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Figure 18. XENON1T sensitivity (90% C.L.) to spin-independent WIMP-nucleon interaction, cal-
culated with the LUX2015 photon emission model: the solid blue line represents the median value,
while the 1� and 2� sensitivity bands are indicated in green and yellow respectively. The XENONnT
median sensitivity, also calculated with the LUX2015 model, is shown with the dashed blue line.
The discovery contour of DAMA-LIBRA [84] and CDMS-Si [85] are shown, together with the exclu-
sion limits of other experiments: XENON10 [86], SuperCDMS [87], PandaX [88], DarkSide-50 [89],
XENON100 [14] and LUX with the 2015 re-analysis [93]. For comparison, with the dashed brown line
we plot also the "neutrino discovery limit" from [55].

model. We can see the increase in particular for the CNNS background (⇥5) and in the
rates for low mass WIMPs (⇥4 at m�=6 GeV/c2). The sensitivity of XENON1T, calculated
assuming the LUX2015 model and following the method described in section 7, is shown in
figure 18 and compared to the 2015 LUX results and to those of previous experiments. The
minimum sensitivity is still at 1.6 ·10�47 cm2 at m�=50 GeV/c2, but the improvement at low
mass WIMP is significant, about an order of magnitude at m�=6 GeV/c2 with respect to the
one obtained with the XENON100 model. In the same figure we also show the sensitivity of
XENONnT, calculated in 20 t·y exposure with the assumptions described in section 7.1, here
with the LUX2015 model.
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where E ¼ Ei " E0
i, p¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m 2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p " "n ¼ 3:70, with pion decay constant
F!¼92:4MeV, m !¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p & 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p &
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03– 0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]

J12¼" gA
F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m 2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
"
i

'

F2
!

"
cD

gA!&
þ 2

3
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p2

4m 2
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3
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1

6m
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; (4)

where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m 2
!
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p & 100 MeV.
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We show that chiral effective field theory (EFT) two-body currents provide important contributions to

the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the

momentum-transfer dependence that is probed in neutrinoless double-beta (0!"") decay. We then

calculate for the first time the 0!"" decay operator based on chiral EFT currents and study the nuclear

matrix elements at successive orders. The contributions from chiral two-body currents are significant and

should be included in all calculations.
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Weak interaction processes provide unique probes of the
physics of nuclei and fundamental symmetries, and play a
central role in astrophysics [1]. The structure of strongly
interacting systems is explored with " decays and weak
transitions. Superallowed decays allow high precision tests
of the standard model, and neutrinoless double-beta (0!"")
decays probe the nature of neutrinos, their hierarchy, and
mass. Weak processes mediate nuclear reactions that drive
stellar evolution, supernovae, and nucleosynthesis.

Surprisingly, key aspects of well-known decays remain a
puzzle. In particular, when calculations of Gamow-Teller
(GT) transitions of the spin–isospin-lowering operator
gA!#! are confronted with experiment, some degree of
renormalization, or ‘‘quenching’’ q, of the axial coupling
geffA ¼ qgA is needed. Compared to the single-nucleon
value gA ¼ 1:2695ð29Þ, the GT term seems to be weaker
in nuclei. This was first conjectured in studies of "-decay
rates, with a typical q % 0:75 in shell-model (SM) calcu-
lations [2] and other many-body approaches [3]. In view of
the significant effect on weak reaction rates, it is no sur-
prise that this suppression has been the target of many
theoretical works. It is also a major uncertainty for 0!""
decay nuclear matrix elements (NMEs), which probe larger
momentum transfers of order the pion mass, p& m $,
where the renormalization could be different. Here we
revisit this puzzle based on chiral effective field theory
(EFT) currents.

Chiral EFT provides a systematic basis for nuclear
forces and consistent electroweak currents [4,5], where
pion couplings contribute both to the electroweak axial
current and to nuclear interactions. This is already seen
at leading order: gA determines the axial one-body (1b)
current and the one-pion-exchange nucleon-nucleon (NN)
potential. Two-body (2b) currents, also known as meson-
exchange currents, enter at higher order, just like
three-nucleon (3N) forces [4]. As shown in Fig. 1, the
leading axial contributions are due to long-range

one-pion-exchange and short-range parts [5], with cou-
plings c3, c4, and cD , which also enter the leading 3N
(and subleading NN) forces [4,6]. Although the importance
of 2b currents is known from phenomenological studies
[7], chiral currents and the consistency with nuclear forces
have only been explored in the lightest nuclei [5,6,8]. In
this Letter, we present first calculations for GT transitions
and for the 0!"" decay operator based on chiral EFT
currents. A preview of the NMEs (Fig. 2) and the quench-
ing of gA (Fig. 3) shows the great importance of using
chiral 2b currents in nuclei.

In chiral EFT, the nuclear current J%y
L is organized in an

expansion in powers of momentum Q& m $ over a break-
down scale !b& 500 MeV. Consistently with nuclear
forces [4], we count the nucleon mass as a large scale,
corresponding numerically to Q=m & ðQ=!bÞ2, so that the
leading relativistic 1=m corrections are of order Q2, and
1=m 2 terms of order Q4. To order Q2 (and also Q3 in this

counting), the 1b current, J%y
L ðrÞ ¼ PA

i¼1 #
!
i ½&%0J0i;1b !

&%kJki;1b(&ðr! riÞ, has temporal and spatial parts in mo-

mentum space [5]:

J0i;1bðp2Þ ¼ gVðp2Þ ! gA
P ) !i

2m
þ gPðp2ÞEðp ) !iÞ

2m
; (1)

Ji;1bðp2Þ ¼ gAðp2Þ!i ! gPðp2Þpðp ) !iÞ
2m

þ iðgM þ gVÞ
!i + p

2m
! gV

P

2m
; (2)

FIG. 1. Chiral 2b currents and 3N force contributions.
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FIG. 7. (Color online) Correlation between the three- (BT, in MeV) and four- (Bα , in MeV) nucleon binding energies. The green
[mπ = 140 MeV, (a)], red [mπ = 510 MeV, (b)] and blue [mπ = 805 MeV, (c)] shaded areas are the RGM-LO π↗EFT results for a cutoff in the
interval [2,8] fm−1. For mπ = 140 MeV [panel (a)], the green uncertainty band represents sensitivity to the cutoff and to the renormalization
input (whether BD or 3anp). Experimental data are marked with a red dot, and the blue dotted (dashed) line represents LO /πEFT results from
Ref. [30] using 1anp,

3anp (1anp,BD) as input. The gray shaded areas in (b) and (c) mark lattice uncertainty in BT and Bα . Values for Bα between
the horizontal dashed lines are consistent with all other low-energy data.

in the three-body system is a prominent example of a universal
feature emergent from the unitary limit in the two-body sector.
A pion mass which produces the analog three-body unitarity,
1/2anD → 0, would be a world where the four-body system
exhibits an Efimov-type spectrum.

