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1. Analytic continuation. Introduction.

2. Why difficult and why “ill-posed”?

3. The superior goal is to obtain solutions dictated SOLELY by 

the data, not corrupted by “useful constraints 

(regularization…)” 

4. Why stochastic approach is the best? No apparent 

regularization for any of multiple solutions.

5. New philosophy. All solutions are the best! Playing linear 

combinations, each is the best solution too. 
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(Center for Emergent Matter Science)

Analytic continuation. New philosophy: 

well-posed questions for ill-posed problem



Connection of many-body Monte Carlo

approaches to real world.

REAL QUANTITY
Exact method



MANY

problems



In theoretical 

physics
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And 

in real 

life



Image deblurring

K(m,ω) is a 2D x 2D noise 

distributon function 

m and ω are

2D vectors



Medical tomography:

MRI

K(m,ω) is a 2D x 2D

distribution function 

m and ω are

2D vectors
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What is the problem? 

Ill defined problem



1. No exact solution due to noise (even processor 

floating point operations)
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BEFORE: one search for a SINGLE approximate solution 

which is considered as being best by some artificially 

chosen criterion. 
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BEFORE: one search for a SINGLE approximate solution 

which is considered as being best by some artificially 

chosen criterion. 

Ill defined problem

What 

to 

do?

Now: Each solution dictated by input data is “the best”. 

Let play with linear combination of “the best” solutions. 
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Ill defined

Physics 

department:

Max Ent.

Pade approx...

Sparse …
Engineering 

department:

Tikhonov 

Regularization

Statistical 

department:

ridge regression

Next player: 

stochastic 

Methods

Of linear

combinations

Another players:

CC, Pade, ….



There is no 

exact solution!!!

Let us minimize!

Best solution?



Ill

defined

Exact 

solution?!

Saw-tooth 

instability



+ Испортили

Tikhonov

Regularization

1941

Moscow



REGULARIZATION

• In every scheme one minimizes not just

a |M| measure dictated by data but add       

some extra conditions which somehow 

corrupt the measure |M|  

23

May schemes: cut of small eigenstates, filters, ban

for large derivatives, - all methods CORRUPT RESULT 



+ F(A) 

Corrupted!!!!!

Tikhonov

Regilarization

1941

+F(A)



All 

regularization

methods 

are bad
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All 

regularization

methods 

are bad

26Let’s avoid regularization!



Diagrammatic Monte Carlo
• Exact summation of Feynman diagrams

for Green and correlation functions. 

27

AM, Tupitsyn, Nagaosa, and Prokof'ev, 

Scientific Reports 11, 9699 (2021)

AM, Pollet, Prokofev, Kumar, Maslov, and Nagaosa,

Phys. Rev. Lett., 123, 076601 (2019)

AM, Nagaosa, and Prokof’ev,

Phys. Rev. Lett. 113, 166402 (2014).

Simons Collaboration

Exact: but on imaginary time or Matsubara frequencies



All 

regularization

methods 

are bad

28Let’s avoid regularization!
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.

Chose configuration (no predefined parametrization)
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.

Chose configuration

Naive measure minimization 
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 We get Saw tooth instability (STI)

Indeed, regularization is to fight the STI.
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 We get Saw tooth instability (STI)

 Chose another initial configuration 

and again get STI

Indeed, regularization is to fight the STI.
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STI decreases when average solutions even 

when every solution is with STI!
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STI decreases when average solutions even 

when every solution is with STI!
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No regularization in each solution – it is dictated 

by data only!!



Errorbars estimate
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Expectation and 

standard deviation 

in every selected bin  
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Self-averaging of the saw-tooth noise.

AM, N.V. Prokof'ev, A. Sakamoto and B.V. Svistunov: Diagrammatic quantum Monte

Carlo study of the Frohlich polaron, Phys. Rev. B, 62, 6317-6336, (2000)

AM: Stochastic optimization method for analytic continuation, contribution to "Correlated 

Electrons: From Models to Materials", ed. by E. Pavarini, W. Koch, F. Anders and 

M. Jarrell, pp. 14.1-14.28, (Forschungszentrum Julich GmbH, Julich, 2012).



Many solutions.

All are the best!!!

Ri(x)

39

We are not going to chose the best. All are the best.

O. Goulko, AM, L. Pollet, N. Prokof'ev, and B. Svistunov: Numerical analytic 

continuation: answers to well-posed questions, Phys. Rev. B 95, 014102 (2017).



Many solutions.

All are the best!!!

•F(x) = Σi (1/N) Ri(x)

40

Average – the simplest way



Many solutions.

All are the best!!!

•F(x) = Σi C(i) Ri(x)

41

Let’s play? Σi C(i)=1
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Average

C(j)=1/N

A
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Let change

C(j)

to pass

through the 

definite point

A
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A
Let change

C(j)

to pass

through the 

definite point

Good?

Yes!
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A
Let change

C(j)

to pass

through the 

definite point

Pull 

a bit 

more?
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A

Pull 

a bit 

more?

GOOD?

NOT 

GOOD!

Extra 

structures
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Blind tests: how much we can say about second peak

O. Goulko et al, Phys. Rev. B 95, 014102 

(2017)
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Noise level δ=10-3
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Noise level δ=10-5
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Noise level δ=10-5

First peak -> δ function



Conclusions. Numeric  analytic continuation : 
well posed answers to the ill posed problems. 

Objectives:

1.Stochastic optimization method (SOM) can quickly find a 

lot of [J>1000] solutions {Aj(z)} each having good objective 

function (δn – error bars) 

. . O1 = χ2 = N-1∑n=1
N [ (gn - G[n,Aj])/ δn ]2 < χc

2 =1
Usually, final solution is obtained as average

<A(z)> = J-1∑j=1
J Aj  

which removes saw tooth instability. However, one can 

search solution as

Afin(z) = J-1∑j=1
J cj Aj where ∑j=1

J cj = 1   

where Cj<0 are possible untill χ
2 < χc

2
.

1. One can introduce one more part of objective function

O5 = ∑k T(k)[Afin(zk) – AT(zk)]
2 

which characterizes deviation from target function AT(z).

2. It is legal to satisfy O5 until χ2 < χc
2 .   

3. This approach can verify which features of result are 

robust and which can be an artefact at given error bars δn . 

(see example where high energy peak can be made very 

narrow (green) or very wide (blue) in comparison with 

actual peak (red) without compromising the error bars). 

Hence, peak width is undefined.  

Results

gn – given MC data, 

K[n,z] – known kernel

G[n,A] = ∫ dz K[n,z] A(z)

A(z) – spectral function to find

High 

energy 

peak

O. Goulko et al, arXiv: 1609.01260



Stochastic approach

• 1. No corruption of data by regularization.
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Stochastic Analytic Continuation

and Diagrammatic Monte Carlo
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Thank you for attention

• 1. No corruption of data by regularization.

• 2. Can list all possible solutions dictated 

solely by data.

3. Not search for one “quasi-best” but can 

list all possible “best” solutions every of 

which is the best.

• 4. Why not invented before! No possibility to get 

thousands of independent solutions without 

modern computer facilities.  
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