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QCD shear viscosity

Around T=Tc (hadron/quark-gluon plasma phase transition), a small /s has

been suggested in RHIC experiment.
But in the theoretical side, it is hard to determine #/s.

Shear viscosity is given by the spectral function

dp(w)
T)=nr
n(T) o | =0
p(w) 1s defined from Euclidean correlation function of the renormalized spatial
EMT
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C(r) = I de (T75(0,0)T75(z, X)) = J_ wK (7, w)p(w)

In lattice calculation,
(1) C(z) Is measured by generated configurations
(2) p(w) Is estimated.
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Here, K(zr,w) = ———
smh(ﬁ)

. It is independent of the Monte Carlo data.



Three difficulties to obtain the shear viscosity

(i) How to define the renormalized EMT on the lattice
() How to improve a bad signal-to-noise ratio of the correlation function of EMT

(i) How to estimate p(w) from the limited number of the data C(z)

(NEMT is generator of general covariance, but the covariance is
explicitly broken on the lattice.

(i) EMT has the same quantum number with QCD vacuum.

(i) In finite T QCD, we have a few number of data, C(z) (~6(10)).
Serious inverse problem appears.

As for (i) and (ii), the gradient flow method looks promising.

Asakawa, Hatsuda, E.l., Kitazawa, Suzuki, Phys.Rev. D90 (2014) 1, 011501

As for (iil), the sparse modeling method is powerful.

H. Shinaoka, J. Otsuki, M. Ohzeki, K. Yoshimi, Phys. Rev. B 96 (2017) 035147 [arXiv:1702.03054].
J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302 [arXiv:1702.03056].



Gradient flow method



Renormalized EMT

(i) How to define the renormalized EMT

i i i Luescher and Weisz, JHEP 1102, 051(2011)
Renormalized EMT is given by Suzuki, PTEP 2013, no8, 083803
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Gradient flow as a smearing

(i) How to improve a bad signal-to-noise ratio of the correlation function of EMT

As for (i), gradient flow is a continuous stout smearing (=block spin tranf.),
so that it reduces the statistical errors.

The link op. around |x| <4/8¢ are smeared.

Note that there 1s a fiducial window of flow-time

One point fn. of EMT
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t should be longer than lattice spacing
we want to avoid an over-smeared regime

theoretically, 2a < V8t < N,a/2

Actually, the data show a plateau.

Asakawa, Hatsuda, E.l., Kitazawa, Suzuki Phys.Rev. D90 (2014) 1, 011501



Two-point tn. of EMT
using the gradient flow method

1 —
C(z) = r JdY(TfZ(O, 0)T(z, X))



Improvement of signal-to-noise ratio

In these statistics, 2000-5000 configurations, C(r) are highly fluctuated
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Some non-smeared data take negative value because of the large fluctuation.
But smeared C(¢,7) correctly take positive value with small statistical errors.



Flow-time dependence of C(t, 1)

Lattice size: 64° x 16, parameter: g = 6/g5 = 6.93
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(1) Errors get smaller in whole r-regime
(2) Slope is changed in shorter z-regime.

* the data r <4/81 is over-smeared, since the smeared regime of T,,(z, X)

overlaps T;,(0,0) in (sz(O,W)sz(f, X)) measurement.
* We would like to eliminate them from analysis to estimate p(w).



Sparse modeling method



Gradient flow makes (i) harder

(i) How to define the renormalized EMT
() How to improve a bad signal-to-noise ratio of the correlation function of EMT

(i) How to estimate p(w) from the limited number of the data C(z)

As for (i) (i), the gradient flow method looks promising.

On the other hand, the gradient flow method makes (iii) harder.

Essential difficulty (iii) comes from the smallness of the # of data points C(z).

+0,,

iIntegral equation C(r) = [ dwK(t, w)p(w)
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a set of linear egs. C(z,) Ky Ky - Ky || p,
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If N. < N,, then several possible solutions are allowed.

As explained, the flowed C(r) in short range are deformed by over-smearing.

If we eliminate the over-smeared data, then the situation gets worse.



Solve the inverse problem

We need a powerful tool to find p(w) from very limited data of C(7)

[Until now, several estimation methods, p() from C(s), have been proposed. |

i - fitting the data using some functional form of p(a))
g p(co) F
e.g., Breit-Wigner ansatz o 1+bAo—w 1+b2(a)+a)0)2

find a likely function based on Bayesian statistics

S : N.x N, diagonal matrix

Sparse-modeling (SpM) method | K UkSle U N N unitary matrix
(1) perform the SVD of kernel matrix ViN XN unitary matrix
It is iIndependent of Monte Carlo data C

(2) transform vectors C and p Into the IR (SVD) basis using unitary matrices,

the rank of p” becomes the same with C'(=N)

T

(3) add L, regularization term to the optimization problem to be consistent with

a reduction of modes



C(7) and p(w) In the IR basis

.. . 1 — . :
Original optimization problem F(p’) = 5|| C —K7'||5. Here K is not diagonal.

