

Junji Naganoma, Rice University on behalf of the XENON collaboration

Exploring the role of electroweak currents in Atomic Nuclei @ ECT*, Trento, Italy 04/27/2018

Direct Dark Matter Detection with XENON

Aim of the XENON experiment

Direct detection of Weakly Interacting Massive Particle (WIMP)

Why LXe as target?

- High mass number A=131
 - \rightarrow high spin-independent rate (prop. to A²)
- 50% odd-isotopes
 - \rightarrow spin-dependent interaction
- High stopping power of LXe (ρ =3 g/cm³) \rightarrow self-shielding
- scintillation and ionization signals
 → fiducialization, ER/NR discrimination

Dual phase Xe TPC detection technique

- Different charge signal at given light signal
- Only ~25 % of NR energy goes to detectable signal

XENON1T experiment

The XENON dark matter program

XENON10 2005-2007 Total Xe mass: 25 kg

Achieved upper limit 8.8 x 10⁻⁴⁴ cm² @ 100 GeV (2007)

XENON100 2008-2016 Total Xe mass: 161 kg

Achieved upper limit 1.1 x 10⁻⁴⁵ cm² @ 50 GeV (2016)

XENON1T 2012-2018 Total Xe mass: 3200 kg

Achieved upper limit (34-day) 7.7 x 10⁻⁴⁷ cm² @ 35 GeV (2017)

XENONnT 2019-2023 Total Xe mass: 7500 kg

Projected sensitivity 1.6 x 10⁻⁴⁸ cm² @ 50 GeV (2023) 6/26

Direct Dark Matter Search Experiment

Stolen from Wich Haxton

Direct Dark Matter Search Experiment

Dark Matter Proiect

8/26

2017 WIMP Search Result

- □ "Standard" WIMP and Interaction Assumptions
- □ Nuclear/Electronic Recoil to Detector Response
- □ XENON1T Results and Prospect
- □ Other Selected Searches from XENON Experiment
 - Effective Field Theory
 - Xe-124 Double Electron Capture

"Standard" Dark Matter Halo Assumptions

Differential rate

- ρ_0 : DM density near Sun, 0.3 GeV/cm³
- f(v) : Maxwell distribution with $v_0 = 220$ km/s
- v_{esc} : DM escape velocity from Milky Way, 544 km/s

No uncertainty included in our results

"Standard" WIMP-Nucleus Interaction

Simplest assumption: spin-independent (SI) interaction

$$\frac{d\sigma_{SI}}{dq^2} = \frac{4}{\pi} \mu_{\chi N}^2 \left[Zf_p + (A - Z)f_n \right]^2 F^2(q)$$

"Standard" assumptions

- $f_p = f_n$
- *F(q)*: Helm form factor
 - Loss of coherence at higher q
 - Uniformly distributed nucleons

$$F(qr_n) = 3 \, \frac{j_1(qr_n)}{qr_n} \times e^{-(qs)^2/2}$$

nuclear radius:
$$r_n^2 = c^2 + \frac{7}{3}\pi^2 a^2 - 5s^2 \frac{a}{c} \simeq 0.52 \text{ fm}}{c} \simeq 1.23A^{1/3} - 0.60 \text{ fm}}$$
skin thickness: $s = 1.0 \text{ fm}$

Parameter choice from Lewin, Smith (1996)

Electronic Recoil to Excitation/Ionization

- Smaller number of e⁻/Xe⁺ in a box (r_{th}~5 μm) at lower energy
- Smaller dE/dx at higher energy

ER: Light and Charge Yields with E-Field

NEST: Empirical parameterization on E-field dependence

$$E = (n_{ph} + n_e)W = (\frac{S1}{g_1} + \frac{S2}{g_2})W$$

W = 13.7 eV

14/26

Nuclear Recoil Quenching

X E N O N Dark Matter Project

1, Nuclear quenching: $q = \frac{Electronic energy (detectable)}{Initial recoil energy}$ **2, Bi-excitonic quenching:**

One visible element from two excitons due to dense energy deposition $Xe^* + Xe^* \rightarrow Xe + Xe^+ + e^-$

NR: 10 keV recoil ion/atom range: ~20 nm ER: 10 keV recoil electron range: ~2 μm

: Recoil ion

NR: Light and Charge Yields

Light Signal (S1) Detections

- Scintillation (178 nm) from Xe₂* is transparent in Xe
 - Absorption length ~50 m
 - Can be absorbed by impurities
- Teflon reflectivity ~99 %
- Reflection at GXe/LXe interface
- Can be absorbed by electrodes

Charge Signal (S2) Detection

- 1. Applied field moves electrons up (Xe-ion down)
- 2. Consecutive elastic collisions with Xe atom
- 3. Constant drift speed & diffusion
- 4. Electronegative impurity captures electrons
- 5. Electrons are extracted into GXe through dielectric barrier
- 6. Consecutive inelastic collisions (excitation) in GXe

Energy Spectrum and Resolution

In-situ Electronic/Nuclear Calibration Fittings XEN Dark Matter Project

O N

XENON1T Prospect

Background expectation in the 247-day data

- S1: [3,70] PE ↔ NR: ~[5,40] keV, ER: ~[1.5,10] keV
- ER/NR discrimination: NR [-2σ, median]

Source	1.3 ton	Inner 1 ton
ER	$\textbf{1.8}\pm\textbf{0.2}$	$\textbf{1.4}\pm\textbf{0.2}$
Radiogenic neutron	0.6 ± 0.3	$\textbf{0.4}\pm\textbf{0.2}$
CNNS	0.04 ± 0.01	$\textbf{0.03} \pm \textbf{0.01}$
Accidental coincidence	0.2 ± 0.1	0.1
Surface	6.1 ± 0.3	0.1
Total	$\textbf{8.7} \pm \textbf{0.5}$	$\textbf{2.0} \pm \textbf{0.3}$

Factor ~3 improvement expected

Effective Field Theory (EFT)

Fitzpatrick, et al, JCAP 1302, 004 (2013) Anand, et al, Phys.Rev. C89, 065501 (2014)

Formulation includes

- Spin independent (SI)
- Spin dependent (SD)
- Angular-momentum dependent
- Spin and angular-momentum dependent

Results expressed relative to SM weak scale Complete results at Phys.Rev.D96, 042004 (2017) ON

¹²⁴Xe Double Electron Capture Search

- Two-neutrino double electron capture (2v2EC) observed 1. 130 Ba : T_{1/2} = 2.2 x 10²¹ years 2. 78 Kr : T_{1/2} = 9.2 x 10²¹ years
- 124 Xe (0.1 % NA) can decay into 124 Te through 2v2EC
 - Highest Q-value out of 35 candidates
 - Signature: 64.3 keV (X-ray + Auger electron)
 - Theoretical calculations: $T_{1/2} = 10^{21} 10^{24}$ years

124 Xe 2v2EC Search XENON100 Result

 $T_{1/2} > 6.5 \times 10^{20}$ years @ 90 % C.L.

Phys. Rev. C95, 024605 (2017)

□ Physics description of energy response in LXe is not complete

- Need help from theorists
- Still good parameterization, thanks to *in-situ* calibrations

□ New XENON1T SI search result coming soon, and more on later

□ XENONnT (~6 ton target) will be ready in 2019