

Nuclear ground-state electrostatic properties

Kieran Flanagan

University of Manchester

Established by the European Commission

Overview

- Brief overview of laser spectroscopy
- Hyperfine structure and atomic physics consideratios
- Considerations for electromagnetic moments and connection with electro-weak currents
- Isotope shifts and charge radii as a test for inter-nucleon interactions and many-body methods
- Recent examples in the Ca, Ni and Sn regions
- Concluding remarks

Experimental Overview

Narrow bandwidth laser

Radioactive ion beam

- Nuclear moments (magnetic dipole, electric quadrupole)
- Charge radii
- Spin
- Do not rely on assumptions of a particular nuclear model

P. Campbell, I.D. Moore, M.R. Pearson, Progress in Particle and Nuclear Physics 86 (2016) p127

MANCHESTER

Laser Spectroscopy Requirements

Exotic nuclei at the limits of stability

Expected yields <<1 atom/second Lifetimes <1s Relatively large isobar contamination

Very little known low resolution ok

Technique : Fast due to short half-lives Highly selective due to isobars Low yield requires a high sensitivity Lower resolution is acceptable

Selection of published radioactive measurements (where yields are known) Tempting to define experiments in a future laboratory with todays techniques.

Near Stability Nuclei

Expected yields >10⁸ atom/second Lifetimes >>1s High purity (large fraction of the beam)

Resolution/precision frontier

Technique :

New physics requires high resolution Sensitivity is not critical The method can be slow

Atomic Physics

 Coupling of electrons to nuclear moments yields the hyperfine splitting

 $W_{F,J}^{(1)} \simeq W_{F,J}^{M1} + W_{F,J}^{E2},$

$$W_{F,J}^{M1} = A_{hf} \mathbf{I}.\mathbf{J},$$
$$W_{F,J}^{E2} = B_{hf} \frac{3(\mathbf{I}.\mathbf{J})^2 + \frac{3}{2}(\mathbf{I}.\mathbf{J}) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$

$$A_{hf} = g_I \mu_N \frac{\langle J || T_e^{(1)} || J \rangle}{\sqrt{J(J+1)(2J+1)}},$$

$$B_{hf} = 2Q \left[\frac{J(2J-1)}{(J+1)(2J+1)(2J+3)} \right]^{1/2} \langle J || T_e^{(2)} || J \rangle$$

 $\begin{array}{ccc} \text{Electron orbits} & \text{Fine structure } & \text{Hyperfine structure} \\ & nI & nI_J & |I\text{-}J| \leq F \leq I\text{+}J \end{array}$

- The electronic operators are typically constant across an isotope chain.
- If a precise moment has been measured with another technique extraction is trivial.
- Reference measurement is often the limit on the absolute precision.
- More precise atomic physics calculations required in many regions of the nuclear chart

Electromagnetic moments

-> Magnetic moments are highly sensitive: changes up to MEC ~40% for ⁹C

- Ground-state spins are essential for our understanding of nuclear structure
- Charge radii provides a test to inter-nucleon interactions and many-body methods [Hagen et al, Nature Physics 12, 186 (2016)] [Garcia Ruiz et al, Nature Physics 12, 594 (2016)]
- Electromagnetic moments are sensitive probes to the role of electro-weak currents [Pastore et al. PRC 87, 035503 (2013)] [Carlson et al. Rev. Mod. Phys. 87, 1067 (2015)] [Ekstrom et al. PRL 113, 262504 (2014)]

Electromagnetic moments

Impulse approximation (IA):

Magnetic moment

Effective moments:

H. Miyazawa, Prog. Theor. Phys. (1951) 6 (5): 801-814.

 $Q_{\text{s.p.}} = -e_j \frac{2j-1}{2i+2} \langle r_j^2 \rangle$

Magnetic moments near closed shells

Magnetic moment of ²⁰⁷TI R Neugart Phys. Rev. Lett. 55 (15), 1559 (1984)

$$\boldsymbol{\mu}_{\text{eff}} = \frac{(g_s + \delta g_s)\mathbf{s}}{(g_l + \delta g_l)\mathbf{i} + (g_l + \delta g_l)\mathbf{i} + g_p[\mathbf{s} \times \mathbf{Y}^2]^{(1)}}$$

- For simple systems +/- nucleon outside of a closed shell the effective magnetic moment can be written as above.
- Spin and orbital g-factors are free nucleon values and δg_s and δg_l arise from both core polarization and meson exchange (final term arises due to dipole-dipole interaction)
- Special case of isotopes with a nucleon in a s_{1/2} state outside a double magic nucleus (³He, ³H and ²⁰⁷Tl) where tensor and orbital term vanish.
- Makes ²³O especially interesting!

General comments

- There are inconsistent uses of effective g-factors and effective charges. For each region are different, calcium (gfree), others in the region g_eff=0,7 gfree. For the Ni region people seems to use 0.7, and for heavier nuclei lower values. Tin region ~0.6....
- Majority of theoretical results, come from shell model and single particle interpretations. They seem to give a good (surprisingly very good) descriptions of the trends, but the quenching is not understood.
- That the contributions to the operators (two body currents ~ MEC) are unknown in medium and heavy mass nuclei.
- Some phenomenological work has been done by Stone, Towner on extending the one-body operator.

