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1. Analytic continuation. Introduction.
2. Why difficult and why “ill-posed”?

3. The superior goal is to obtain
, hot corrupted by “useful constraints
(regularization...)”

4. Why approach is the best?
for any of multiple solutions.

5. New philosophy. I Playing
. each is the best solution too.



Connection of many-body Monte Carlo
approaches to real world.

Exact method




MANY
problems

G(m) = /_Oo dw K(m,w) A(w)




In theoretical
physics




And
INn real
liIfe



Image deblurring

m and w are
2D vectors

K(m,w) is a 2D x 2D noise
distributon function



Medical tomography:
MRI

dw K(m,w) A(w)

m and w are
2D vectors

K(m,w) is a 2D x 2D
distribution function

‘‘‘‘‘‘‘

Figure 7-10 Computer tomography
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dw K(m,w) A(w)

1. No exact solution due to noise (even processor
floating point operations)



dw K(m,w) A(w)

1. No exact solution due to noise (even processor
floating point operations)



dw K(m,w) A(w)

BEFORE: one search for a SINGLE approximate solution
which is considered as being best by some artificially
chosen criterion.



dw K(m,w) A(w)

BEFORE: one search for a SINGLE approximate solution
which is considered as being best by some artificially
chosen criterion.

Now: Each solution dictated by input data is “the best”.
Let play with linear combination of “the best” solutions.



Another players: Next player:
CC, Pade, ....

dw K(m,w) A(w)
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Another players: Next player:
CC, Pade, ....

dw K(m,w) A(w)

\ Physics
department:

Gt

Statistical
department:

Tikhonov
Regularization



Another players: Next player:
CC, Pade, .... f

Methods
Of linear
combinations

dw IC(m,w) A(w)

/ \

Engineering
department:

\ Physics
department:

Statistical
department:



There is no
dw K(m,w) A(w) exact solution!!!

Gim) =Y K(m,wn)Alws), m=1,...,M

n=1

Let us minimize!

Best solution?

2

M

N
| KA -G |IP= > > K(m,we)Alwn) — G(m)

m—1 =1
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Trua and TLS scluticns
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REGULARIZATION

* In every scheme one minimizes not just

a |[M| measure dictated by data but add
some extra conditions which somehow
corrupt the measure |M|

May schemes: cut of small eigenstates, filters, ban
for large derivatives, - all methods

23
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All
regularization
methods
are bad

—
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All
regularization
methods
are bad

—
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Diagrammatic Monte Carlo

« Exact summation of Feynman diagrams
for Green and correlation functions.

Exact: but on imaginary time or Matsubara frequencies
27



All
regularization
methods
are bad

—
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»Chose COnﬁguration (no predefined parametrization)

(60

Fig. 2: An example of configuration with K = 4. Panel (b) shows how the intersection of
rectangles in panel (a) is treated.




»Chose configuration
> Nalve measure minimization

(60

Fig. 2: An example of configuration with K = 4. Panel (b) shows how the intersection of
rectangles in panel (a) is treated.




» We get Saw tooth instability (STI)

Indeed, regularization is to fight the STI.

31



» We get Saw tooth instability (STI)
» Chose another initial configuration
and again get STI

Indeed, regularization is to fight the STI.




STl decreases when average solutions even
when every solution is with STI!

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢) M = 500
particular solutions.




STl decreases when average solutions even
when every solution is with STI!

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, i.nd (¢) M = 500
particular solutions.




STl decreases when average solutions even
when every solution is with STI!

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢ M = 500
particular solutions.




No regularization in each solution — it is dictated
by data only!!

Fig. 7. Comparison of the actual spectral function (dashed line) with the results
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢ M = 500
particular solutions.




Expectation and

Errorbars estimate standard deviation
In every selected bin

Gnuplot e m [

"final ,dat"

"spe.dat"
"errobars_GNU,dat" —a—

0
3,79337, 0,835032




Self-averaging of the saw-tooth noise.

Fig. 7. Comparison of the actual spectral function (dashed line) with the resnlts
of spectral analysis after averaging over (a) M =4, (b) M = 28, and (¢) M = 500
particular solutions.

AM, N.V. Prokof'ev, A. Sakamoto and B.V. Svistunov: Diagrammatic quantum Monte
Carlo study of the Frohlich polaron, Phys. Rev. B, 62, 6317-6336, (2000)

AM: Stochastic optimization method for analytic continuation, contribution to "Correlatec
Electrons: From Models to Materials”, ed. by E. Pavarini, W. Koch, F. Anders andg
M. Jarrell, pp. 14.1-14.28, (Forschungszentrum Julich GmbH, Julich, 2012).




Many solutions.
All are the best!!!

R;(X)

We are not going to chose the best. All are the best.

O. Goulko, AM, L. Pollet, N. Prokof'ev, and B. Svistunov: Numerical analytic
continuation: answers to well-posed questions, Phys. Rev. B 95, 014102 (2017).
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Many solutions.
All are the best!!!

‘F(X) = zi (1/N) R;(x)



Many solutions.
All are the best!!!

F)=2;  R(x
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Good?