B. The four-body sector

While there is no lattice data on three-nucleon scattering
observables and thus the results presented in the previous
subsection remain to be verified “experimentally”, i.e., with
a direct LQCD calculation, there is data on the ground-state
energy of the four-nucleon system. In this section, we find the
three- and four-nucleon ground-state energies correlated for
all three mπ . At the physical mπ , the relation is known as the
Tjon line [34] which can again be explained by a variation in
the single LO three-body force parameter.

In Fig. 7, the correlations between the ground-state energies
of the three- and four-nucleon systems are shown. The different
graphs represent results for the three pion masses. We observe
an increase in α-particle binding in step with the increase in
triton binding energy, which is not surprising in pionless EFT
because with fixed two-nucleon input it is the same three-body
force that controls the binding of the three- and four-nucleon
systems. The correlation is manifest in a band, not a line, and
the width of the band measures the theoretical uncertainty
assessed via cutoff variation. With the central value of BT as
input in the three-body force, the dependence on the cutoff
of the α-particle binding energy Bα is shown on panel (c) of
Fig. 5. The slope of the correlation lines—as before, each line
is parametrized by a variation of the D1 three-body interaction
strength—further affects the LO π↗EFT uncertainty. The larger
the slope, the larger the uncertainty in Bα due to the uncertainty
in BT.

For the physical pion mass, our error band does not agree
well with the LO results of Ref. [30] shown in panel (a) of
Fig. 7. In Ref. [30] the α-particle binding energy was found by
a solution of the Faddeev-Yakubovski integral equations with
a Gaussian regulator on the relative incoming (p′) and out-
going (p) momenta, exp[−(p2 + p′2)/#2]. The uncertainty
was assessed in [30] by a cutoff variation # ∈ [8,10] fm−1,

thus excluding a reported stronger cutoff dependence for
# < 8 fm−1. The cutoff variation was then deemed small
compared to the higher-order uncertainty estimated by chang-
ing the two-body input: the two curves obtained from BD
and 3anp are represented by the blue lines in Fig. 7. We have
similarly examined the input dependence: for # = 8 fm−1,
we replaced BD with 3anp and found Bα [upper bound of
the correlation band for mπ = 140 MeV, green area, panel
(a) in Fig. 7] larger by 2 MeV. Even with this extended
variation of the renormalization scheme, the two uncertainty
bands do not overlap. In contrast, the current RGM results
for the Tjon correlation band are consistent with the previous
RGM LO-/πEFT calculation of Ref. [32]. The convergence of
Bα to the physical value when the NLO potential is iterated [32]
suggests that in both LO calculations the theoretical error as
shown by the band widths in Fig. 7 is a lower bound. For our
theoretical error estimates, we interpret RGM and Faddeev
calculations, i.e., different regularizations and model-space
cutoffs, as different renormalization schemes. For Bα and
physical mπ , the uncertainty is thus given by the spread of
results of both methods (difference between short-dashed blue
line and lower edge of the green band).

For unphysical pion masses we indicate, as before, the
uncertainty in LQCD energies by gray bands in panels (b) and
(c) of Fig. 7: a vertical band for BT and a horizontal band for
Bα . Values for Bα in an interval bounded by the intersection of
the upper (lower) edge of the π↗EFT uncertainty band with the
right (left) boundary of the band of LQCD-allowed BT values
are indicated by horizontal dashed lines. This range is slightly
larger than the constraint already given by “experiment” for
mπ = 805 MeV, and slightly narrower for mπ = 510 MeV.
However, given the renormalization-input dependence seen at
physical pion mass, we estimate the theoretical uncertainty by
conservatively doubling the width of the RGM correlation
band, plus 2 MeV as an upper bound of the numerical
uncertainty (see Fig. 1 for this estimate), plus the experimental
LQCD uncertainties in Bα . At mπ = 805 MeV, we observe
an increased uncertainty in Bα for the lowest cutoff value
of # = 2 fm−1 as we did for the doublet neutron-deuteron
scattering lengths (see discussion of the mπ = 805 MeV
results in Figs. 5 and 6). In contrast to that three-nucleon
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Figure 18. XENON1T sensitivity (90% C.L.) to spin-independent WIMP-nucleon interaction, cal-
culated with the LUX2015 photon emission model: the solid blue line represents the median value,
while the 1� and 2� sensitivity bands are indicated in green and yellow respectively. The XENONnT
median sensitivity, also calculated with the LUX2015 model, is shown with the dashed blue line.
The discovery contour of DAMA-LIBRA [84] and CDMS-Si [85] are shown, together with the exclu-
sion limits of other experiments: XENON10 [86], SuperCDMS [87], PandaX [88], DarkSide-50 [89],
XENON100 [14] and LUX with the 2015 re-analysis [93]. For comparison, with the dashed brown line
we plot also the "neutrino discovery limit" from [55].

model. We can see the increase in particular for the CNNS background (⇥5) and in the
rates for low mass WIMPs (⇥4 at m�=6 GeV/c2). The sensitivity of XENON1T, calculated
assuming the LUX2015 model and following the method described in section 7, is shown in
figure 18 and compared to the 2015 LUX results and to those of previous experiments. The
minimum sensitivity is still at 1.6 ·10�47 cm2 at m�=50 GeV/c2, but the improvement at low
mass WIMP is significant, about an order of magnitude at m�=6 GeV/c2 with respect to the
one obtained with the XENON100 model. In the same figure we also show the sensitivity of
XENONnT, calculated in 20 t·y exposure with the assumptions described in section 7.1, here
with the LUX2015 model.
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where E ¼ Ei " E0
i, p¼ pi " p0

i, and P ¼ pi þ p0
i,

and vector (V), axial (A), pseudoscalar (P), and magnetic
(M) couplings, gVðp2Þ, gAðp2Þ, gPðp2Þ, and gMðp2Þ [9].
In chiral EFT, the p dependence is due to loop

corrections and pion propagators, to order Q2: gV;Aðp2Þ ¼
gV;Að1" 2 p2

!2
V;A
Þ, with gV ¼ 1, !V ¼ 850 MeV, !A ¼

2
ffiffiffi
3

p
=rA ¼ 1040 MeV; gPðp2Þ ¼ 2g!pnF!

m 2
!þp2 " 4gAðp2Þ m

!2
A

and gM ¼ "p " "n ¼ 3:70, with pion decay constant
F!¼92:4MeV, m !¼138:04MeV, and g!pn¼13:05 [11].

At leading order Q0, only the momentum-independent
gA and gV terms contribute. They give rise to p & 1 MeV
GTand Fermi (#") single-$ and 2%$$ decay. On the other
hand, when studying processes that probe larger momen-
tum transfers, terms of order Q2 need to be included.
For 0%$$ decay with p & 100 MeV, the Q0 terms are
still most important and the axial term dominates. In SM
calculations [12], one has M0%$$

Q0;axial
=M0%$$ ' 1:20,

M0%$$
Q0;vector

=M0%$$ ' 0:15 compared to the final M0%$$.

