Electromagnetic nuclear responses

Sonia Bacca

Johannes Gutenberg Universität Mainz and TRIUMF

April 24th, 2018

ECT* Workshop on "Exploring the role of electroweak currents in atomic nuclei"

Electromagnetic probes

Electron scattering

Photoabsorption

with $Q^{2}=-q_{\mu}^{2}=\mathbf{q}^{2}-\omega^{2}$ and θ scattering angle and σ_{M} Mott cross section

Inclusive electron scattering

$$
\frac{d^{2} \sigma}{d \Omega d \omega}=\sigma_{M}\left[\frac{Q^{4}}{\mathbf{q}^{4}} R_{L}(\omega, \mathbf{q})+\left(\frac{Q^{2}}{2 \mathbf{q}^{2}}+\tan ^{2} \frac{\theta}{2}\right) R_{T}(\omega, \mathbf{q})\right]
$$

$$
\left.R_{L}(\omega, \mathbf{q})=\oint_{f}\left|\left\langle\Psi_{f}\right| \rho(\mathbf{q})\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega+\frac{\mathbf{q}^{2}}{2 M}\right)<\text { charge operator }
$$

$$
\left.R_{T}(\omega, \mathbf{q})=\oint_{f}\left|\left\langle\Psi_{f}\right| J_{T}(\mathbf{q})\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega+\frac{\mathbf{q}^{2}}{2 M}\right) \prec \text { current operator }
$$

$$
\begin{array}{ll}
\rho=\rho_{(1)}+\rho_{(2)}+\cdots=\sum_{i}^{A} \rho_{i}+\sum_{i<j}^{A} \rho_{i j}+\ldots & \text { 2BC at N3LO } \\
\mathbf{J}=\mathbf{J}_{(1)}+\mathbf{J}_{(2)}+\cdots=\sum_{i}^{A} \mathbf{J}_{i}+\sum_{i<j}^{A} \mathbf{J}_{i j}+\ldots & \text { 2BC at NLO }
\end{array}
$$

Photoabsorption

Photoabsorption

$$
\left.\left.R_{T}(\omega=\mathbf{q}) \rightarrow\left|\left\langle\Psi_{f}\right| J_{T}(q)\right| \Psi_{0}\right\rangle\left.\right|^{2}=\sum_{\lambda= \pm 1}\left|\left\langle\Psi_{f}\right| J_{\lambda}(q)\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Multipole expansion

$$
J_{\lambda}(q) \longrightarrow T_{J \pm 1}^{e l}=-\frac{1}{4 \pi} \int d \hat{q}^{\prime} \sqrt{\frac{J+1}{J}} \hat{\mathbf{q}}^{\prime} \cdot \mathbf{J}\left(\mathbf{q}^{\prime}\right) Y_{\mu}^{J}\left(\hat{q}^{\prime}\right)+\ldots
$$

Siegert theorem: using continuity equation

$$
\begin{aligned}
& T_{J \mu}^{e l}(q)=-\frac{1}{4 \pi} \sqrt{\frac{J+1}{J}} \frac{\omega}{q} \int d \hat{q}^{\prime} \rho\left(\mathbf{q}^{\prime}\right) Y_{\mu}^{J}\left(\hat{q}^{\prime}\right)+\ldots \quad C_{J \mu} \\
& C_{1 \pm 1} \rightarrow Y^{1}(\hat{r}) j(q r) \stackrel{\text { low } \mathrm{q}}{\rightarrow} Y^{1}(\hat{r}) q r \rightarrow \omega \mathbf{r} \quad \text { Dipoulomb Multipole operator }
\end{aligned}
$$

Need to calculate the response to a dipole operator, which is a one-body operator
2BC are implicitly (via continuity equation) included

Classical $=$ xample

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41123002 (2014). Work by Pisa and Trento groups

$$
\left.\sum_{\substack{\lambda= \pm 1 \\ \cdots \cdots \\ 1 \mathrm{BC}}}\left|\left\langle\Psi_{f}\right| J_{\lambda}(q)\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

Using the one-body current only it is not enough to explain data

Classical $=x a m p l e$

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41123002 (2014). Work by Pisa and Trento groups

$$
\left.\left|\left\langle\Psi_{f}\right| D\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

——Siegert

Using the one-body current only it is not enough to explain data
The Siegert operator explains data

Classical Example

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41123002 (2014).
Work by Pisa and Trento groups

$$
\left.\left|\left\langle\Psi_{f}\right| D\right| \Psi_{0}\right\rangle\left.\right|^{2}
$$

