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Compression of imaginary-time data using intermediate representation of analytical
continuation
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New model-independent compact representations of imaginary-time data are presented in terms
of the intermediate representation (IR) of analytical continuation. This is motivated by a recent
numerical finding by the authors [J. Otsuki et al. (2017)]. We demonstrate the e�ciency of the
present method through continuous-time quantum Monte Carlo calculations of an Anderson impu-
rity model. We find that the IR yields a significantly compact form of various types of correlation
functions. The present framework will provide general ways to boost the power of cutting-edge
diagrammatic/quantum Monte Carlo treatments of many-body systems.

PACS numbers: 02.70.Ss

Many-body perturbation theories based on Matsub-
ara Green’s function are powerful tools to study corre-
lated systems. Elaborate diagrammatic methods have
been widely used for investigating static and dynamic
responses of the systems [1–3]. Modern quantum Monte
Carlo (QMC) methods even provide access to numeri-
cally exact ground-state and dynamical properties of lat-
tice models and impurity models [4–16]. In these nu-
merical calculations, however, one frequently faces two
problems: (1) storage size and postprocessing cost of
imaginary-time objects and (2) analytical continuation
to the real-frequency axis.

The first issue becomes problematic in solving low-
energy lattice models. For instance, one needs to treat
two-particle quantities for computing lattice susceptibil-
ities. Two-particle quantities also play a central role in
some diagrammatic extensions of dynamical mean-field
theory (DMFT) [17] for describing non-local spatial cor-
relations [18, 19]. A recent technical advance is the com-
pact representation of the imaginary-time dependence in
terms of Legendre polynomials [20]. E↵orts have been
also made to describe the high-frequency asymptotic be-
havior of two-particle objects [21, 22]. However, the ap-
plication of these elaborate methods to realistic models
is still too computationally expensive. A similar prob-
lem appears in quantum chemistry calculations based on
a single-particle-level perturbative approach [23, 24]. In
this case, one needs to treat a much wider energy range
than the low-energy models. Thus, there is a high de-
mand for a more compact representation as a key ingre-
dient in cutting-edge simulations of many-body systems.

The second problem is ill-conditioned analytical con-
tinuation from imaginary-time data to real-frequency
axis. One example is estimating the spectral function
from imaginary-time Green’s function. One can formu-
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FIG. 1. (Color online) Analytical continuation between real-
frequency data ⇢(!) and Matsubara-frequency data G(i!n)
through the kernel K. The intermediate representation is
defined in terms of a SVD of K.

late the problem as the linear equation

G = �K⇢, (1)

where G and ⇢ are vectors representing imaginary-time
and real-frequency data and the matrixK a kernel. Since
K is usually ill-conditioned, the singular values of K de-
cay very fast. As a result, most of independent compo-
nents in ⇢ give almost no contribution to G. Thus, if
one simply minimizes |G+K⇢|2 with respect to ⇢, any
errors in G are enormously amplified in ⇢. Many meth-
ods have been developed for computing an approximate
solution in a stable fashion such as the maximum entropy
method [25].

The authors have recently proposed to transform
Eq. (1) into the intermediate representation (IR)
defined in between real frequencies and imaginary
time (Fig. 1)[26]. It was found that the one can ex-
press the fundamental quantities G and ⇢ with only few

Sparse modeling+

Stable analytic continuation Efficient diagrammatic calculation
Review: J. Otsuki, M. Ohzeki,  HS, K. Yoshimi, JPSJ 89, 
012001 (2020)
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Otsuki, M. Wallerberger, T. Wang, K. Yoshimi, 
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Analytic continuation is sensitive to 
noise

Antiferromagnet

Continuous-time QMC data

8-fold degenerate 
impurity Anderson model

Vidberg, Serene, 1977

8 lines should 
coincide

Padé approximation

Many sophisticated methods: machine-learning method,  stochastic methods, etc.
Question What information remains in imaginary-time data? 

