

Electromagnetic nuclear responses

Sonia Bacca

Johannes Gutenberg Universität Mainz and TRIUMF

April 24th, 2018

ECT* Workshop on "Exploring the role of electroweak currents in atomic nuclei"

Electromagnetic probes

Electron scattering

Photoabsorption

Inclusive electron scattering

$$\frac{k^{\mu}}{k^{\mu}} \int_{\substack{q^{\mu} = k^{\mu} - k^{\mu} \\ q^{\mu} = (\omega, \mathbf{q})}}^{P_{f}^{\mu}} P_{0}^{\mu}}$$
$$\frac{d^{2}\sigma}{d\Omega d\omega} = \sigma_{M} \left[\frac{Q^{4}}{\mathbf{q}^{4}} R_{L}(\omega, \mathbf{q}) + \left(\frac{Q^{2}}{2\mathbf{q}^{2}} + \tan^{2} \frac{\theta}{2} \right) R_{T}(\omega, \mathbf{q}) \right]$$

with $Q^2 = -q_{\mu}^2 = \mathbf{q}^2 - \omega^2$ and θ scattering angle

and σ_M Mott cross section

Inclusive electron scattering

JG U JOHANNES GUTENB

Photoabsorption

Photoabsorption

$$R_T(\omega = \mathbf{q}) \to |\langle \Psi_f | J_T(q) | \Psi_0 \rangle|^2 = \sum_{\lambda = \pm 1} |\langle \Psi_f | J_\lambda(q) | \Psi_0 \rangle|^2$$

Multipole expansion

$$J_{\lambda}(q) \longrightarrow T_{J\pm 1}^{el} = -\frac{1}{4\pi} \int d\hat{q}' \quad \sqrt{\frac{J+1}{J}} \hat{\mathbf{q}}' \cdot \mathbf{J}(\mathbf{q}') Y_{\mu}^{J}(\hat{q}') + \dots$$

Siegert theorem: using continuity equation

$$T_{J\mu}^{el}(q) = -\frac{1}{4\pi} \sqrt{\frac{J+1}{J}} \frac{\omega}{q} \int d\hat{q}' \rho(\mathbf{q}') Y_{\mu}^{J}(\hat{q}') + \dots = C_{J\mu}$$

Coulomb Multipole

$$C_{1\pm 1} \to Y^1(\hat{r})j(qr) \xrightarrow{\text{low q}} Y^1(\hat{r}) qr \to \omega \mathbf{r}$$
 Dipole operator

Need to calculate the response to a dipole operator, which is a one-body operator

2BC are implicitly (via continuity equation) included

Classical Example

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. **41** 123002 (2014). Work by Pisa and Trento groups

Using the one-body current only it is not enough to explain data

Classical Example

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. **41** 123002 (2014). Work by Pisa and Trento groups

Using the one-body current only it is not enough to explain data The Siegert operator explains data

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. **41** 123002 (2014). Work by Pisa and Trento groups

Using the one-body current only it is not enough to explain data The Siegert operator explains data and agrees with full 1BC+2BC calculation

Magnetic Response

$$R^{\text{M1}}(\boldsymbol{\omega}) = \frac{1}{2J_0 + 1} \int_{f} \left| \left\langle \Psi_f || \boldsymbol{\mu} || \Psi_0 \right\rangle \right|^2 \delta \left(E_f - E_0 - \boldsymbol{\omega} \right)$$

There is no Siegert theorem for magnetic multipoles. 2BC have to be calculated explicitly.

Magnetic Response

In chiral EFT Hernandez, Bacca, Wendt, PoS BORMIO2017 (2017), C17-01-23

Magnetic sum-rules in ²H $m_n = \int_0^\infty d\omega \ \omega^n R^{\rm M1}(\omega)$

	m_{-1}	m_0	
LO	14.0 fm^3	0.245 fm^2	1-body
LO+ NLO	15.1 fm^3	$0.277 \ {\rm fm}^2$	1-body+2-body

 2BC effect
 8%
 13%

 2BC in precision physics
 Muonic Atoms, talk by Nir Barnea

What about other more complex nuclear systems?

 π

Continuum problem

$$R(\omega) = \sum_{f} \left| \left\langle \psi_{f} \left| \Theta \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Depending on $\,E_{\rm f}$, many channels may be involved

How do we address it?

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma}) \mid \tilde{\psi} \rangle = \Theta \mid \psi_0 \rangle$$

Schrödinger-like equation bound-state-like

It has been solved with hyperspherical harmonics, no-core shell-model. S-shell nuclei and selected p-shell nuclei have been addressed

Example where 2BC where studied

Inelastic Electron Scattering

From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41 123002 (2014).

