Coupled cluster computations of weak decays

Gaute Hagen Oak Ridge National Laboratory

Exploring the role of electroweak currents in Atomic Nuclei

ECT, April 25th, 2018

Trend in realistic ab-initio calculations

Explosion of many-body methods (Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...)

Application of ideas from EFT and renormalization group (V_{low-k}, Similarity Renormalization Group, ...)

Oxgyen chain with interactions from chiral EFT

Hebeler, Holt, Menendez, Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

The puzzle of quenched of beta decays

Long-standing problem: Experimental beta-decay strengths quenched compared to theoretical results.

Quenching obtained from chargeexchange (*p*,*n*) experiments. (Gaarde 1983).

- Renormalizations of the Gamow-Teller operator?
- Missing correlations in nuclear wave functions?
- Model-space truncations?
- Two-body currents (2BCs)?

Nuclear forces from chiral effective field theory

A family of interactions from chiral EFT

NNLO_{sat}: Accurate radii and BEs

- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization
- Harder interaction: difficult to converge beyond ⁵⁶Ni

A. Ekström et al, Phys. Rev. C 91, 051301(R) (2015).

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem & Machleidt with 3NF from chiral EFT

K. Hebeler *et al* PRC (2011).
T. Morris *et al*, arXiv:1709.02786 (2017).

Saturation in nuclear matter from chiral interactions

The other chiral NN + 3NFs are from Binder et al, PLB (2014)

Saturation in nuclear matter from chiral interactions

The other chiral NN + 3NFs are from Binder et al, PLB (2014)

Theory to experiment ratios for beta decays in light nuclei from NCSM

N4LO(EM) + $3N_{lnl}$ SRG-evolved to 2.0fm⁻¹ (c_D = -1.8)

Theory to experiment ratios for beta decays in light nuclei from NCSM

 $NNLO_{sat} (c_{D} = 0.82)$

Theory to experiment ratios for beta decays in light nuclei from NCSM

N3LO(EM) + $3N_{lnl}$ SRG-evolved to 2.0fm⁻¹ (c_D = 0.7)

Structure of ⁷⁸Ni from first principles

- From an observed correlation we predict the 2⁺ excited state in ⁷⁸Ni using the experimental data for the 2⁺ state in ⁴⁸Ca
- Similar correlations have been observed in other nuclei, e.g. Tjon line in light nuclei

G. Hagen, G. R. Jansen, and T. Papenbrock Phys. Rev. Lett. **117**, 172501 (2016) A high 2⁺ energy in ⁷⁸Ni indicates that this nucleus is doubly magic

A measurement of this state has been made at RIBF, RIKEN

R. Taniuchi et al., in preparation

Consistent with recent shell-model studies F. Nowacki *et al.*, PRL 117, 272501 (2016)

Excited states in ⁷⁸Ni and its neighbors

Excited states in ⁷⁸Ni and its neighbors

Excited states in ⁷⁸Ni and its neighbors

¹⁰⁰Sn – a nucleus of superlatives

Hinke et al, Nature (2012)

- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- In the closest proximity to the proton dripline
- At the endpoint of the rapid proton capture process (Sn-Sb-Te cycle)
- Unresolved controversy regarding s.p. structure of ¹⁰¹Sn

Structure of the Lightest Tin Isotopes

T. D. Morris,^{1,2} J. Simonis,^{3,4} S. R. Stroberg,^{5,6} C. Stumpf,³ G. Hagen,^{2,1} J. D. Holt,⁵ G. R. Jansen,^{7,2} T. Papenbrock,^{1,2} R. Roth,³ and A. Schwenk^{3,4,8}

Structure of the ligthest tin isotopes

- Splitting between 7/2⁺ and 5/2⁺ reproduced
- Ground-state spins of ¹⁰¹⁻¹²¹Sn will be measured at CERN (CRIS collaboration)

$$R_{\nu} = \sum r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$$

Diagonalize $\overline{H} = e^{-T} H_N e^T$ via a novel equation-of-motion technique:

$$R_{\nu} = \sum r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$$

Introduce an energy cut on allowed threeparticle three-hole excitations:

$$\tilde{E}_{pqr} = \tilde{e}_p + \tilde{e}_q + \tilde{e}_r \le \tilde{E}_{3\max}$$

 $\tilde{e}_p = |N_p - N_F|$

measures the difference of number of harmonic oscillator shells wrt the Fermi surface.