Among the Q2 terms, form-factor-type (FF) contribu-
tions and the gP part of Ji;1b dominate. The pseudoscalar
term is important, because pgPðp2Þ ' 7:9 for p &
100 MeV in 0%$$ decay. They reduce the NMEs:
M0%$$

FF =M0%$$ ' "0:20 and M0%$$
gP =M0%$$ ' "0:20

[12]. The remaining Q2 terms are odd under parity, so
they require either a P-wave electron (whose phase space
is suppressed [10] by ' 0:03– 0:06 for 0%$$ decay

candidates) or another odd-parity term to connect 0þ

states. Therefore, the P and E terms in Eqs. (1) and (2)
can be neglected, and only the term with the large
gM þ gV ¼ 4:70 is kept, leading to a small ' 5%
contribution [12].
At order Q3, 2b currents enter in chiral EFT [5]. These

include vector spatial, axial temporal, and axial spatial
parts [13]. The first two are odd under parity, and therefore
can be neglected. Consequently, for the cases studied here,
the dominant weak 2b currents only have an axial spatial
component, Jaxial2b ¼ PA

i<j Jij, with [5]
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F2
!
½2d1ð!1#

"
1 þ!2#

"
2 Þþd2!)#

"
)*

" gA
2F2

!

1

m 2
!þk2

"#
c4þ

1

4m

$
k)ð!))kÞ#")

þ4c3k + ð!1#
"
1 þ!2#

"
2 Þk" i

2m
k + ð!1"!2Þq#")

%
;

(3)

where #") ¼ ð#1 ) #2Þ" and the same for !), k ¼ 1
2 ðp0

2 "
p2 " p0

1 þ p1Þ and q¼ 1
4ðp1þp0

1"p2"p0
2Þ. Equation (3)

includes contributions from the one-pion-exchange c3, c4
parts and from the short-range couplings d1, d2, where due
to the Pauli principle only the combination d1 þ 2d2 ¼
cD=ðgA!&Þ enters (with !& ¼ 700 MeV).
We study the impact of chiral 2b currents in nuclei at the

normal-ordered 1b level by summing the second nucleon
over occupied states in a spin and isospin symmetric
reference state or core: Jeffi;2b ¼

P
jð1" PijÞJij, where Pij

is the exchange operator. The normal-ordered 1b level is
expected to be a very good approximation in medium-mass
and heavy nuclei, because of phase space arguments [14].
This has also been explored for chiral 2b currents in
nuclear matter [15], but limited to long wavelengths and
without connecting 2b currents and nuclear forces. Taking
a Fermi-gas approximation for the core and neglecting
tensorlike terms ðk + !k" 1

3 k
2!Þ#", we obtain the

normal-ordered 1b current:

Jeffi;2b ¼ "gA!i#
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1
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where ' ¼ 2k3F=ð3!2Þ is the density of the reference state,
kF the corresponding Fermi momentum, and Ið'; PÞ is due
to the summation in the exchange term,

Ið';PÞ¼1"3m 2
!
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FIG. 2 (color online). Nuclear matrix elements M0%$$ for
0%$$ decay. At order Q0, the NMEs include only the leading
p ¼ 0 axial and vector 1b currents. At the next order, all Q2

1b-current contributions not suppressed by parity are taken into
account. At order Q3, the thick bars are predicted from the long-
range parts of 2b currents (cD ¼ 0). The thin bars estimate the
theoretical uncertainty from the short-range coupling cD by
taking an extreme range for the quenching (see text). For
comparison, we show the SM results of Ref. [12] based on
phenomenological 1b currents only. The inset (representative

for 136Xe) shows that the GT part, M0%$$
GT ¼ R

dpCGTðpÞ, is
dominated by p & 100 MeV.
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We show that chiral effective field theory (EFT) two-body currents provide important contributions to

the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the

momentum-transfer dependence that is probed in neutrinoless double-beta (0!"") decay. We then

calculate for the first time the 0!"" decay operator based on chiral EFT currents and study the nuclear

matrix elements at successive orders. The contributions from chiral two-body currents are significant and

should be included in all calculations.
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Weak interaction processes provide unique probes of the
physics of nuclei and fundamental symmetries, and play a
central role in astrophysics [1]. The structure of strongly
interacting systems is explored with " decays and weak
transitions. Superallowed decays allow high precision tests
of the standard model, and neutrinoless double-beta (0!"")
decays probe the nature of neutrinos, their hierarchy, and
mass. Weak processes mediate nuclear reactions that drive
stellar evolution, supernovae, and nucleosynthesis.

Surprisingly, key aspects of well-known decays remain a
puzzle. In particular, when calculations of Gamow-Teller
(GT) transitions of the spin–isospin-lowering operator
gA!#! are confronted with experiment, some degree of
renormalization, or ‘‘quenching’’ q, of the axial coupling
geffA ¼ qgA is needed. Compared to the single-nucleon
value gA ¼ 1:2695ð29Þ, the GT term seems to be weaker
in nuclei. This was first conjectured in studies of "-decay
rates, with a typical q % 0:75 in shell-model (SM) calcu-
lations [2] and other many-body approaches [3]. In view of
the significant effect on weak reaction rates, it is no sur-
prise that this suppression has been the target of many
theoretical works. It is also a major uncertainty for 0!""
decay nuclear matrix elements (NMEs), which probe larger
momentum transfers of order the pion mass, p& m $,
where the renormalization could be different. Here we
revisit this puzzle based on chiral effective field theory
(EFT) currents.

Chiral EFT provides a systematic basis for nuclear
forces and consistent electroweak currents [4,5], where
pion couplings contribute both to the electroweak axial
current and to nuclear interactions. This is already seen
at leading order: gA determines the axial one-body (1b)
current and the one-pion-exchange nucleon-nucleon (NN)
potential. Two-body (2b) currents, also known as meson-
exchange currents, enter at higher order, just like
three-nucleon (3N) forces [4]. As shown in Fig. 1, the
leading axial contributions are due to long-range

one-pion-exchange and short-range parts [5], with cou-
plings c3, c4, and cD , which also enter the leading 3N
(and subleading NN) forces [4,6]. Although the importance
of 2b currents is known from phenomenological studies
[7], chiral currents and the consistency with nuclear forces
have only been explored in the lightest nuclei [5,6,8]. In
this Letter, we present first calculations for GT transitions
and for the 0!"" decay operator based on chiral EFT
currents. A preview of the NMEs (Fig. 2) and the quench-
ing of gA (Fig. 3) shows the great importance of using
chiral 2b currents in nuclei.

In chiral EFT, the nuclear current J%y
L is organized in an

expansion in powers of momentum Q& m $ over a break-
down scale !b& 500 MeV. Consistently with nuclear
forces [4], we count the nucleon mass as a large scale,
corresponding numerically to Q=m & ðQ=!bÞ2, so that the
leading relativistic 1=m corrections are of order Q2, and
1=m 2 terms of order Q4. To order Q2 (and also Q3 in this

counting), the 1b current, J%y
L ðrÞ ¼ PA

i¼1 #
!
i ½&%0J0i;1b !