Yesl!
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Pull
a bit
more?

45



GOOD?

NOT
GOOD!

Pull
a bit
more?
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O. Goulko et al, Phys. Rev. B 95, 014102
(2017)




Noise level =103

Possible to
stretch

2 i T
2.0 2.5 3.0 Z

FIG. 3. (Color online.) Results for test 1, featuring two peaks
of finite width with noise level 1072. Shown is the compari-




Noise level =107

Possible to
stretch

26 2 g : _ 3.0 1 &

FIG. 6. (Color online.) Results for test 2, featuring two
peaks of finite width with noise level 10°. Shown is the com-




Noise level 8=10"
First peak -> 0 function

Impossible to stretch
beyond this point

29 3.0 33 £

FIG. 8. (Color online.) Results for test 3, characterized by a

o-function at low frequency and a peak of finite width at high

: ; e ; :
frequency with noise level 10™°. Shown is the comparison be-
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Numeric_analytic continuation :
well posed answers to the ill posed problems.

g, — given MC data, Objectives:

K[n,z] — known kernel 1.Stochastic optimization method (SOM) can quickly find a
lot of [J>1000] solutions {A;(z)} each having good objective
function (8, — error bars)
O =X = N3 N[ (9,- G[n,A]) &, ]°<x.*=1
Usually, final solution is obtained as average

<A(2)> =130 A
which removes saw tooth instability. However, one can
search solution as

Adin(2) =31y ¢ Ay where 3¢, =1

2 2
where Cj<0 are possible untill ) GO

G[n,A] = I dz K[n,z] A(z)
A(z) — spectral function to find

Possible to ; :
stretch Results

1 Bne can introduce one more part of objective function
Os5 =2 T(K)I[Afn(Z) — Ar(Z))]?

which characterizes deviation from target function A(z).

2. Itis legal to satisfy Oz until X2 <x.?.

3. This approach can verify which features of result are
robust and which can be an artefact at given error bars g, .
(see example where high energy peak can be made very
narrow (green) or very wide (blue) in comparison with
actual peak (red) without compromising the error bars).
Hence, peak width is undefined.

O. Goulko et al, arXiv: 1609.01260




Stochastic approach
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Stochastic approach

« 1. No corruption of data by regularization.
. 2.
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Stochastic approach

« 1. No corruption of data by regularization.
« 2. Can list all possible solutions dictated
solely by data.
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Stochastic approach

« 1. No corruption of data by regularization.
« 2. Can list all possible solutions dictated
solely by data.

3. Not search for one “quasi-best” but can
list all possible “best” solutions every of
which is the best.

¢ 4,
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Stochastic Analytic Continuation

and Diagrammatic Monte Carlo

Phys. Rev. Lett., vol. 86, 4624 (2001) :

Pseudo-Jahn-Teller polaron

Phys. Rev. Lett., vol. 87, 186402 (2001) : Exciton in semiconductors

Phys. Revw. Lett., vol. 91, 236401 (2003) : Optical conductivity of Frohlich polaron
Phys. Rev. Lett., vol. 93, 036402 (2004) : ARPES in high T, cuprates

Phys. Rev. Lett., vol. 96, 13640S (2006) : Franck-Condon principle

Phys. Rev. Lett., vol. 99, 14640S (2007) : Nonlocal el-ph in high T, cuprates
Phys. Rev. Lett., vol. 99,226402 (2007) : ARPES in high T, cuprates

Phys. Rev. Lett., vol. 100, 166401 (2008)
Phys. Rev. Lett., vol. 101, 116403 (2008)
Phys. Rev. Lett., vol. 104, 056602 (2010)
Phys. Rev. Lett., vol. 105, 26660S (2010)
Phys. Rev. Lett., vol. 107, 076403 (2011)
Phys. Rev. Lett., vol. 109, 176402 (2012)
Phys. Rev. Lett., vol. 113, 166402 (2014)
Phys. Rev. Lett., vol. 114, 086601 (2015)

Phys. Rev. Lett., vol. 123, 076601 (2019)

: Optical conductivity in high T, cuprates
: Exciton-polaron in semiconductors

: ESR in organic transistors

: SSH polaron in organic compounds

: Optical conductivity of Holstein polaron
: Time dependent Holstein-Hubbard

: Finite density polaron gas

: Conductivity in organic materials

Phys. Rev. Lett., vol. 114, 146401 (201S) : Mobility of Holstein polaron

: Mobility of Frohlich polaron
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Stochastic approach

« 1. No corruption of data by regularization.
« 2. Can list all possible solutions dictated
solely by data.
3. Not search for one “quasi-best” but can
list all possible “best” solutions every of
which is the best.

« 4. Why not invented before! No possibility to get
thousands of independent solutions without
modern computer facilities.
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Thank you for attention

« 1. No corruption of data by regularization.
« 2. Can list all possible solutions dictated
solely by data.
3. Not search for one “quasi-best” but can
list all possible “best” solutions every of
which is the best.

« 4. Why not invented before! No possibility to get
thousands of independent solutions without
modern computer facilities.
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