——Siegert

$$
\begin{array}{|l|l|}
\left.\hline \sum_{\lambda= \pm 1}\left|\left\langle\Psi_{f}\right| J_{\lambda}(q)\right| \Psi_{0}\right\rangle\left.\right|^{2} \\
\cdots \cdots & 1 \mathrm{BC} \\
1 \mathrm{BC}+2 \mathrm{BC} \\
\hline
\end{array}
$$

Using the one-body current only it is not enough to explain data
The Siegert operator explains data and agrees with full $1 B C+2 B C$ calculation

$$
\stackrel{\mathrm{M} 1}{R(\omega)}=\frac{1}{2 J_{0}+1} f_{f}\left|\left\langle\Psi_{f}\|\boldsymbol{\mu}\| \Psi_{0}\right\rangle\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right)
$$

There is no Siegert theorem for magnetic multipoles. 2BC have to be calculated explicitly.

In chiral EFT Hernandez, Bacca, Wendt, PoS BORMIO2017 (2017), C17-01-23
Magnetic sum-rules in ${ }^{2} \mathrm{H} \quad m_{n}=\int_{0}^{\infty} d \omega \omega^{n} \stackrel{\text { M1 }}{R}(\omega)$

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}^{\mathrm{LO}}=\mu_{N}\left[\left(\frac{\mu^{S}+\mu^{V} \tau_{i}^{3}}{2}\right) \boldsymbol{\sigma}_{i}+\left(\frac{1+\tau_{i}^{3}}{2}\right) \ell_{i}\right] \\
& \boldsymbol{\mu}_{i j}^{\mathrm{NLO}}=-\frac{e g_{A}^{2} m}{8 \pi F_{\pi}^{2}}\left(\boldsymbol{\tau}_{i} \times \boldsymbol{\tau}_{j}\right)^{3}\left[\left(1+\frac{1}{m r}\right)\left(\left(\boldsymbol{\sigma}_{i} \times \boldsymbol{\sigma}_{j}\right) \cdot \hat{\mathbf{r}}\right) \hat{\mathbf{r}}-\left(\boldsymbol{\sigma}_{i} \times \boldsymbol{\sigma}_{j}\right)\right] e^{-m r}
\end{aligned}
$$

$$
\left.\left.\left.\left.\sum_{\{ }\right|_{\mathrm{N}}\right|_{\mathrm{N}}\right|_{\mathrm{N}}\right|_{\mathrm{N}} \sum_{\mathrm{N}}
$$

	m_{-1}	m_{0}
LO	$14.0 \mathrm{fm}^{3}$	$0.245 \mathrm{fm}^{2}$

2BC in precision physics \leadsto Muonic Atoms, talk by Nir Barnea
What about other more complex nuclear systems?

Continuum problem

$$
\left.R(\omega)=\oint_{f}\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega\right)
$$

Depending on E_{f}, many channels may be involved

How do we address it?

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

$$
\left(H-E_{0}-\sigma+i \Gamma\right)|\tilde{\psi}\rangle=\Theta\left|\psi_{0}\right\rangle
$$

Schrödinger-like equation bound-state-like

It has been solved with hyperspherical harmonics, no-core shell-model. S-shell nuclei and selected p-shell nuclei have been addressed

Example where 2BC where studied

${ }^{3} \mathrm{He}$
 Study of $R_{T}(\omega, \mathbf{q})$

Inelastic Electron Scattering

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41123002 (2014).
Phenomenological 2BC
Nork by Pisa, Cracow and
Trento groups

What about heavier nuclei?

First we need to develop a method that is capable of calculating response functions for medium-mass nuclei

Many-body formulation of LII

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

$$
\left(H-E_{0}-\sigma+i \Gamma\right)|\tilde{\psi}\rangle=\Theta\left|\psi_{0}\right\rangle
$$

$$
+
$$

CC Coupled-cluster theory

Accurate many-body theory with mild polynomial scaling in mass number

$$
\begin{gathered}
= \\
\text { LIT-CC }
\end{gathered}
$$

An approach to many-body break-up induced reactions with a proper accounting of the continuum

Many-body method that can extend the frontiers of ab-initio calculations to heavier and neutron nuclei