&%kJki;1b(&ðr! riÞ, has temporal and spatial parts in mo-

mentum space [5]:

J0i;1bðp2Þ ¼ gVðp2Þ ! gA
P ) !i

2m
þ gPðp2ÞEðp ) !iÞ

2m
; (1)

Ji;1bðp2Þ ¼ gAðp2Þ!i ! gPðp2Þpðp ) !iÞ
2m

þ iðgM þ gVÞ
!i + p

2m
! gV

P

2m
; (2)

FIG. 1. Chiral 2b currents and 3N force contributions.
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EFT for lattice nuclei
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FIG. 7. (Color online) Correlation between the three- (BT, in MeV) and four- (Bα , in MeV) nucleon binding energies. The green
[mπ = 140 MeV, (a)], red [mπ = 510 MeV, (b)] and blue [mπ = 805 MeV, (c)] shaded areas are the RGM-LO π↗EFT results for a cutoff in the
interval [2,8] fm−1. For mπ = 140 MeV [panel (a)], the green uncertainty band represents sensitivity to the cutoff and to the renormalization
input (whether BD or 3anp). Experimental data are marked with a red dot, and the blue dotted (dashed) line represents LO /πEFT results from
Ref. [30] using 1anp,

3anp (1anp,BD) as input. The gray shaded areas in (b) and (c) mark lattice uncertainty in BT and Bα . Values for Bα between
the horizontal dashed lines are consistent with all other low-energy data.

in the three-body system is a prominent example of a universal
feature emergent from the unitary limit in the two-body sector.
A pion mass which produces the analog three-body unitarity,
1/2anD → 0, would be a world where the four-body system
exhibits an Efimov-type spectrum.

B. The four-body sector

While there is no lattice data on three-nucleon scattering
observables and thus the results presented in the previous
subsection remain to be verified “experimentally”, i.e., with
a direct LQCD calculation, there is data on the ground-state
energy of the four-nucleon system. In this section, we find the
three- and four-nucleon ground-state energies correlated for
all three mπ . At the physical mπ , the relation is known as the
Tjon line [34] which can again be explained by a variation in
the single LO three-body force parameter.

In Fig. 7, the correlations between the ground-state energies
of the three- and four-nucleon systems are shown. The different
graphs represent results for the three pion masses. We observe
an increase in α-particle binding in step with the increase in
triton binding energy, which is not surprising in pionless EFT
because with fixed two-nucleon input it is the same three-body
force that controls the binding of the three- and four-nucleon
systems. The correlation is manifest in a band, not a line, and
the width of the band measures the theoretical uncertainty
assessed via cutoff variation. With the central value of BT as
input in the three-body force, the dependence on the cutoff
of the α-particle binding energy Bα is shown on panel (c) of
Fig. 5. The slope of the correlation lines—as before, each line
is parametrized by a variation of the D1 three-body interaction
strength—further affects the LO π↗EFT uncertainty. The larger
the slope, the larger the uncertainty in Bα due to the uncertainty
in BT.

For the physical pion mass, our error band does not agree
well with the LO results of Ref. [30] shown in panel (a) of
Fig. 7. In Ref. [30] the α-particle binding energy was found by
a solution of the Faddeev-Yakubovski integral equations with
a Gaussian regulator on the relative incoming (p′) and out-
going (p) momenta, exp[−(p2 + p′2)/#2]. The uncertainty
was assessed in [30] by a cutoff variation # ∈ [8,10] fm−1,

thus excluding a reported stronger cutoff dependence for
# < 8 fm−1. The cutoff variation was then deemed small
compared to the higher-order uncertainty estimated by chang-
ing the two-body input: the two curves obtained from BD
and 3anp are represented by the blue lines in Fig. 7. We have
similarly examined the input dependence: for # = 8 fm−1,
we replaced BD with 3anp and found Bα [upper bound of
the correlation band for mπ = 140 MeV, green area, panel
(a) in Fig. 7] larger by 2 MeV. Even with this extended
variation of the renormalization scheme, the two uncertainty
bands do not overlap. In contrast, the current RGM results
for the Tjon correlation band are consistent with the previous
RGM LO-/πEFT calculation of Ref. [32]. The convergence of
Bα to the physical value when the NLO potential is iterated [32]
suggests that in both LO calculations the theoretical error as
shown by the band widths in Fig. 7 is a lower bound. For our
theoretical error estimates, we interpret RGM and Faddeev
calculations, i.e., different regularizations and model-space
cutoffs, as different renormalization schemes. For Bα and
physical mπ , the uncertainty is thus given by the spread of
results of both methods (difference between short-dashed blue
line and lower edge of the green band).

For unphysical pion masses we indicate, as before, the
uncertainty in LQCD energies by gray bands in panels (b) and
(c) of Fig. 7: a vertical band for BT and a horizontal band for
Bα . Values for Bα in an interval bounded by the intersection of
the upper (lower) edge of the π↗EFT uncertainty band with the
right (left) boundary of the band of LQCD-allowed BT values
are indicated by horizontal dashed lines. This range is slightly
larger than the constraint already given by “experiment” for
mπ = 805 MeV, and slightly narrower for mπ = 510 MeV.
However, given the renormalization-input dependence seen at
physical pion mass, we estimate the theoretical uncertainty by
conservatively doubling the width of the RGM correlation
band, plus 2 MeV as an upper bound of the numerical
uncertainty (see Fig. 1 for this estimate), plus the experimental
LQCD uncertainties in Bα . At mπ = 805 MeV, we observe
an increased uncertainty in Bα for the lowest cutoff value
of # = 2 fm−1 as we did for the doublet neutron-deuteron
scattering lengths (see discussion of the mπ = 805 MeV
results in Figs. 5 and 6). In contrast to that three-nucleon
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Weak interaction processes provide unique probes of the
physics of nuclei and fundamental symmetries, and play a
central role in astrophysics [1]. The structure of strongly
interacting systems is explored with " decays and weak
transitions. Superallowed decays allow high precision tests
of the standard model, and neutrinoless double-beta (0!"")
decays probe the nature of neutrinos, their hierarchy, and
mass. Weak processes mediate nuclear reactions that drive
stellar evolution, supernovae, and nucleosynthesis.

Surprisingly, key aspects of well-known decays remain a
puzzle. In particular, when calculations of Gamow-Teller
(GT) transitions of the spin–isospin-lowering operator
gA!#! are confronted with experiment, some degree of
renormalization, or ‘‘quenching’’ q, of the axial coupling
geffA ¼ qgA is needed. Compared to the single-nucleon
value gA ¼ 1:2695ð29Þ, the GT term seems to be weaker
in nuclei. This was first conjectured in studies of "-decay
rates, with a typical q % 0:75 in shell-model (SM) calcu-
lations [2] and other many-body approaches [3]. In view of
the significant effect on weak reaction rates, it is no sur-
prise that this suppression has been the target of many
theoretical works. It is also a major uncertainty for 0!""
decay nuclear matrix elements (NMEs), which probe larger
momentum transfers of order the pion mass, p& m $,
where the renormalization could be different. Here we
revisit this puzzle based on chiral effective field theory
(EFT) currents.

