Double Gamow-Teller resonances and their relation to neutrinoless $\beta\beta$ decays

Javier Menéndez

Center for Nuclear Study, The University of Tokyo

"Exploring the role of electro-weak currents in Atomic Nuclei" ECT*, Trento, 26th April 2018

NS

Graduate School of Science University of Tokyo

Center for Nuclear Study (CNS)

Nuclear matrix elements for fundamental physics

Neutrinos, dark matter studied in experiments using nuclei

Nuclear matrix elements depend on nuclear structure crucial to anticipate reach and fully exploit experiments

$$egin{aligned} &0
uetaeta\ ext{decay:} \left(T_{1/2}^{0
uetaeta}
ight)^{-1}\!\propto\!\left|M^{0
uetaeta}
ight|^2m_{etaeta}^2 \ m_{etaeta}^2 \ ext{Dark matter:} &rac{ ext{d}\sigma_{\chi\mathcal{N}}}{ ext{d}m{q}^2}\propto \Big|\sum_i m{c}_i\,\zeta_i\,\mathcal{F}_i\Big|^2 \end{aligned}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element \mathcal{F}_i : Nuclear structure factor

Neutrinoless $\beta\beta$ decay

Lepton-number violation, Majorana nature of neutrinos

Second order process only observable in rare cases with β -decay energetically forbidden or hindered by ΔJ

Next generation experiments: inverted hierarchy

The decay lifetime is $T_{1/2}^{0\nu\beta\beta} (0^+ \to 0^+)^{-1} = G_{01} |M^{0\nu\beta\beta}|^2 m_{\beta\beta}^2$ sensitive to absolute neutrino masses, $m_{\beta\beta} = |\sum U_{ek}^2 m_k|$, and hierarchy

Matrix elements needed to make sure KamLAND-Zen, PRL117 082503(2016) next generation ton-scale experiments fully explore "inverted hierarchy"

Calculating nuclear matrix elements

Nuclear matrix elements needed to study fundamental symmetries

$$\langle \mathsf{Final} \, | \mathcal{L}_{\mathrm{leptons-nucleons}} | \, \mathsf{Initial} \,
angle = \langle \, \mathsf{Final} \, | \, \int dx \, j^\mu(x) J_\mu(x) \, | \, \mathsf{Initial} \,
angle$$

- Nuclear structure calculation of the initial and final states: Shell model, QRPA, IBM, Energy-density functional Ab initio many-body methods GFMC, Coupled-cluster, IM-SRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations: factor $\sim 2-3$

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations: factor $\sim 2-3$

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations: factor $\sim 2-3$

$$\left\langle \mathbf{0}_{f}^{+}\right| \sum_{n,m} \tau_{n}^{-} \tau_{m}^{-} \sum_{X} H^{X}(\mathbf{r}) \, \Omega^{X} \left|\mathbf{0}_{i}^{+}\right\rangle$$

 Ω^X = Fermi (1), GT ($\sigma_n \sigma_m$), Tensor H(r) = neutrino potential

Configuration space

Nuclear shell model configuration space only keep essential degrees of freedom

- · High-energy orbits: always empty
- Configuration space: where many-body problem is solved
- Inert core: always filled

$$egin{aligned} H \ket{\Psi} &= E \ket{\Psi}
ightarrow H_{eff} \ket{\Psi}_{eff} = E \ket{\Psi}_{eff} \ \ket{\Psi}_{eff} &= \sum_{lpha} egin{aligned} c_{lpha} \ket{\phi_{lpha}}, & \ket{\phi_{lpha}} &= egin{aligned} a_{i1}^+ a_{i2}^+ ... a_{iA}^+ \ket{0} \end{aligned}$$