The errors of C(t,7) and p(w) are not linearly related each other.

: . I — . .
But in the IR basis,F(p") = 5|| C'—Sp"||5 Here, S is diagonal.

Then a linear relationship [C'], = 5[], for each I-th component exists.
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The statistical error indicates an expected relationship:
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SpM

We introduce L, regularization into the optimization problem to obtain a stable

solution. (- | b )
cost function: F(p”’) = 5|| C'=Sp'll5+ APl

L term: |27, = ) o]
[

\ v,

Find minimum of the sum _,
I 271y = const.

| 12
EHC — Sp’|l5 = const. and || 27|, = const. /

by tuning A (Lagrange multiplier) \

The point (p; = 0) gives the minimum.

L1 term favors the solution with a small number of components

The tendency will give a consistent solution with a cutoff s,



Role of L, term

Test In a statistical model J. Otsuki et al, Phys. Rev. E 95 (2017) 061302
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spectral function becomes featureless artificial spikes appear
the under-fitting, where the L] regularization the over-fitting, where the L1 term is too
term 1s too strong and the number of components weak and the vector p_has redundancy.

B is too reduced.



Standard cost function

The standard cost function in our code on arXiv

https://arxiv.org/src/2004.02426v2/anc

ry—r = = 1 7 —/112 —> = .
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|

L1 regularization

sum rule L Pi = I non-negativity p(w) > 0

In actual analysis, we drop the sum rule (take v = 0)
since we eliminate some data C(z).

The ADMM algorithm:

Z,Z' are auxiliary vectors, and minimize the cost fn.tobe 7/ =7%", 7=V%x"

The algorithm for the optimization problem where some auxiliary vectors are introduced to satisfy

the conditions. . . . .
S. Boyd et al., Foundations and Trends R in Machine Learning 3, 1 (2011).

See also Appendix A in our paper


https://arxiv.org/src/2004.02426v2/anc

Results of test calculation

J. Otsuki, M. Ohzeki, H. Shinaoka, K. Yoshimi, Phys. Rev. E 95 (2017) 061302 [arXiv:1702.03056].
SpM can be applied for non-smeared C(z) without the statistical error.
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Preparations:

G(2)**" Is constructed by p(w)™*

Test(1): Estimate p(w)°*™ from G (7))

Test(2): Make and estimate p(w)""
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The result by SpM looks very stable around o ~ 0.

(shear viscosity: n x dp(w)/dw]|,_,)




Simulation results for
quenched QCD



simulation setup

* |_attice action: Wilson plaguette gauge action
* | attice size: 643 x 16

* parameter: = 6/g5 = 6.93

* # of configurations: 2,000

cf.) Nakamura-Sakai(2005): 800,000 conf.
Borsanyi et al.(2018): 6 million conf.

* lemperature, T = 1.65T.

ALPHA collaboration NPB535 (1998)389,
G.Boyd et al.,, NPB469(1990)419

* the thermal entropy @ T = 1.65T.: s/T° = 4.98(24) in continuum limit
Asakawa, Hatsuda, E.l., Kitazawa, Suzuki, PRD9O0O (2014) 1, 011501



Results of spectral function

p(t, an)
| BT =i e Era || R R B .
Fv=ossMall flow-timetuvi=ioo Central value analysis ﬂ

—— Errors calculated by bootstrap
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sum of d.o.f. # = [ h p(t,aw)d(aw) gets smaller in large flow-time.

The gradient flow can be interpreted as a renormalization group flow.
Renormalization group decreases the d.o.f. of the system.

The higher frequency modes are gradually suppressed by the gradient flow.
ne results support this intuitive property of the gradient flow.

ne statistical error in long flow time is small as expected.




Comparison with input and output C(z)

C,uput, /a) 1S constructed by the obtained j(w)
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The output C(z) almost reproduce the input data.

The SpM analysis works well.



Current status on shear viscosity

We have not taken a —» 0 Iimit and then ¢ — 0 limit yet,
Therefore, it may not be fair to compare our data with the other works---.
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A poor statistics of our data (only 2,000 conf.) can give a result of the viscosity by
combination of the gradient flow and SpM methods.



Toward precise determination of viscosity

() How to define the renormalized EMT
() How to improve a bad signal-to-noise ratio of the correlation function of EMT

(i) How to estimate p(w) from the limited number of the data C(7)

co) = az RO R @ 7)) = | dok
(T)_E X< 12( ’ ) 12(79 X)> — w (Taa))p(a))

J J—00

C(r) iIs measured using the gradient flow for (i) and (ii)

p(w) I1s estimated using the sparse modeling method for (i)

Both theoretically and technically, these methods look promising.
It means that these methods reduce the noise and give a stable results.

The sparse modeling is a general framework to estimate p(w) from C(7).
| hope that it will be a powerful tool for various subjects in lattice QCD calculations.