Chiral EFT provides a systematic basis for nuclear
forces and consistent electroweak currents [4,5], where
pion couplings contribute both to the electroweak axial
current and to nuclear interactions. This is already seen
at leading order: gA determines the axial one-body (1b)
current and the one-pion-exchange nucleon-nucleon (NN)
potential. Two-body (2b) currents, also known as meson-
exchange currents, enter at higher order, just like
three-nucleon (3N) forces [4]. As shown in Fig. 1, the
leading axial contributions are due to long-range

one-pion-exchange and short-range parts [5], with cou-
plings c3, c4, and cD , which also enter the leading 3N
(and subleading NN) forces [4,6]. Although the importance
of 2b currents is known from phenomenological studies
[7], chiral currents and the consistency with nuclear forces
have only been explored in the lightest nuclei [5,6,8]. In
this Letter, we present first calculations for GT transitions
and for the 0!"" decay operator based on chiral EFT
currents. A preview of the NMEs (Fig. 2) and the quench-
ing of gA (Fig. 3) shows the great importance of using
chiral 2b currents in nuclei.

In chiral EFT, the nuclear current J%y
L is organized in an

expansion in powers of momentum Q& m $ over a break-
down scale !b& 500 MeV. Consistently with nuclear
forces [4], we count the nucleon mass as a large scale,
corresponding numerically to Q=m & ðQ=!bÞ2, so that the
leading relativistic 1=m corrections are of order Q2, and
1=m 2 terms of order Q4. To order Q2 (and also Q3 in this

counting), the 1b current, J%y
L ðrÞ ¼ PA

i¼1 #
!
i ½&%0J0i;1b !

&%kJki;1b(&ðr! riÞ, has temporal and spatial parts in mo-

mentum space [5]:

J0i;1bðp2Þ ¼ gVðp2Þ ! gA
P ) !i

2m
þ gPðp2ÞEðp ) !iÞ

2m
; (1)

Ji;1bðp2Þ ¼ gAðp2Þ!i ! gPðp2Þpðp ) !iÞ
2m

þ iðgM þ gVÞ
!i + p

2m
! gV

P

2m
; (2)

FIG. 1. Chiral 2b currents and 3N force contributions.
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DIBARYON REPRESENTATION
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The bound deuteron creates redundancy: between 𝜌> and the normalization:                        
è 2 NLO rearrangements:  

EFFECTIVE RANGE PARAMETERIZATION Z-PARAMETERIZATION
Phillips, Rupak, Savage (2000), Griesshammer (2004)



PIONLESS EFT @ NLO 

PHOTON ABIDES – STATIC PHOTONS

▸ Since the typical momentum is                                , then the 
Coulomb interaction is perturbative:

▸ However, the pp propogator always has to be renormalized (as Q can 
be low).

▸ Photons are added already at LO. 

12

rules for a Coulomb photon propagator:

iDphoton(k) =
i

k2 + �
, (50)

which we draw as a wavy line. � is a small photon mass in order to regulate the singularity
of the propagator at zero momentum transfer.

4.2 Coulomb diagrams power counting

The coulomb diagrams which contribute to p�d scattering are shown in Figure 8. Näıvely
all the diagrams should have an infinite sun of photons exchange. For 3He the typical
momentum is defined by:

Q �

q
MNEB

3He ' 85MeV (51)

The Coulomb parameter ⌘:

⌘(Q) =
↵MN

2Q
<< 1 (52)

In the case that ⌘(Q) << 1 we can treat the sum of the photon exchange as a perturbation
and take into account only one photon exchange.

Figure 8: The possible one-photon exachne diagrams

All the diagrams are proportional to the e fine-structure constant ↵ ⇠ 1/137, which
will be used as an additional expansion parameter.

The power counting for the diagram shown in Figure 8 are( [36, 50]):

• For diagram a:
⇣
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• For diagram b:
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⇤
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• For diagram c:
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Kong and Ravndal (1999), Ruoak (2000), 
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DIBARYON REPRESENTATION OF THREE BODY SCATTERING

13

Neutron-dibaryon scattering:

3.2 Adding a 3-Body Force

In order to find H(⇤) we solve the homogeneous parts of Faddeev equation for 3H without
a 3-body force (Eq. eq. (40)) numerically and use the known binding energy of triton
�E3H = �8.48 MeV to remove the ⇤ dependence of �E3H . For each cuto↵ we found the
right value of H(⇤) for which:

✓
�T

�S

◆
=

1

2

1

qk
Q0

✓
q2 + k2

�MNE

qk

◆✓
y2t · Dt(q) �3ytys · Ds(q)

�3ytys · Dt(q) y2s · Ds(q)

◆
⌦

✓
�T

�S

◆
,

(40)

Equation eq. (40) can be treated as a coupled eigenvectors equation with eigenvalue
c = 1:

cu = K ⇥ u (41)

For each ⇤ we found H(⇤), which solves equation eq. (40) numerically with c(⇤) = 1.
The numerical calculations of H(⇤) and the analytic results are shown in Figure. 6.
Braaten et al have found that c(⇤)2 = 0.879 is the corrections for the three body force.

Fig. 6: (Color online) Values of the 3-body force H(⇤) as a function of the cuto↵ ⇤ in MeV for 3H. The
solid curve shows numerical results for H(⇤), the dashed line is the analytical euslrs from [9]
and the dash-line analytical results multiplied by the ration found in [33].

.

13

Q(a) =
1

2
·

Z 1

�1

1

x+ a
dx (29)

and

�t,s =
MNy2t,s
4⇡

Dt,s (30)

and E is the 3-body(triton) binding energy.
Notice that the quartet channel contributes to the higher orders calculations, therefore

we will not take it into account in those calculations.

3.1.2 Doublet Channel

Now go on to the doublet channel, where the spins of the nucleon and the deuteron couple
to a total spin of 1/2. The spin-singlet dibaryon can now appear in the intermediate state,
which leads to two coupled amplitudes that di↵er in the type of the outgoing dibaryon
as shown in Figure 5. Here the three nucleon spins no longer need to be aligned in the
same direction, which means that a non-derivative three-nucleon interaction is no longer
prohibited by the Pauli principle. For the n�d scattering we are setting : ann = anp = at
and At

np = At
nn.

Figure. 5 shows a diagrammatic representation of the coupled-channel integral equa-
tion for the scattering amplitudes Ad and A

t in the doublet channel.

Fig. 5: (Color online) n-d scattering with a 3-body force. The double line is a propagator of the
two intermediate auxiliary fields Dd (solid) and Dt (dashed). The red bubble represents the
deuterium channel T=0, S=1, while the green bubble represents the triplet channel T=1, S=0.