Can we extract the relevant information?
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Sparse modeling in data science

M. Elad and M. Aharon, IEEE Transactions on Image Processing 15, 3736  (2006)
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Sparse modeling in data science

Noise

M. Elad and M. Aharon, IEEE Transactions on Image Processing 15, 3736  (2006)
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Sparse modeling in data science

Denoised

M. Elad and M. Aharon, IEEE Transactions on Image Processing 15, 3736  (2006)
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MRI

Antiferromagnet

大関真之
https://japan.zdnet.com/article/35074052/4/

Full measurement 
time

1/4 measurement time

Reconstructed by 
sparse modeling

Step1 Transform data to a basis where signal is 
compactly represented 
Step2 Extract information from noisy data to 
reconstruct signal



TACKLING THE REAL-TIME CHALLENGE IN STRONGLY CORRELATED SYSTEMS: 
SPECTRAL PROPERTIES FROM EUCLIDEAN PATH INTEGRALS

Review1: JPSJ 89, 012001 (2020) 
Review2: arXiv:2106.12685

Step 1: basis transformation
Lehmann representation

Fermion (+), 
boson (-)

Discretization

Singular value 
decomposition (SVD)

2

Here, the vector G is defined by Gi ⌘ G(⌧i) with ⌧i
being M -division of [0 : �]. In the fermionic cases, the
quantities on the right-hand side are defined by Kij ⌘
K+(⌧i,!j) and ⇢j ⌘ ⇢(!j)�! [21], which are obtained
after replacing the integral over ! with N -point finite
di↵erences in the range [�!max : !max]. One may use a
non-linear mesh for better e�ciency, but the formulation
below does not change. When the input G has noise, a
solution actually does not need to exactly fulfill Eq. (3).
For this reason, it is better to consider the square error

�2(⇢) =
1

2
kG�K⇢k22, (4)

and find ⇢ such that �2(⇢) < ⌘ with ⌘ being a small
constant depending on the magnitude of noise. Here, k·k2
stands for the L2 norm defined by k⇢k2 ⌘ (

P
j ⇢

2
j )

1/2.
The solution must hold two conditions: non-negativity

⇢(!) � 0 and the sum rule
R1
�1 ⇢(!)d! = 1. They are

expressed in terms of the vector ⇢ as

⇢j � 0,
X

j

⇢j = 1. (5)

The above constraints are applied to diagonal compo-
nents of Green functions. For o↵-diagonal components,
the non-negativity is not applied, while the sum rule al-
ways exists [22]. Our algorithm presented below can han-
dle both cases with and without these constraints (the
algorithm becomes even simpler if some constraints are
dropped). This is a technical advantage of our algorithm
over MaxEnt in which the entropy term relies on the pos-
itiveness ⇢(!) > 0 [23].

E�cient basis set.— We discuss what basis best de-
scribes spectral functions ⇢(!). Here, the “best” means
ability of reproducing the correct ⇢(!) (i) with a small
number of bases (ii) for wide models independent of de-
tails of interactions/parameters. For this purpose, we fo-
cus on the fact that the matrix K is ill-conditioned. To
see this, we make use of the singular value decomposition
(SVD) of the matrix K:

K = USV t, (6)

where S is an M ⇥N diagonal matrix, and U and V are
orthogonal matrices of size M ⇥M and N ⇥N , respec-
tively. What should be noted here is that the singular
values sl (l = 0, 1, 2, · · · ) decay exponentially or even
faster (see Fig. 3(a1) for the explicit result). This makes
a numerical optimization of �2(⇢) unstable. A standard
recipe for avoiding this di�culty is to drop such vectors
that correspond to small singular values below a certain
threshold [24][25]. Although this trick enables us to de-
rive a definite solution, the result depends totally on the
number of sl’s retained. We make another use of SVD of
the ill-conditioned matrix in modern perspective of SpM.