Sonia Bacca

What about heavier nuclei?

First we need to develop a method that is capable of calculating response functions for medium-mass nuclei

Many-body formulation of LIT

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

$$(H - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma}) \mid \tilde{\psi} \rangle = \Theta \mid \psi_0 \rangle$$

+

CC Coupled-cluster theory

Accurate many-body theory with mild polynomial scaling in mass number

LIT-CC

An approach to many-body break-up induced reactions with a proper accounting of the continuum

Coupled-cluster theory See talk by G.Hagen

Many-body method that can extend the frontiers of ab-initio calculations to heavier and neutron nuclei

Can we calculate electromagnetic break-up reactions? S.B. *et al.*, Phys. Rev. Lett. **111**, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

 $\bar{H} = e^{-T} H e^{T}$ $\bar{\Theta} = e^{-T} \Theta e^{T}$ $|\tilde{\Psi}_R\rangle = \hat{R} |\Phi_0\rangle$

$$|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$$

First implementation with singles and doubles

$$T=T_1+T_2\;$$
 and same for Λ
$$R=R_0+R_1+R_2\;$$
 and same for $L\;$

Photo-absorption

Using the Siegert theorem

SB et al., PRC 90, 064619 (2014)

Neutron-rich nuclei

Using the Siegert theorem

SB et al., PRC 90, 064619 (2014)

Running polarizability

Sonia Bacca

⁴⁸Ca polarizability summary

J.Birkhan, et al., Phys. Rev. Lett. 118, 252501 (2017)

Coupled-cluster theory tends to overestimate the experimental value

Can we improve the theoretical prediction?

Sonia Bacca

Adding triples

Full triples are prohibitive

We will use linearized triples for ground state and excited states $T_3 = f(T_1, T_2)$

Similarity transformed operator M. Miorelli, PhD Thesis (2017)

M. Miorelli, PhD Thesis (2017) M. Miorelli *et al.,* arXiv:1804.01718

$\bar{\Theta}_N = e^{-T} \Theta_N e^T$	⁴ He	¹⁶ O
$\lceil /T^2 \rangle$)]	$m_0[\mathrm{fm}]$	
$\bar{\Theta}_N = \left[\Theta_N e^{T_1 + T_2 + T_3}\right]_C = \bar{\Theta}_N^D + \left[\Theta_N \left(\frac{T_2}{2} + T_3 + T_1 T_3\right)\right]_C$	0.951	4.87
$\simeq \bar{\Theta}_N^D + \left[\Theta_N\left(\frac{T_2^2}{2}\right)\right]$	0.950	4.92
$\simeq \bar{\Theta}^D_N$	0.949	4.90

By using only $\bar{\Theta}_N^D$ you are missing 0.2 - 0.6% of the strength only

Much simpler and the only feasible calculation in heavy nuclei

Sonia Bacca

Benchmark

M. Miorelli et al., arXiv:1804.01718

Hyperspherical harmonics (HH) contain all correlations (up to quadruples)

Heavier Nuclei

M. Miorelli et al., arXiv:1804.01718 N2LOsat

Experimental data from photoabsorption cross sections

Barbieri et al., arXiv:1711.04698 SCGF approach obtains 0.50 fm³ comparable to D/S giving 0.502 fm³

Revisiting ⁴⁸Ca

M. Miorelli et al., arXiv:1804.01718

Experimental data from (p,p') scattering

Future plans

Address magnetic transitions in ⁴⁸Ca

with J. Simonis, O.J.Herndandez, G. Hagen, J. Holt et al.

Goal: Coupled-cluster and IM-SRG with 1BC+2BC

JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Outlook

• Electromagnetic nuclear response are rich dynamical observables to study the effect of two-body currents.

An implicit inclusion via the Siegert theorem is sufficient at low energy/momentum.

- Many-body study in coupled-cluster theory: Corrections beyond D in the similarity transformed operator are negligible. The T-1 in the ground-state are most important.
- In the future we plan to address electron-nucleus and neutrino-nucleus scattering B. Acharya

Thanks to all my collaborators

B. Acharya, N. Barnea, O.J. Hednandez, G. Hagen, J. Holt, W. Leidemann, M. Miorelli, J. Simonis, G. Orlandini, T. Papenbrock, S. Pastore, A. Schwenk, K. Wendt, et al.

Thanks for your attention!