MANCH<mark>Est</mark>E

Charge radii from isotope shift measurements

Charge radii from isotope shift measurements

$$\delta \nu^{A,A'} = \delta \bar{\nu}_{\rm FS}^{A,A'} + \delta \nu_{\rm MS}^{A,A'} \qquad \delta \nu_{\rm FS}^{A,A'} = F \lambda^{A,A'}$$

 $\lambda^{A,A'} = \delta \langle r^2 \rangle^{A,A'} + \frac{C_2}{C_1} \delta \langle r^4 \rangle^{A,A'} + \frac{C_3}{C_1} \delta \langle r^6 \rangle^{A,A'} + \dots$

King plot method

The University of Manchester

Mass shift includes term associated with electron correlations within the atomic system and nontrivial to calculate.

General Approach

MANCHESTER

The University of Manchester

Features:

rms nuclear charge radii, *including radioisotopes*, for medium mass and heavy elements

5.3

5.2

5.1

5,0

4.8

4.7

4.6

R (fm)

Angeli & Marinova Atomic Data and Nuclear Data Tables 99 (2013) 69

- Kinks at closed neutron shells
- Regular odd-even staggering (sometimes reversed due to nuclear structure effects)
- Obvious shape effects (Light Hg, N=60...)
- Radii of isotopes increase at ~half rate of 1.2A^{1/3} fermi (neutron rich nuclei develop neutron skin)

Odd even staggering within region of reflection asymmetry

 $D(N; \delta \langle r^2 \rangle^{126,N}) = (-1)^N (\delta \langle r^2 \rangle^{126,N} - \frac{1}{2} (\delta \langle r^2 \rangle^{126,N-1} + \delta \langle r^2 \rangle^{126,N+1}))$

GOING PEAR-SHAPED

KM Lynch et al. Physical Review C 97 (2), 024309

The University of Manchester

Charge radii: A challenge for nuclear theory

Simultaneous reproduction of charge radii and binding energies has been a longstanding challenges for nuclear theory.

[Hagen et al. 2016]

Shell evolution of fission fragments: Ni region

- Nucleon-nucleon interaction: single-particle energies evolve as function of nucleons in an orbit
- Away from stability, this can lead to (dis)appearance of shell closures
- Cu chain: *Z*=29: probe for the magicity of *Z*=28 and *N*=28,40,50

Results: Copper isotopes around ⁷⁸Ni

[De Groote et al. PRC 96, 041302 (R) (2017)]

ML Bissell et al, Phys Rev C 93 064318 (2016)

Results: Copper(Z=29) isotopes around ⁷⁸Ni

[In preparation (2018)]

50

Charge radii and electromagnetic moments

MANCHESTER

Ο

Ο

May 2017

Charge radii systematic around the Ca region

Mn (Z=25) -> [H. Heylen et al, Phys. Rev. C 94, 054321(2016)] Ca (Z=20) -> [R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)] K (Z=19) -> [K. Kreim et al, Phys. Lett. B 731, 97 (2014)]

MANCHESTER

Charge radii: Ca(Z=20) isotopes

[R.F. Garcia Ruiz et al., Nature Physics 12, 594 (2016)]

The University of Manchester Manchester of Manchester

Charge radii: Ca(Z=20) isotopes

MANCHESTER

⁴⁸Ca: Charge radii vs Dipole polarizability

G. Hagen et al. Nature Phys. 12, 180 (2016)

⁴⁸Ca: Charge radii vs Dipole polarizability

Remarks

- Laser spectroscopy is currently a very active field with many groups around the world working towards the limits of nuclear existence.
- Atomic physics calculations often limit the precision of extracted nuclear observables
- Electromagnetic moments are sensitive probes of the role of electroweak currents. In the case of medium and heavy mass nuclei the contributions to the operators (two body currents ~ MEC) are unknown.
- Charge radii provides a test to inter-nucleon interactions and manybody methods.

M.L. Bissell, K. Blaum, B. Cheal, S. Malbrunot-Ettenauer,, W. Gins, H. Heylen, A. Kanellakopoulos, Á. Koszorús, J. Krämer, S. Kaufmann, M. Kowalska,
G. Neyens, R. Neugart, W. Nörtershäuser, R.F. Garcia Ruiz L. Vazquez, R. Sánchez, L. Xie, Z.Y. Xu, D.T. Yordanov. X.F. Yang,

The CRIS Collaboration

J. Billowes, **C. Binnersley**, T.E. Cocolios, **G. Farooq-Smith**, K.T. Flanagan, **W. Gins**, K.M. Lynch, S. Franchoo, V. Fedosseev, **A. Koszorús**, B.A. Marsh, G. Simpson, M. Bissell, **R.P. De Groote**, R.F. Garcia Ruiz, H. Heylen, G. Neyens, A.J. Smith, , H.H. Stroke, **C. Ricketts**, R.E. Rossel, S. Rothe, **A. Vernon**, K. Wendt, **S. Wilkins**, X. Yang.

199192

 $k_{\text{Established by the European Commission}}^{\text{European Research Council}}$

Thank you