The Faddeev equation for 3H can be written as [11] (see Appendix A) :

T (k, p, E) =y2t


K1(k, p) +

2H

⇤2

�
+

1

2

Z
�t(q)T (k, q)K1(q, p)

q2

2⇡2
dq �3

yt
ys

Z
�s(q)S(k, q)K1(q, p)

q2

2⇡2
dq+

2H

⇤2

✓Z
�t(q)T (k, q)

q2

2⇡2
dq �

yt
ys

Z
�s(q)S(k, q)

q2

2⇡2
dq

◆�
(31)

11

LO ISOSPIN IND. 3-BODY FORCE

Bedaque, Hammer, van Kolck (1999)



PIONLESS EFT @ NLO 

DIBARYON REPRESENTATION OF THREE BODY SCATTERING WITH COULOMB

14

Proton-deuteron scattering:

König, et al. (2012, 14, 15), Vanasse et al. (2015)



PIONLESS EFT @ NLO 

FROM SCATTERING TO BOUND STATE

15

For a bound state: 
AMPUTATED 

WAVE 
FUNCTION

REGULAR FOR EàEB
NEGLIGIBLE AT POLE

A non-relativistic Bethe-Salpeter equation:

e.g., for 3H:



PIONLESS EFT @ NLO 

FROM SCATTERING TO BOUND STATE

16

For a bound state: 
AMPUTATED 

WAVE 
FUNCTION

REGULAR FOR EàEB
NEGLIGIBLE AT POLE

A non-relativistic Bethe-Salpeter equation:

𝑬, 𝒑 𝚪
AMPUTATED WAVE FUNCTION DEFINED UP TO A CONSTANT. 

BETHE-SALPETER NORMALIZATION CONDITION: 

HOWEVER,  LOSES DIAGRAMMATIC REPRESANTATION
König, Vanasse et al. (2012, 14, 15)



PIONLESS EFT @ NLO 

BOUND STATE NORMALIZATION – DIAGRAMMATIC REPRESENTATION

17

However:

Thus the normalization is equivalent to:



PIONLESS EFT @ NLO 

EASY GENERALIZATION: MATRIX ELEMENT OF A 1-BODY 
OPERATOR
▸ 1-body common operators, e.g., electroweak, create 

transitions inside isospin-spin multiplet. 

▸ It is easy to generalize this:  

18



PIONLESS EFT @ NLO 

APPLICATION: 3H-3HE B.E. DIFFERENCE AT LO

▸ two ways to find the A=3 
b.e. difference:

▸ Find the pole of a non-
perturbative solution of 
the homogenous 
Fadeev equations with 
Coulomb (i.e., 3He w.f.).

▸ Since Coulomb is 
perturbative in 3He, one 
can calculate the energy 
shift in the one photon 
approximation, as a 
matrix element. 

19

LO HIGHER ORDER RENORM. PP PROP.



PIONLESS EFT @ NLO 

APPLICATION: PIONLESS EFT AT NLO FOR BOUND STATE W.F’S

▸ A fully perturbative calculation at NLO means that the all NLO insertions are 
perturbative, i.e., no more than one NLO insertion per diagram. 

▸ This means that they can be stated as matrix elements. 

20

NLO ISOSPIN DEP, 3-BODY FORCE

\

Vanasse et al. (2015)



PIONLESS EFT @ NLO 

A FULLY PERTURBATIVE PIONLESS EFT A=2, 3 CALCULATION @NLO

▸ 4 Leading Order Parameters 

▸ nn and np Scattering lengths: 3S1, 1S0.

▸ pp scattering length.

▸ Three body force strength to prevent Thomas collapse.

▸ 5 Next-to Leading Order parameters:

▸ 2 effective ranges.

▸ Renormalizations of pp and 3NF.

▸ isospin dependent 3NF to prevent logarithmic divergence in the binding 
energy of 3He.

▸ Only 3H and 3He binding energies are “many-body” parameters. All the rest-
very well known scattering parameters.

21



M1 OBSERVABLES IN PIONLESS EFT

MAGNETIC “M1” A=2, 3 OBSERVABLES IN PIONLESS EFT

22

De-Leon, DG (2018) in prep.

µd µ 3H
µ 3Hen + p→ d + γ µ p µn

Pionless: Kirscher, et al. (2017), Vanasse (2017)
chiral: Pastore et al (2013), Bacca and Pastore (2014)



M1 OBSERVABLES IN PIONLESS EFT @ NLO

ADDING THE MAGNETIC PHOTON

▸ 4+2 LO Parameters

▸ 5+2 NLO parameters:

23

LECs can be calibrated by any 2 of the experimentally known A=2, 3 observables, and then to be used
to post-dict the other 2 observables.

7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L
1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L
2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
NTP i

t

�† �
NTP j

t N
�
Bk + h.c

i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

L
µ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:

L0
1 =

e

2MN


�
1

2

⇢t + ⇢s
p
⇢t⇢s

(p � n) + L1
MN

⇡
p
⇢t⇢s

✓
µ�

1

at

◆✓
µ�

1

as

◆�
(97)

L0
2 =

e

2MN

"
L2

2MN

⇡⇢t

✓
µ�

1

at

◆2

� (p + n)

#
(98)

In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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7 magnetic moments

In this section we are examining the consisting of Z⇡EFT for photon-nucleon interaction
in A  3 up to NLO. We are recalibrate the Lec’s from A = 3 matrix elements in order
to calculate the A = 2 matrix elements with the same photon-nucleon interaction and
vice versa. In addition, by deriving theZ⇡EFT using Z-Parameterisation [43,64,65] up to
NLO, we will be able to determinant the e↵ect of the position and residue of the deuteron
pole at NLO in the Q expansion on the matrix elements. We are doing it by focusing
on np radiative capture cross section - �np [44, 66] and the deuteron magnetic moment -
µd [27, 44, 66], for A = 2 and matrix element of both 3H and 3He magnetic moments for
A = 3.

We are staring with the calculation of the matrix element of both 3H and 3He mag-
netic moments. To do so one needs to define the LO and NLO bound state scattering
amplitudes for both 3H and 3He [39,67], in additions it is essential to define the magnetic
interaction inZ⇡EFT and in particular its Hubbard-Stratonovich transformation. The one
body Lagrangian of the magnetic interaction is given by:

L
1
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN (94)

where: 0 = 1
2(p + n) and 1 = 1

2(p � n) are the isoscalar and isovector nucleon

moments in nuclear magnetons, with p = 2.79285µN ,n = 1.91304µN ,
⇣
µN = e

2MN

⌘
.

