + λ∥ ⃗ρ ′ ∥1

 term : L1 ∥ ⃗ρ ′ ∥1 ≡ ∑
l

|ρ′ l |

Find minimum of the sum 

 and   

by tuning  (Lagrange multiplier)

1
2

∥ ⃗C ′ − S ⃗ρ ′ ∥2
2 = const . ∥ ⃗ρ ′ ∥1 = const .

λ

We introduce  regularization into the optimization problem to obtain a stable 
solution.

L1

L1 term favors the solution with a small number of components 
The tendency will give a consistent solution with a cutoff sl

The point ( ) gives the minimum.ρ′ 2 = 0



Role of  termL1
Test in a statistical model J. Otsuki et al, Phys. Rev. E 95 (2017) 061302

spectral function becomes featureless 

the under-fitting, where the L1 regularization 
term is too strong and the number of components  
ρ⃗ʹ is too reduced. 

artificial spikes appear 

the over-fitting, where the L1 term is too 
weak and the vector ρ⃗ʹ has redundancy. 



Standard cost function

F̃( ⃗ρ ′ , ⃗z′ , ⃗z ) =
1
2λ

∥ ⃗C ′ − S ⃗ρ ′ ∥2
2 − ν(⟨V ⃗ρ ′ ⟩ − 1) + ∥ ⃗z′ ∥1 + lim

γ→∞ ∑
j

Θ(−zj)

The standard cost function in our code on arXiv 
https://arxiv.org/src/2004.02426v2/anc 

The ADMM algorithm: 
 are auxiliary vectors, and minimize the cost fn. to be   

The algorithm for the optimization problem where some auxiliary vectors are introduced to satisfy 
the conditions. 

⃗z, ⃗z′ ⃗z′ = ⃗ρ ′ , ⃗z = V ⃗x ′ 

S. Boyd et al., Foundations and Trends R in Machine Learning 3, 1 (2011).
See also Appendix A in our paper

L1 regularization
non-negativity ρ(ω) ≥ 0sum rule ∑

j

ρj = 1

In actual analysis, we drop the sum rule (take )  
since we eliminate some data .

ν = 0

C(τ)

https://arxiv.org/src/2004.02426v2/anc


Results of test calculation
J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302 [arXiv:1702.03056].

 The result by SpM looks very stable around .  
(shear viscosity: )

ω ≈ 0

η ∝ dρ(ω)/dω |ω=0

  is given  by hand (it has 3 Gaussian peaks)ρ(ω)exact

Test(1): Estimate  from ρ(ω)SpM G(τ)exact

Test(2): Make  =  and estimate  G(τ)input G(τ)exact + η ρ(ω)SpM

 is constructed by G(τ)exact ρ(ω)exactPreparations:

SpM can be applied for non-smeared  without the statistical error.C(τ)



Simulation results for 
quenched QCD



simulation setup
Lattice action: Wilson plaquette gauge action 
Lattice size:  
parameter:  

# of configurations: 2,000

643 × 16

β = 6/g2
0 = 6.93

Temperature,  

the thermal entropy @ :  in continuum limit

T = 1.65Tc

T = 1.65Tc s/T3 = 4.98(24)

cf.) Nakamura-Sakai(2005): 800,000 conf. 
      Borsanyi et al.(2018): 6 million conf.

Asakawa, Hatsuda, E.I., Kitazawa, Suzuki, PRD90 (2014) 1, 011501

ALPHA collaboration NPB535 (1998)389, 
G.Boyd et al., NPB469(1996)419 



Results of spectral function
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sum of d.o.f.  gets smaller in large flow-time. 

The gradient flow can be interpreted as a renormalization group flow. 
   Renormalization group decreases the d.o.f. of the system. 
   The higher frequency modes are gradually suppressed by the gradient flow. 
The results support this intuitive property of the gradient flow. 
The statistical error in long flow time is small as expected.

𝒩 = ∫
aωcut

−aωcut

ρ̃(t, aω)d(aω)

small flow-time

large flow-time



Comparison with input and output C(τ)

The output  almost reproduce the input data. 
The SpM analysis works well.

C(τ)

 is constructed by the obtained Coutput(t, τ/a) ρ̃(ω)



Current status on shear viscosity
We have not taken  limit and then  limit yet, 
Therefore, it may not be fair to compare our data with the other works….
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AdS/CFT in large N

η/s

A poor statistics of our data (only 2,000 conf.) can give a result of the viscosity by 
combination of the gradient flow and SpM methods.



Toward precise determination of viscosity
(i)  How to define the renormalized EMT   
(ii)  How to improve a bad signal-to-noise ratio of the correlation function of EMT  
(iii) How to estimate  from the limited number of the data ρ(ω) C(τ)

Both theoretically and technically, these methods look promising. 
It means that these methods reduce the noise and give a stable results.

C(τ) =
1
T5 ∫ d ⃗x ⟨TR

12(0, ⃗0 )TR
12(τ, ⃗x )⟩ = ∫

+∞

−∞
dωK(τ, ω)ρ(ω)

 is measured using the gradient flow for (i) and (ii) 
 is estimated using the sparse modeling method for (iii)

C(τ)

ρ(ω)

The sparse modeling is a general framework to estimate  from .

I hope that it will be a powerful tool for various subjects in lattice QCD calculations.

ρ(ω) C(τ)