L1 regularization.— Using the SVD, we reconsider the
expression of the square error in Eq. (4). Introducing

FIG. 1. Explanation for the mechanism that a sparse solu-
tion is chosen by the L1 regularization. For details, see the
paragraph below Eq. (10).

new vectors

⇢0 = V t⇢, G0 = U tG, (7)

Eq. (4) is rewritten as

�2(⇢0) =
1

2
kG0 � S⇢0k22 =

1

2

X

l

(G0
l � sl⇢

0
l)
2. (8)

It is now clear that the contribution of ⇢0l to �2(⇢0) is
weighted by the corresponding singular value sl. Since sl
decays exponentially as noted above, most elements of ⇢0

give only negligible contribution to �2(⇢0). Such elements
are essentially indefinite as far as �2(⇢0) is concerned,
making a naive analytical continuation quite sensitive to
noise.
The above consideration brings us to the idea that, by

imposing sparseness on ⇢0, we can find a stable solution
which is robust against noise. To this end, we consider
the following cost function including an L1 regularization
term:

F (⇢0) ⌘ 1

2
kG0 � S⇢0k22 + �k⇢0k1, (9)

where � is a positive constant and k · k1 denotes the L1

norm defined by

k⇢0k1 ⌘
X

l

|⇢0l|. (10)

This form of optimization problems is referred to as
LASSO (Least Absolute Shrinkage and Selection Opera-
tors) [26].
The role of the L1 term may be explained as follows.

We consider a two-dimensional vector ⇢0 = (⇢01, ⇢
0
2) as

the simplest example (Fig. 1). We suppose that the min-
imum of �2(⇢0), namely, the solution of the least-square
method, is located at ⇢0 = ⇢0

LS. Equal-value contours of
�2(⇢0) are elliptic centered at ⇢0

LS, and all points on this
line, e.g. open and closed circles in Fig. 1, are equally fea-
sible when a certain extent of errors are allowed. When
the L1 term is additionally taken into account, the open

G0 ⌘ U tG, ⇢0 ⌘ V t⇢
Information in G is carried 
by a few coefficients.
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How much information is in G(τ)?

?

Only few components are intact. 
Can we reconstruct the spectrum 
from these data?

 0  10  20  30
l

with noise
exact
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Step 2: extract signal

Positivenes Sum rule

• Convex optimization problem →　fast & stable 
• No default model like Maximum entropy method 
• λ can be optimized automatically.
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Minimize

with

Data fit Sparseness of solution

L1 regularization

The least absolute shrinkage and selection operator (LASSO)
R. Tibshirani, Stat. Soc., Ser. B58, 267 (1996)
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Regularizing ill-conditioned inverse 
problem

y = Ax

Ill-conditioned inverse problem for M < N

M

A = (2,1)

x = (x1
x2)

=y A x

N

M N

y = (2)
Example:

2x1 + x2 = 2

Select out a unique solution out of degenerate solutions →  Regularization
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L1 vs L2 regularization
Let us adopt the solution minimizing L1/L2 norm of the solution…

L2 regularization L1 regularization

Known as Ridge/Tikhonov regularization

∥x∥1 = |x1 | + |x2 | = const∥x∥2 = x2
1 + x2

2 = const
x1 = 1, x2 = 0

In general, L1 regularization suppresses 
irrelevant parameters to exactly zero.

x1 ≠ 0, x2 ≠ 0
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Step 2: extract signal

2

Here, the vector G is defined by Gi ⌘ G(⌧i) with ⌧i
being M -division of [0 : �]. In the fermionic cases, the
quantities on the right-hand side are defined by Kij ⌘
K+(⌧i,!j) and ⇢j ⌘ ⇢(!j)�! [21], which are obtained
after replacing the integral over ! with N -point finite
di↵erences in the range [�!max : !max]. One may use a
non-linear mesh for better e�ciency, but the formulation
below does not change. When the input G has noise, a
solution actually does not need to exactly fulfill Eq. (3).
For this reason, it is better to consider the square error

�2(⇢) =
1

2
kG�K⇢k22, (4)

and find ⇢ such that �2(⇢) < ⌘ with ⌘ being a small
constant depending on the magnitude of noise. Here, k·k2
stands for the L2 norm defined by k⇢k2 ⌘ (