Dimension \sim

$$\binom{(p+1)(p+2)_{\nu}}{N}\binom{(p+1)(p+2)_{\pi}}{Z}$$

Shell model configuration space: two shells

For ⁴⁸Ca enlarge configuration space from *pf* to *sdpf* 4 to 7 orbitals, dimension 10⁵ to 10⁹ increases matrix elements but only moderately 30% Iwata et al. PRL116 112502 (2016)

Contributions dominated by pairing 2 particle – 2 hole excitations enhance the $\beta\beta$ matrix element,

Contributions dominated by 1 particle – 1 hole excitations suppress the $\beta\beta$ matrix element

⁷⁶Ge matrix element in two shells

Large configuration space calculations in 2 major oscillator shells Include all relevant correlations: isovector/isoscalar pairing, deformation Many-body approach: generating coordinate method (GCM)

GCM approximates shell model calculation

Degrees of freedom, or generating coordinates, validated against exact shell model in small configuration space

Jiao et al. PRC96 054310 (2017)

⁷⁶Ge nuclear matrix element in 2 major shells
 very similar to shell model nuclear matrix element in 1 major shell

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

Addition of isoscalar pairing reduces matrix element value

$\mathbf{0}\nu\beta\beta$ decay without correlations

Non-realistic spherical (uncorrelated) mother and daughter nuclei:

- Shell model (SM): zero seniority, neutron and proton J = 0 pairs
- Energy density functional (EDF): only spherical contributions

In contrast to full (correlated) calculation SM and EDF NMEs agree!

NME scale set by pairing interaction

JM, Rodríguez, Martínez-Pinedo, Poves PRC90 024311(2014)

NME follows generalized seniority model:

 $M_{GT}^{0\nu\beta\beta} \simeq \alpha_{\pi} \alpha_{\nu} \sqrt{N_{\pi} + 1} \sqrt{\Omega_{\pi} - N_{\pi}} \sqrt{N_{\nu}} \sqrt{\Omega_{\nu} - N_{\nu} + 1}, \text{ Barea, lachello PRC79 044301(2009)}$

Heavy-neutrino exchange nuclear matrix elements

Contrary to light-neutrino-exchange, for heavy-neutrino-exchange decay shell model, IBM, and EDF matrix elements agree reasonably!

Neacsu et al. PRC100 052503 (2015)

Suggests differences in treating longer-range nuclear correlations dominant in light-neutrino exchange

Heavy-neutrino matrix element

Compared to light-neutrino exchange

heavy neutrino exchange dominated by shorter internucleon range, larger momentum transfers

heavy neutrino exchange contribution from J > 0 pairs smaller: pairing most relevant

⇒ Long-range correlations (except pairing) not under control

14 / 28 JM, JPG 45 014003 (2018)

Tests of nuclear structure

Spectroscopy well described: masses, spectra, transitions, knockout...

Vietze et al. PRD91 043520 (2015)

β decays

 β decays (*e*⁻ capture) main decay model along nuclear chart In general well described by nuclear structure theory: shell model...

Martinez-Pinedo et al. PRC53 2602(1996)

 $\langle F|\sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} |I\rangle$, $[\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$ Gamow-Teller transitions: theory needs $\sigma_i \tau$ "quenching"

Two-neutrino $\beta\beta$ decay

Test of $0\nu\beta\beta$ decay: comparison of predicted $2\nu\beta\beta$ decay vs data

Shell model reproduce $2\nu\beta\beta$ data including "quenching" common to β decays in same mass region

Shell model prediction previous to ⁴⁸Ca measurement!