Can we calculate electromagnetic break-up reactions?
S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

$$
\left(\bar{H}-E_{0}-\sigma+i \Gamma\right)\left|\tilde{\Psi}_{R}\right\rangle=\bar{\Theta}\left|\Phi_{0}\right\rangle
$$

$$
\begin{gathered}
\bar{H}=e^{-T} H e^{T} \\
\bar{\Theta}=e^{-T} \Theta e^{T} \\
\left|\tilde{\Psi}_{R}\right\rangle=\hat{R}\left|\Phi_{0}\right\rangle
\end{gathered}
$$

$$
\left|\psi_{0}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)\right\rangle=e^{T}\left|\phi_{0}\left(\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{A}\right)\right\rangle
$$

$$
T=\sum T_{(A)} \quad \text { cluster expansion }
$$

singles, doubles and triples

First implementation with singles and doubles

$$
\begin{aligned}
& T=T_{1}+T_{2} \text { and same for } \Lambda \\
& R=R_{0}+R_{1}+R_{2} \text { and same for } L
\end{aligned}
$$

Photo-absorption

Using the Siegert theorem
SB et al., PRC 90, 064619 (2014)

Neution-rich nuclei

Using the Siegert theorem
SB et al., PRC 90, 064619 (2014)

Running polarizability

Data by the Osaka-Darmstadt collaboration from ($\mathrm{p}, \mathrm{p}^{\prime}$)
J.Birkhan, et al., Phys. Rev. Lett. 118, 252501 (2017)

48Ca polarizability summary

J.Birkhan, et al., Phys. Rev. Lett. 118, 252501 (2017)

Coupled-cluster theory tends to overestimate the experimental value
Can we improve the theoretical prediction?

Adding tríples

Full triples are prohibitive
We will use linearized triples for ground state and excited states $T_{3}=f\left(T_{1}, T_{2}\right)$

Similarity transformed operator
M. Miorelli, PhD Thesis (2017)
M. Miorelli et al., arXiv:1804.01718

$$
\bar{\Theta}_{N}=e^{-T} \Theta_{N} e^{T}
$$

$$
\bar{\Theta}_{N}=\left[\Theta_{N} e^{T_{1}+T_{2}+T_{3}}\right]_{C}=\bar{\Theta}_{N}^{D}+\left[\Theta_{N}\left(\frac{T_{2}^{2}}{2}+T_{3}+T_{1} T_{3}\right)\right]_{C}
$$

$$
\simeq \bar{\Theta}_{N}^{D}+\left[\Theta_{N}\left(\frac{T_{2}^{2}}{2}\right)\right]_{C}
$$

$$
\simeq \bar{\Theta}_{N}^{D}
$$

${ }^{4} \mathrm{He}$	${ }^{16} \mathrm{O}$
$m_{0}[\mathrm{fm}]$	
0.951	4.87
0.950	4.92
0.949	4.90

By using only $\bar{\Theta}_{N}^{D}$ you are missing $0.2-0.6 \%$ of the strength only

Much simpler and the only feasible calculation in heavy nuclei

Benchmark

M. Miorelli et al., arXiv:1804.01718

Hyperspherical harmonics (HH) contain all correlations (up to quadruples)

M. Miorelli et al., arXiv:1804.01718 N2LOsat

Experimental data from photoabsorption cross sections

Barbieri et al., arXiv:1711.04698 SCGF approach obtains $0.50 \mathrm{fm}^{3}$ comparable to D / S giving $0.502 \mathrm{fm}^{3}$

Revisiting ${ }^{48} \mathrm{Ca}$

M. Miorelli et al., arXiv:1804.01718

Experimental data from (p, p^{\prime}) scattering

Future plans

Address magnetic transitions in ${ }^{48} \mathrm{Ca}$

with J. Simonis, O.J.Herndandez, G. Hagen, J. Holt et al.
Goal: Coupled-cluster and IM-SRG with 1BC+2BC

Holt et al, Phys. Rev. C 90, 024312 (2014)

Coupled-cluster singles and doubles

- Electromagnetic nuclear response are rich dynamical observables to study the effect of two-body currents.
An implicit inclusion via the Siegert theorem is sufficient at low energy/momentum.
- Many-body study in coupled-cluster theory:

Corrections beyond D in the similarity transformed operator are negligible.
The T-1 in the ground-state are most important.

- In the future we plan to address electron-nucleus and neutrino-nucleus scattering B. Acharya

Thanks to all my collaborators

B. Acharya, N. Barnea, O.J. Hednandez, G. Hagen, J. Holt, W. Leidemann,
M. Miorelli, J. Simonis, G. Orlandini, T. Papenbrock, S. Pastore, A. Schwenk, K. Wendt, et al.

Thanks for your attention!