P
j ⇢

2
j )

1/2.
The solution must hold two conditions: non-negativity

⇢(!) � 0 and the sum rule
R1
�1 ⇢(!)d! = 1. They are

expressed in terms of the vector ⇢ as

⇢j � 0,
X

j

⇢j = 1. (5)

The above constraints are applied to diagonal compo-
nents of Green functions. For o↵-diagonal components,
the non-negativity is not applied, while the sum rule al-
ways exists [22]. Our algorithm presented below can han-
dle both cases with and without these constraints (the
algorithm becomes even simpler if some constraints are
dropped). This is a technical advantage of our algorithm
over MaxEnt in which the entropy term relies on the pos-
itiveness ⇢(!) > 0 [23].

E�cient basis set.— We discuss what basis best de-
scribes spectral functions ⇢(!). Here, the “best” means
ability of reproducing the correct ⇢(!) (i) with a small
number of bases (ii) for wide models independent of de-
tails of interactions/parameters. For this purpose, we fo-
cus on the fact that the matrix K is ill-conditioned. To
see this, we make use of the singular value decomposition
(SVD) of the matrix K:

K = USV t, (6)

where S is an M ⇥N diagonal matrix, and U and V are
orthogonal matrices of size M ⇥M and N ⇥N , respec-
tively. What should be noted here is that the singular
values sl (l = 0, 1, 2, · · · ) decay exponentially or even
faster (see Fig. 3(a1) for the explicit result). This makes
a numerical optimization of �2(⇢) unstable. A standard
recipe for avoiding this di�culty is to drop such vectors
that correspond to small singular values below a certain
threshold [24][25]. Although this trick enables us to de-
rive a definite solution, the result depends totally on the
number of sl’s retained. We make another use of SVD of
the ill-conditioned matrix in modern perspective of SpM.

L1 regularization.— Using the SVD, we reconsider the
expression of the square error in Eq. (4). Introducing

FIG. 1. Explanation for the mechanism that a sparse solu-
tion is chosen by the L1 regularization. For details, see the
paragraph below Eq. (10).

new vectors

⇢0 = V t⇢, G0 = U tG, (7)

Eq. (4) is rewritten as

�2(⇢0) =
1

2
kG0 � S⇢0k22 =

1

2

X

l

(G0
l � sl⇢

0
l)
2. (8)

It is now clear that the contribution of ⇢0l to �2(⇢0) is
weighted by the corresponding singular value sl. Since sl
decays exponentially as noted above, most elements of ⇢0

give only negligible contribution to �2(⇢0). Such elements
are essentially indefinite as far as �2(⇢0) is concerned,
making a naive analytical continuation quite sensitive to
noise.
The above consideration brings us to the idea that, by

imposing sparseness on ⇢0, we can find a stable solution
which is robust against noise. To this end, we consider
the following cost function including an L1 regularization
term:

F (⇢0) ⌘ 1

2
kG0 � S⇢0k22 + �k⇢0k1, (9)

where � is a positive constant and k · k1 denotes the L1

norm defined by

k⇢0k1 ⌘
X

l

|⇢0l|. (10)

This form of optimization problems is referred to as
LASSO (Least Absolute Shrinkage and Selection Opera-
tors) [26].
The role of the L1 term may be explained as follows.

We consider a two-dimensional vector ⇢0 = (⇢01, ⇢
0
2) as

the simplest example (Fig. 1). We suppose that the min-
imum of �2(⇢0), namely, the solution of the least-square
method, is located at ⇢0 = ⇢0

LS. Equal-value contours of
�2(⇢0) are elliptic centered at ⇢0

LS, and all points on this
line, e.g. open and closed circles in Fig. 1, are equally fea-
sible when a certain extent of errors are allowed. When
the L1 term is additionally taken into account, the open

Minimize

Relevant parameters are selected out automatically.
Possible extensions: 
• Covariance 
• Matrix-valued correlation functions
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New model-independent compact representations of imaginary-time data are presented in terms
of the intermediate representation (IR) of analytical continuation. This is motivated by a recent
numerical finding by the authors [J. Otsuki et al. (2017)]. We demonstrate the e�ciency of the
present method through continuous-time quantum Monte Carlo calculations of an Anderson impu-
rity model. We find that the IR yields a significantly compact form of various types of correlation
functions. The present framework will provide general ways to boost the power of cutting-edge
diagrammatic/quantum Monte Carlo treatments of many-body systems.