Table 2

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

	$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.047	kb3
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.048	kb3g
48 Ca $\rightarrow ^{48}$ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.116	gcn28:50
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	0.140 ± 0.005	0.60	0.120	jun45
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	0.098 ± 0.004	0.60	0.126	gcn28:50
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	0.098 ± 0.004	0.60	0.124	jun45
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	0.049 ± 0.006	0.57	0.059	gcn50:82
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
136 Xe \rightarrow 136 Ba	0.019 ± 0.002	0.45	0.025	gcn50:82

Caurier, Nowacki, Poves PLB711 62(2012)

$$M^{2\nu\beta\beta} = \sum_{k} \frac{\left\langle \mathbf{0}_{f}^{+} \middle| \sum_{n} \sigma_{n} \tau_{n}^{-} \middle| \mathbf{1}_{k}^{+} \right\rangle \left\langle \mathbf{1}_{k}^{+} \middle| \sum_{m} \sigma_{m} \tau_{m}^{-} \middle| \mathbf{0}_{i}^{+} \right\rangle}{E_{k} - (M_{i} + M_{f})/2}$$

μ -capture, ν -nucleus scattering

Momentum transfers very different in $\beta\beta$ decays: $2\nu\beta\beta$ decay ($q \sim 1$ MeV) and $0\nu\beta\beta$ decay ($q \sim 100$ MeV)

Gamow-Teller strength distributions

Gamow-Teller (GT) distributions well described by theory (quenched)

Double Gamow-Teller strength distribution

Measurement of Double Gamow-Teller (DGT) resonance in double charge-exchange reactions ⁴⁸Ca(pp,nn)⁴⁸Ti proposed in 80's Auerbach, Muto, Vogel... 1980's, 90's

Recent experimental plans in RCNP, RIKEN (⁴⁸Ca), INFN Catania Takaki et al. JPS Conf. Proc. 6 020038 (2015) Capuzzello et al. EPJA 51 145 (2015), Takahisa, Ejiri et al. arXiv:1703.08264

Promising connection to $\beta\beta$ decay, two-particle-exchange process, especially the (tiny) transition to ground state of final state

Two-nucleon transfers related to $0\nu\beta\beta$ decay matrix elements Brown et al. PRL113 262501 (2014)

⁴⁸Ca Double Gamow-Teller distribution

Calculate with shell model ⁴⁸Ca 0⁺_{gs} Double Gamow-Teller distribution

$$B(DGT^{-}; \lambda; i \to f) = \frac{1}{2J_i + 1} \left| \left\langle {^{48}}\mathsf{Ti} \right| \left| \left[\sum_{i} \sigma_i \tau_i^- \times \sum_{j} \sigma_j \tau_j^- \right]^{(\lambda)} \right| \right| {^{48}}\mathsf{Ca}_{gs} \right\rangle \right|^2$$

Shell model calculation with Lanczos strength function method Double GT resonances in one and two shells rather similar result Shimizu, JM, Yako, PRL120 142502 (2018)

Double Gamow-Teller distribution and pairing

Study the sensitivity of Double GT distribution to pairing correlations

Add/remove pairing $H' = H + G^{JT}P^{JT}$ like-particle (T=1) or proton-neutron (T=0)

Position of the DGT giant resonance very sensitive to like-particle pairing

DGT resonance width probes isoscalar pairing

Shimizu, JM, Yako PRL120 142502 (2018)

⁴⁸Ca double GT giant resonance and $0\nu\beta\beta$ decay

Correlation between Double Gamow-Teller resonance in ⁴⁸Ca and $0\nu\beta\beta$ decay nuclear matrix element

Energy of DGT resonance with accuracy to \sim 1MeV, can give insight on value of $0\nu\beta\beta$ decay matrix element

$$E_{\text{av}} = \frac{\sum_{f} E_{f} B(DGT^{-}, i \to f)}{\sum_{f} B(DGT^{-}, i \to f)}$$

Good test of nuclear structure calculation

Shimizu, JM, Yako, PRL120 142502 (2018)

Relatively consistent with *sdpf* calculation (open circle)

⁴⁸Ca double GT resonance width and $0\nu\beta\beta$ decay

Correlation between the width of the double GT giant resonance and the $0\nu\beta\beta$ decay nuclear matrix element

Double GT resonance width probably not very useful to determine $0\nu\beta\beta$ matrix element