A. Ekström, G. Jansen, K. Wendt et al, PRL 113 262504 (2014)

Charge exchange EOM-CCSDT-1

 $\overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S | \overline{H} | S \rangle & \langle D | \overline{H} | S \rangle & \langle T | V | S \rangle \\ \langle S | \overline{H} | D \rangle & \langle D | \overline{H} | D \rangle & \langle T | V | D \rangle \\ \langle S | V | T \rangle & \langle D | V | T \rangle & \langle T | F | T \rangle \end{bmatrix}$

Charge exchange EOM-CCSDT-1

 $\overline{H}_{CCSDT-1} =$

$\langle S \overline{H} S \rangle$	$\langle D \overline{H} S \rangle$	$\langle T V S\rangle$	
$\langle S \overline{H} D\rangle$	$\langle D \overline{H} D \rangle$	$\langle T V D\rangle$	
$\langle S V T\rangle$	$\langle D V T\rangle$	$\langle T F T\rangle$	Q-space

Charge exchange EOM-CCSDT-1

Bloch-Horowitz is exact; iterative solution poss.

$$\overline{H}_{PP}R_P + \overline{H}_{PQ}(\omega - \overline{H}_{QQ})^{-1}\overline{H}_{QP}R_P = \omega R_P$$

- No large memory required for lanczos vectors
- Can only solve for one state at a time
- Reduces matrix dimension from ~10⁹ to ~10⁶
- Method scales as N⁷

W. C. Haxton and C.-L. Song Phys. Rev. Lett. 84 (2000); W. C. Haxton Phys. Rev. C 77, 034005 (2008) C. E. Smith, J. Chem. Phys. 122, 054110 (2005)

¹⁰⁰In from charge exchange coupled-cluster equation-of-motion method

1.8/2.0(EM)

Charge-exchange EOM-CC with perturbative corrections accounting for excluded 3p3h states:

$$\Delta\omega_{\mu} = \langle \Phi_0 | L_{\mu} \overline{H}_{PQ'} (\omega_{\mu} - \overline{H}_{Q'Q'})^{-1} \overline{H}_{Q'P} R_{\mu} | \Phi_0 \rangle$$

Convergence of excited states in ¹⁰⁰In

Normal ordered one- and two-body current

Gamow-Teller matrix element: $\hat{O}_{\rm GT} \equiv \hat{O}_{\rm GT}^{(1)} + \hat{O}_{\rm GT}^{(2)} \equiv g_A^{-1} \sqrt{3\pi} E_1^A$

Normal ordered operator:

$$\hat{O}_{\rm GT} = O_N^1 + O_N^2$$

Benchmark between NCSM and CC for the large transition in ¹⁴O using NNLO_{sat}

Method	$ M_{\rm GT}(\sigma\tau) $	$ M_{\rm GT} $
EOM-CCSD	2.15	2.08
EOM-CCSDT-1	1.77	1.69
NCSM	1.80(3)	1.69(3)

Super allowed Gamow-Teller decay of ¹⁰⁰Sn

Super allowed Gamow-Teller decay of ¹⁰⁰Sn

Convergence of GT transition in ¹⁰⁰Sn

Role of 2BC and correlations in ¹⁰⁰Sn

A simple interpretation of the quenching of beta decays

Contributions pion exchange to the 2BC gives roughly half of the necessary quenching

Contributions from the short range part accounts for a smaller part.

J. Menéndez, D. Gazit, A. Schwenk PRL 107, 062501 (2011)

One-body normal ordering of 2BC in free Fermi gas

$$q \approx 1 - \frac{\rho \hbar^3 c^3}{F_{\pi}^2} \left(-\frac{c_D}{4g_A \Lambda} + \frac{I}{3} (2c_4 - c_3) + \frac{I}{6m} \right)$$

Interaction	c_D	$2c_4 - c_3$	Λ_{χ} [GeV]	Ref.
NNLO _{sat}	0.817	11.46	0.7	[24]
$NN-N^4LO + 3N_{lnl}$	-1.8	13.88	0.7	
$NN-N^{3}LO + 3N_{lnl}$	0.7	14.0	0.7	[25]
1.8/2.0 (EM)	1.264	14.0	0.7	[23]
2.0/2.0 (EM)	1.271	14.0	0.7	[23]
2.2/2.0 (EM)	1.214	14.0	0.7	[23]
2.0/2.0 (PWA)	-3.007	12.7	0.7	[23]
Pastore 500	-1.847	14.0	1.0	[26]
Pastore 600	-2.03	14.13	1.0	[26]
Ekström 450	0.0004	13.22	0.7	[48]
Ekström 500	0.0431	12.50	0.7	[48]
Ekström 550	0.1488	11.71	0.7	[48]

The small role of short-ranged 2BC on GT decay

J. Menéndez, D. Gazit, A. Schwenk

PRL 107, 062501 (2011)

One-body normal ordering of 2BC in free Fermi gas

$$q \approx 1 - \frac{\rho \hbar^3 c^3}{F_{\pi}^2} \left(-\frac{c_D}{4g_A \Lambda} + \frac{I}{3} (2c_4 - c_3) + \frac{I}{6m} \right)$$

Short-ranged contact term of 2BC (heavy meson exchange)

The role of 2BC in the sd-shell

N4LO(EM) + 3N_{Inl}

The role of 2BC in the pf-shell

 $N4LO(EM) + 3N_{InI}$

Quenching of Ikeda sum-rule from 2BC

- Forces and 2BCs from chiral EFT explain (to large extent) the quenching of GT strength in atomic nuclei
- Make predictions for the super allowed GT transition in ¹⁰⁰Sn