PACS numbers: 02.70.Ss

Many-body perturbation theories based on Matsub-
ara Green’s function are powerful tools to study corre-
lated systems. Elaborate diagrammatic methods have
been widely used for investigating static and dynamic
responses of the systems [1–3]. Modern quantum Monte
Carlo (QMC) methods even provide access to numeri-
cally exact ground-state and dynamical properties of lat-
tice models and impurity models [4–16]. In these nu-
merical calculations, however, one frequently faces two
problems: (1) storage size and postprocessing cost of
imaginary-time objects and (2) analytical continuation
to the real-frequency axis.

The first issue becomes problematic in solving low-
energy lattice models. For instance, one needs to treat
two-particle quantities for computing lattice susceptibil-
ities. Two-particle quantities also play a central role in
some diagrammatic extensions of dynamical mean-field
theory (DMFT) [17] for describing non-local spatial cor-
relations [18, 19]. A recent technical advance is the com-
pact representation of the imaginary-time dependence in
terms of Legendre polynomials [20]. E↵orts have been
also made to describe the high-frequency asymptotic be-
havior of two-particle objects [21, 22]. However, the ap-
plication of these elaborate methods to realistic models
is still too computationally expensive. A similar prob-
lem appears in quantum chemistry calculations based on
a single-particle-level perturbative approach [23, 24]. In
this case, one needs to treat a much wider energy range
than the low-energy models. Thus, there is a high de-
mand for a more compact representation as a key ingre-
dient in cutting-edge simulations of many-body systems.

The second problem is ill-conditioned analytical con-
tinuation from imaginary-time data to real-frequency
axis. One example is estimating the spectral function
from imaginary-time Green’s function. One can formu-

Re

Im

K
Intermediate 
representation (IR)

FIG. 1. (Color online) Analytical continuation between real-
frequency data ⇢(!) and Matsubara-frequency data G(i!n)
through the kernel K. The intermediate representation is
defined in terms of a SVD of K.

late the problem as the linear equation

G = �K⇢, (1)

where G and ⇢ are vectors representing imaginary-time
and real-frequency data and the matrixK a kernel. Since
K is usually ill-conditioned, the singular values of K de-
cay very fast. As a result, most of independent compo-
nents in ⇢ give almost no contribution to G. Thus, if
one simply minimizes |G+K⇢|2 with respect to ⇢, any
errors in G are enormously amplified in ⇢. Many meth-
ods have been developed for computing an approximate
solution in a stable fashion such as the maximum entropy
method [25].

The authors have recently proposed to transform
Eq. (1) into the intermediate representation (IR)
defined in between real frequencies and imaginary
time (Fig. 1)[26]. It was found that the one can ex-
press the fundamental quantities G and ⇢ with only few

Sparse modeling+

Stable analytic continuation Efficient diagrammatic calculation
Review: J. Otsuki, M. Ohzeki,  HS, K. Yoshimi, JPSJ 89, 
012001 (2020)

Review: HS, N. Chikano, E. Gull, J. Li, T. Nomoto, J. 
Otsuki, M. Wallerberger, T. Wang, K. Yoshimi, 
arXiv:2106.12685
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α = F (fermion), B (boson)
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G(τ) = ∫
ωmax

−ωmax

dω Kα(τ, ω)ρ(ω)
Singular value expansion

IR basis functions

Kα(τ, ω) =
∞

∑
l=0

Sα
l Uα

l (τ)Vα
l (ω)

Singular values

Λ≡βωmax
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Many-body perturbation theories based on Matsub-
ara Green’s function are powerful tools to study corre-
lated systems. Elaborate diagrammatic methods have
been widely used for investigating static and dynamic
responses of the systems [1–3]. Modern quantum Monte
Carlo (QMC) methods even provide access to numeri-
cally exact ground-state and dynamical properties of lat-
tice models and impurity models [4–16]. In these nu-
merical calculations, however, one frequently faces two
problems: (1) storage size and postprocessing cost of
imaginary-time objects and (2) analytical continuation
to the real-frequency axis.