Large experimental precision much better than 1 MeV needed

Nuclear matrix element changes sign (not observable)

$$\sigma_{DGT} = \sqrt{\frac{\sum_{f} (E_{f} - E_{av})^{2} \mathcal{B}(\text{DGT}^{-}, i \to f)}{\sum_{f} \mathcal{B}(\text{DGT}^{-}, i \to f)}}$$

DGT to ground state and $0\nu\beta\beta$ decay

DGT transition to ground state of final nucleus: Ca, Ti, Cr isotopic chains $M^{\text{DGT}} = \langle \text{Final}_{\text{gs}} || [\sum_{i} \sigma_{i} \tau_{i}^{-} \times \sum_{i} \sigma_{i} \tau_{i}^{-}]^{0} || \text{Initial}_{\text{gs}} \rangle|^{2}$

Very good linear correlation between DGT and $0\nu\beta\beta$ decay nuclear matrix elements

Linerar correlation holds for \sim 25 transitions studied for simplified wf's (seniority-zero), for different interactions

Shimizu, JM, Yako, PRL120 142502 (2018)

DGT and $0\nu\beta\beta$ decay: heavy nuclei

DGT transition to ground state

 $M^{\mathrm{DGT}} = \sqrt{B(DGT_{-}; 0; 0^{+}_{\mathrm{gs}} \rightarrow 0^{+}_{\mathrm{gs}})}$

very good linear correlation with $0\nu\beta\beta$ decay nuclear matrix elements

Correlation holds across wide range of nuclei, from Ca to Ge and Xe

Common to shell model and energy-density functional theory $0 \leq M^{0\nu\beta\beta} \leq 5$ disagreement to QRPA

Shimizu, JM, Yako, PRL120 142502 (2018)

Short-range character of DGT, $0\nu\beta\beta$ decay

Correlation between DGT and $0\nu\beta\beta$ decay matrix elements explained by transition involving low-energy states combined with dominance of short distances between exchanged/decaying neutrons Bogner et al. PRC86 064304 (2012)

 $0\nu\beta\beta$ decay matrix element limited to shorter range

Short-range part dominant in double GT matrix element due to partial cancellation of mid- and long-range parts

Long-range part dominant in QRPA DGT matrix elements

Shimizu, JM, Yako, PRL120 142502 (2018)

Short-range character of DGT, $0\nu\beta\beta$ decay

Correlation between DGT and $0\nu\beta\beta$ decay matrix elements explained by transition involving low-energy states combined with dominance of short distances between exchanged/decaying neutrons Bogner et al. PRC86 064304 (2012)

 $0
u\beta\beta$ decay matrix element limited to shorter range

Short-range part dominant in double GT matrix element due to partial cancellation of mid- and long-range parts

Long-range part dominant in QRPA DGT matrix elements

Shimizu, JM, Yako, PRL120 142502 (2018)

Summary

Nuclear matrix elements are key

for the design of next-generation tonne-scale $0\nu\beta\beta$ decay experiments and for fully exploiting the experimental results

- Present matrix element calculations disagree Need improved calculations, guidance from other nuclear experiments
- Shell model nuclear matrix elements in two shells for ⁴⁸Ca, ⁷⁶Ge, suggest moderate enhancement (≲ 30%)
- Double Gamow-Teller transitions pursued in RIKEN, INFN LNS, RCNP Osaka can provide very useful insight on value of $0\nu\beta\beta$ decay matrix elements

Collaborators

Graduate School of Science University of Tokyo

Center for Nuclear Study (CNS)

N. Shimizu Y. Tsunoda K. Yako

M. Honma

- Y. Utsuno
- F. A. Coello Pérez
- G. Martínez-Pinedo
- A. Schwenk
- A. Poves
- T. R. Rodríguez
- E.Caurier
- F. Nowacki

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

J. Engel

D. Gazit

a CHAPEL HILI

N. Hinohara

Y. Iwata