The magnetic field is conventionally defined B = r⇥A. At NLO there are four-nucleon-
one-photon operators that appear and can contribute to both the deuteron magnetic and
the rate for np ! d� (and for µ3H, µ3He):

L
2
magnetic = e

h
L1

�
NTPA

s N
�† �

NTP i
tN

�
Bi � L2

�
NTP i

t

�† �
NTP j

t N
�
Bk + h.c

i
(95)

where L1 are and L2 are the two body LEC’s for magnetic interaction. By applying
the H-S transformation on eq. (95) (see [44,67]) we get that for the sum of the dibaryon-
dibaryon interaction and the dibaryon-loop interaction the axial-vector has the form:

L
µ
magnetic =

e

2MN
N † (0 + 1⌧3) � · BN � L0

1(t
†s+ s†t) · B + L0

2(t
†t) · B. (96)

Where:

L0
1 =

e

2MN


�
1

2

⇢t + ⇢s
p
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(p � n) + L1
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L0
2 =

e

2MN
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⇡⇢t
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µ�
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◆2

� (p + n)

#
(98)

In addition the three nucleons system contain also a dibaryon-vertex interaction,which

is from the order of O
⇣

q
µ

⌘
. Lmagnetic is written up to NLO where the first term which

donate the one-body interaction is in LO and the other terms (ERE and L1A) which
donate the two-body interactions are in NLO. Therefore to maintain consistency, the
one body interaction will coupled to the NLO three-nucleons scattering amplitude (note
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Nucleon magnetic moments –well known experimentally



M1 OBSERVABLES IN PIONLESS EFT @ NLO

A FULLY PERTURBATIVE PIONLESS EFT CALCULATION OF A=3 M.M @NLO

24

TRITON MAGNETIC MOMENT

\

3HE MAGNETIC MOMENT

\

Using A=3 experimental magnetic moments
to calibrate LECs
-RG invariance!



M1 OBSERVABLES IN PIONLESS EFT @ NLO

A FULLY PERTURBATIVE PIONLESS EFT CALCULATION OF A=3 M.M @NLO

25

TRITON MAGNETIC MOMENT

\

3HE MAGNETIC MOMENT

\

Using experimental 
A=2 or A=3 data
to calibrate LECs

EFFECTIVE RANGE PARAMETERIZATION Z-PARAMETERIZATION



M1 OBSERVABLES IN PIONLESS EFT @ NLO

A FULLY PERTURBATIVE PIONLESS EFT CALCULATION OF A=3 M.M @NLO

26

TRITON MAGNETIC MOMENT

\

3HE MAGNETIC MOMENT

\

Using experimental A=2 or A=3 data
to calibrate LECs

From A=3

From A=2

EFFECTIVE RANGE PARAMETERIZATION Z-PARAMETERIZATION



M1 OBSERVABLES IN PIONLESS EFT @ NLO

A FULLY PERTURBATIVE PIONLESS EFT CALCULATION OF A=3 M.M @NLO

27

TRITON MAGNETIC MOMENT

\

3HE MAGNETIC MOMENT

\

Unnaturally small LECs:

-- small L2 might originate in cEFT, where NLO current is 
pure isovector? 
 
 
 
 
-- small l1 numerical coincidence? 
Both l1 and l2 are essential at NLO.

𝑙CD

𝑙E′
≈
𝐿C
𝐿E
⋅
𝜅K
4𝜅C

≈
𝐿C
20𝐿E



3-BODY OBSERVABLES FROM A=2 LECS

\

M1 OBSERVABLES IN PIONLESS EFT @ NLO

VS. EXP. DATA:
▸ NLO contributions small –
▸ might originate in SU(4) 

symmetry dominance?  
▸ Post-dictions accurate to <1% (5%) 

for Z (ERE) parameterizations.
▸ All observables are consistent with 

each other in the Z-
parameterization.

▸ ERE parameterization postdictions
of A=2 and A=3 inconsistent @ 
NLO.

▸ Theoretical systematic 
uncertainty?

28

2-BODY OBSERVABLES FROM A=3 LECS

\



3-BODY OBSERVABLES FROM A=2 LECS

\

M1 OBSERVABLES IN PIONLESS EFT @ NLO

VS. EXP. DATA:
▸ NLO contributions small –
▸ might originate in SU(4) 

symmetry dominance?  
▸ Post-dictions accurate to <1% (5%) 

for Z (ERE) parameterizations.
▸ All observables are consistent with 

each other in the Z-
parameterization.

▸ ERE parameterization postdictions
of A=2 and A=3 inconsistent @ 
NLO.

▸ Theoretical systematic 
uncertainty?

29

2-BODY OBSERVABLES FROM A=3 LECS

\



THE ELECTROMAGNETIC WORLD

BAYESIAN UNCERTAINTY ESTIMATE
▸ An EFT expansion of an M1 observable

▸ EFT suggests that    . are natural.

▸ 𝛿 is the expansion parameter.

▸ If 𝛿 is known, then a Bayesian approach was developed by 
considering possible values of the next order.

▸ However, the results show that 𝛿 ≈ 0.05 – far less than the naïve 
expansion parameter 𝛿RSTUV ≈

C
W
.

▸ Thus, we need first to assess the expansion parameter. 

30

Cacciari and Houdeau (2011), Furnstahl, Klco, Phillips, Wesolowski (2015), Grießhammer, McGovern, Phillips (2016)



THE ELECTROMAGNETIC WORLD

BAYESIAN UNCERTAINTY ESTIMATE
▸ An EFT expansion of an M1 observable

▸ EFT suggests that    . are natural.

▸ If                  are natural, and independent, and probe the same physics, then they 
can be “Bayesian” i.i.d.

▸ Naturalness means that for many “Bayesian measurements”, they would have mean 
of about 1, and 1-sigma of half an order of magnitude.

▸ Information theory:              are log-normal with average 0 and STD of about 

31

𝜇X ≈ 𝜇X 23 ⋅ 1 + 𝑐$Z𝛿
𝜇W[ ≈ 𝜇W[ 23 ⋅ (1 + 𝑐$\]𝛿)
𝜇W^& ≈ 𝜇W^& 23 ⋅ (1 + 𝑐$\_`𝛿)

𝑌Rbc→Xbe ≈ 𝑌Rbc→Xbe 23
⋅ (1 + 𝑐fghi→Zhj𝛿)



THE ELECTROMAGNETIC WORLD

BAYESIAN UNCERTAINTY ESTIMATE

32

▸ How many ”measurements” do we have in our study?

▸ For Z-parameterization – n=4 observables probe the same physics – a fact 
encapsulated in the similar values of LECs.

▸ For ERE– 2 sets of n=2 observables.  