The first issue becomes problematic in solving low-
energy lattice models. For instance, one needs to treat
two-particle quantities for computing lattice susceptibil-
ities. Two-particle quantities also play a central role in
some diagrammatic extensions of dynamical mean-field
theory (DMFT) [17] for describing non-local spatial cor-
relations [18, 19]. A recent technical advance is the com-
pact representation of the imaginary-time dependence in
terms of Legendre polynomials [20]. E↵orts have been
also made to describe the high-frequency asymptotic be-
havior of two-particle objects [21, 22]. However, the ap-
plication of these elaborate methods to realistic models
is still too computationally expensive. A similar prob-
lem appears in quantum chemistry calculations based on
a single-particle-level perturbative approach [23, 24]. In
this case, one needs to treat a much wider energy range
than the low-energy models. Thus, there is a high de-
mand for a more compact representation as a key ingre-
dient in cutting-edge simulations of many-body systems.

The second problem is ill-conditioned analytical con-
tinuation from imaginary-time data to real-frequency
axis. One example is estimating the spectral function
from imaginary-time Green’s function. One can formu-
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frequency data ⇢(!) and Matsubara-frequency data G(i!n)
through the kernel K. The intermediate representation is
defined in terms of a SVD of K.

late the problem as the linear equation

G = �K⇢, (1)

where G and ⇢ are vectors representing imaginary-time
and real-frequency data and the matrixK a kernel. Since
K is usually ill-conditioned, the singular values of K de-
cay very fast. As a result, most of independent compo-
nents in ⇢ give almost no contribution to G. Thus, if
one simply minimizes |G+K⇢|2 with respect to ⇢, any
errors in G are enormously amplified in ⇢. Many meth-
ods have been developed for computing an approximate
solution in a stable fashion such as the maximum entropy
method [25].

The authors have recently proposed to transform
Eq. (1) into the intermediate representation (IR)
defined in between real frequencies and imaginary
time (Fig. 1)[26]. It was found that the one can ex-
press the fundamental quantities G and ⇢ with only few
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IR basis functions
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FIG. 2. Upper panel shows the singular values computed for
the fermionic and bosonic kernels. The data for ! = 10 000 are
multiplied by a constant for better readability. The lower panel shows
the basis functions in the imaginary-time domain [ul(x)] and in the
real-frequency domain [vl(y)] computed for the fermionic kernel. The
solid gray lines show Legendre polynomials.

we consider the particle-hole symmetric single-site Anderson
impurity model defined by the Hamiltonian

H = −µ
∑

σ

c†σ cσ + Un↑n↓ +
∑

kσ

(c†σakσ + a
†
kσ cσ )

+
∑

α

∑

kσ

εka
†
kσakσ (13)

with µ = U/2 and σ is spin index. cσ and c†σ are annihilation
and creation operators at the impurity site, while akσ and a

†
kσ

are those of the bath sites (k is the internal degree of freedom
of the bath). The distribution of εk is a semicircular density of
states of width 4. We solve the model and compute correlation
functions by means of the hybridization expansion continuous-
time Monte Carlo technique [4].
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FIG. 3. Single-particle Green’s function computed for the model
(13) with U = 4 and β = 100. Upper panel: Expansion coefficients
Gl . We show only data for even l since Gl for odd l are zero due to the
particle-hole symmetry. Lower panel: G(τ ) reconstructed from a few
small-l coefficients. All the data are averaged along the spin index.

B. Single-particle Green’s function

First, we discuss the impurity single-particle Green’s
function defined as Gσ (τ ) = −〈cσ (τ )c†σ (0)〉 (0 ! τ ! β). We
expand Gσ (τ ) in terms of an orthogonal basis set {fl(x)}
(Pl or ul) as

Gσ (τ ) =
√

2
β

∑

l"0

Gσ
l

fl[x(τ )]√
Nl

, (14)

where x(τ ) = 2τ/β − 1 and
∫ 1
−1 fl(x)fl′ (x)dx = Nlδll′ . We

directly measure the coefficients Gσ
l in QMC simulations as

described in Ref. [20].
In Fig. 3, we show the coefficients Gl obtained for U =

4 and β = 100. The large-l asymptomatic behavior of the
Legendre representation is known to be exponential [20], while
the Matsubara-frequency representation has a 1/iωn tail. As
expected, the IR yields coefficients decaying even faster than
the Legendre basis. One can expect that the most compact
representation is obtained when !/β matches the actual width
of the spectrum. This suggests a practical way to choose an
appropriate value of !. Actually, the optimal value obtained
is ! ( 1000 for β = 100, being consistent with the largest
dimensionless energy scale of the system, i.e., βU,βW = 400.
As ! exceeds the optimal value, the efficiency gets worse only
slowly. In particular, we observed the nonmonotonic behavior
of Gl around l = 5 for ! > 500, which signals that ! exceeds
an optimal value.

In Fig. 3, we also show G(τ ) reconstructed from the
coefficients for l ! 6. The data obtained by the IR (! = 500)
shows a perfect agreement with the numerically exact data,
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Open source software: irbasis
https://github.com/SpM-lab/irbasis

• Python and C++ 
• Step-by-step tutorial
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N. Chikano, K. Yoshimi, J. Otsuki, H. Shinaoka (2018) + M. Wallerberger (2019)
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Applications

Diagrammatic calculations for materials

Extension to two-particle quantities

Review: HS et al., arXiv:2106.12685

Bethe-Salpeter equation with exponential convergence 
M. Wallerberger*, HS*, A. Kauch, PRR 3, 033168 (2021)

J. Li, M. Wallerberger, C.-N. Yeh, N. Chikano, E. Gull, HS, PRB 101, 035144 (2020)

GW calculations of silicon crystals

SciPost Phys. 8, 012 (2020)

Figure 10: Selected modes of the dynamical susceptibilityy for the two-band Hubbard
model described in the text, in the presence of the excitonic condensate, � = 60.

7 Summary

Based on the IR basis, we have introduced a procedure for generating sparse grids in the
Matsubara frequency domain and a fitting algorithm based on a tensor network representation.
These two enable an efficient transformation of numerical data from Matsubara to IR domain.
The tensor network representation provides a model-independent way to compress the IR
expansion coefficients (IR tensor) by decoupling the frequency and spins/orbital dependence.
Low-temperature calculations for multi-orbital systems benefit from this compression.

We have demonstrated the efficiency and accuracy of the present method in DMFT cal-
culations: static susceptibility calculations for single-band Hubbard model and dynamic sus-
ceptibility calculations for two-band Hubbard model with low symmetry. We have shown that
accurate susceptibilities can be obtained already with low-rank approximation of the IR tensor.

The sparse sampling and the tensor network decomposition are independent procedures
that are controlled separately. The size of sparse sampling grid, and thus its computational
cost, depends only on temperature, the energy window and the desired accuracy. The “com-
pression rate” and the accuracy of tensor network representation are controlled by the rank
of decomposition D. In the present work, we have demonstrated that the local 2P Green’s
function can be compressed from 700 MB to 330 kB for the two-band Hubbard model. The
concept of tensor network representation is flexible and further compression may be possible
for different tensor network topologies. The choice of ideal tensor network topology requires
an extensive experience with the performance of the method for various models and is beyond
the scope of the present work.

Potential applications of the present scheme include DFT+DMFT calculations for realistic
multi-orbital models and diagrammatic extensions of DMFT. It is highly desirable to develop
efficient methods for solving equations at the 2P level such as Bethe-Salpeter and parquet
equations directly in the tensor network format with the sparse sampling. This requires ef-
ficient evaluation of contractions of 2P quantities, e.g., a vertex function and a generalized
susceptibility. Potentially useful techniques for manipulating matrix product states and tensor
networks have already been developed in other fields of condensed matter theory [26,27,40].
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Compression of imaginary-time data using intermediate representation of analytical
continuation
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New model-independent compact representations of imaginary-time data are presented in terms
of the intermediate representation (IR) of analytical continuation. This is motivated by a recent
numerical finding by the authors [J. Otsuki et al. (2017)]. We demonstrate the e�ciency of the
present method through continuous-time quantum Monte Carlo calculations of an Anderson impu-
rity model. We find that the IR yields a significantly compact form of various types of correlation
functions. The present framework will provide general ways to boost the power of cutting-edge
diagrammatic/quantum Monte Carlo treatments of many-body systems.

PACS numbers: 02.70.Ss

Many-body perturbation theories based on Matsub-
ara Green’s function are powerful tools to study corre-
lated systems. Elaborate diagrammatic methods have
been widely used for investigating static and dynamic
responses of the systems [1–3]. Modern quantum Monte
Carlo (QMC) methods even provide access to numeri-
cally exact ground-state and dynamical properties of lat-
tice models and impurity models [4–16]. In these nu-
merical calculations, however, one frequently faces two
problems: (1) storage size and postprocessing cost of
imaginary-time objects and (2) analytical continuation
to the real-frequency axis.

The first issue becomes problematic in solving low-
energy lattice models. For instance, one needs to treat
two-particle quantities for computing lattice susceptibil-
ities. Two-particle quantities also play a central role in
some diagrammatic extensions of dynamical mean-field
theory (DMFT) [17] for describing non-local spatial cor-
relations [18, 19]. A recent technical advance is the com-
pact representation of the imaginary-time dependence in
terms of Legendre polynomials [20]. E↵orts have been
also made to describe the high-frequency asymptotic be-
havior of two-particle objects [21, 22]. However, the ap-
plication of these elaborate methods to realistic models
is still too computationally expensive. A similar prob-
lem appears in quantum chemistry calculations based on
a single-particle-level perturbative approach [23, 24]. In
this case, one needs to treat a much wider energy range
than the low-energy models. Thus, there is a high de-
mand for a more compact representation as a key ingre-
dient in cutting-edge simulations of many-body systems.

The second problem is ill-conditioned analytical con-
tinuation from imaginary-time data to real-frequency
axis. One example is estimating the spectral function
from imaginary-time Green’s function. One can formu-

Re

Im

K
Intermediate 
representation (IR)

FIG. 1. (Color online) Analytical continuation between real-
frequency data ⇢(!) and Matsubara-frequency data G(i!n)
through the kernel K. The intermediate representation is
defined in terms of a SVD of K.

late the problem as the linear equation

G = �K⇢, (1)

where G and ⇢ are vectors representing imaginary-time
and real-frequency data and the matrixK a kernel. Since
K is usually ill-conditioned, the singular values of K de-
cay very fast. As a result, most of independent compo-
nents in ⇢ give almost no contribution to G. Thus, if
one simply minimizes |G+K⇢|2 with respect to ⇢, any
errors in G are enormously amplified in ⇢. Many meth-
ods have been developed for computing an approximate
solution in a stable fashion such as the maximum entropy
method [25].

The authors have recently proposed to transform
Eq. (1) into the intermediate representation (IR)
defined in between real frequencies and imaginary
time (Fig. 1)[26]. It was found that the one can ex-
press the fundamental quantities G and ⇢ with only few
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Stable analytic continuation Efficient diagrammatic calculation
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IR basis and sparse modeling may be combined with other techniques such as ML! 
I am open to interdisciplinary research!  h.shinaoka@gmail.com
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