▸ Thus, on aveeage in both cases, 𝛿k, 𝛿lml ≈ 0.03

▸ However, a 90% degree of belief:

▸ 0.007 < 𝛿lml < 0.13

▸ 0.017 < 𝛿lml < 0.052

𝜇X ≈ 𝜇X 23 ⋅ 1 + 𝑐$Z𝛿
𝜇W[ ≈ 𝜇W[ 23 ⋅ (1 + 𝑐$\]𝛿)
𝜇W^& ≈ 𝜇W^& 23 ⋅ (1 + 𝑐$\_`𝛿)

𝑌Rbc→Xbe ≈ 𝑌Rbc→Xbe 23
⋅ (1 + 𝑐fghi→Zhj𝛿)



THE ELECTROMAGNETIC WORLD

BAYESIAN UNCERTAINTY ESTIMATE
▸ The probability that the NLO value will deviate by Δ from the true value of the 

observable:

▸ Thus, at a 90% degree of belief, the theoretical uncertainty is:

▸ 0.5% for Z parameterization

▸ 10% for ERE-parameterization

33

Grießhammer et al. (2016) Student’s-t with n=4 (n=2) 
samples for Z (ERE) para,



M1 STRUCTURE OF A=2, 3 NUCLEAR SYSTEMS

MAIN POINTS – M1 STRUCTURE
▸ M1 structure of A=2, 3 nuclear systems can be accurately 

and precisely described with ~ 10 LECs!

▸ RG invariant, systematic and perturbative EFT (LO and 
NLO)

▸ Bayesian theoretical uncertainty assessment, based on 
naturalness of EFT expansion.

▸ Precision stems from small NLO contribution.

▸ Origin of small size of LECs is unclear: coincidence, 
SU(4) symmetry, chiral EFT, something else?

34



THE ELECTROMAGNETIC WORLD

M1 STRUCTURE OF A=2, 3 NUCLEAR SYSTEMS
ACCURACY AND PRECISION WITH ~ 10 LECS! 

35

▸ The Z parameterization is superior at this order! 

▸ Enables consistent A=2 and A=3 description!

EREZ exp

EREZ exp
EREZ exp

EREZ exp



PROTON-PROTON FUSION IN THE SUN

36

De-Leon, DG (2018a,b,c) in prep.

De-Leon, Platter, DG, arxiv (2016).
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INTRODUCTION

THE NEW PROBLEM WITH THE SUN

▸ Standard Solar Model (SSM) is a simplified description of the Sun, as inferred by 
helioseismology and solar neutrinos.

▸ A former great success of SSM is the acceptance that new physics was the 
source for the missing neutrinos problem. 

▸ About a decade ago, a new problem arose: “Solar Composition Problem”, 
a downward revision of ≈ 30% in the amount of “metals” in the Sun.

▸ creating, e.g., a ≈ 4𝜎 deviation in helio-seismological observables.

▸ Note: 4𝜎 deviation is just 1.5%...

▸ A precision type of problem demands assessing uncertainties.

38
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HOW WELL DO WE UNDERSTAND THE MICROSCOPIC 
PHENOMENA IN THE SUN?

WHAT IS THE ORIGIN OF CURRENT UNCERTAINTY 
ESTIMATES?

CAN WE IMPROVE THIS KNOWLEDGE?
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Cannot be measured terrestrially – depends on 
theory

Very low proton-proton relative momentum (Erel~6 
keV).

Needed accuracy: ~1%.

the Sun and, as previously discussed, is now in conflict with
the SSM, when recent abundance determinations from 3D
photospheric absorption line analyses are used.

A. Rates and S factors

The SSM requires a quantitative description of relevant
nuclear reactions. Both careful laboratory measurements
constraining rates at near-solar energies and a supporting
theory of sub-barrier fusion reactions are needed.

At the temperatures and densities in the solar interior (e.g.,
Tc ! 15:5" 106 K and !c ! 153 g=cm3 at the Sun’s center),
interacting nuclei reach a Maxwellian equilibrium distribu-
tion in a time that is infinitesimal compared to nuclear
reaction time scales. Therefore, the reaction rate between
two nuclei can be written (Burbidge et al., 1957; Clayton,
1968)

r12 ¼
n1n2

1þ "12
h#vi12: (3)

Here the Kronecker delta prevents double counting in the case
of identical particles, n1 and n2 are the number densities of
nuclei of types 1 and 2 (with atomic numbers Z1 and Z2, and
mass numbers A1 and A2), and h#vi12 denotes the product
of the reaction cross section # and the relative velocity v of
the interacting nuclei, averaged over the collisions in the
stellar gas,

h#vi12 ¼
Z 1

0
#ðvÞv!ðvÞdv: (4)

Under solar conditions nuclear velocities are very well
approximated by a Maxwell-Boltzmann distribution. It fol-
lows that the relative velocity distribution is also a Maxwell-
Boltzmann, governed by the reduced mass $ of the colliding
nuclei,

!ðvÞdv ¼
!

$

2%kT

"
3=2

exp
!
'$v2

2kT

"
4%v2dv: (5)

Therefore,

h#vi12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8

%$ðkTÞ3

s Z 1

0
E#ðEÞ exp

!
' E

kT

"
dE; (6)

where E is the relative kinetic energy and k is the Boltzmann
constant. In order to evaluate h#vi12, the energy dependence
of the reaction cross section must be determined.

Almost all of the nuclear reactions relevant to solar energy
generation are nonresonant and charged particle induced.
For such reactions it is helpful to remove much of the rapid
energy dependence associated with the Coulomb barrier,
by evaluating the probability of s-wave scattering off a point
charge. The nuclear physics (including effects of finite nu-
clear size, higher partial waves, antisymmetrization, and any
atomic screening effects not otherwise explicitly treated) is
then isolated in the S factor, defined by

#ðEÞ ¼ SðEÞ
E

exp½'2%&ðEÞ); (7)

with the Sommerfeld parameter &ðEÞ ¼ Z1Z2'=v, where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=$

p
is the relative velocity and ' the fine-structure

constant (ℏ ¼ c ¼ 1). Because the S factor is slowly varying,
one can extrapolate SðEÞ more reliably from the range of
energies spanned by data to the lower energies characterizing
the Gamow peak.

A substitution of Eq. (7) into Eq. (6) followed by a Taylor
expansion of the argument of the exponentials then yields
(Bahcall, 1989)

h#vi12¼
ffiffiffiffiffiffiffiffiffiffi
2

$kT

s
"E0

kT
f0Seff exp½'3E0=ðkTÞ)

¼1:301"10'14 cm3=s
!
Z1Z2

A

"
1=3

f0
Seff

MeVb
T'2=3
9

"exp½'3E0=ðkTÞ); (8)

where

E0

kT
¼ ð%Z1Z2'=

ffiffiffi
2

p
Þ2=3½$=ðkTÞ)1=3;

"E0

kT
¼ 4

ffiffiffiffiffiffiffiffiffi
E0

3kT

s
; A ¼ A1A2

A1 þ A2
;

and

Seff ¼ Sð0Þ
!
1þ 5kT

36E0

"
þ S0ð0ÞE0

!
1þ 35kT

36E0

"

þ 1

2
S00ð0ÞE2

0

!
1þ 89kT

36E0

"
:

E0, the Gamow peak energy where the integrand of Eq. (6)
takes on its maximum value, is the most probable energy of
reacting nuclei. "E0 corresponds to the full width of the
integrand at 1=e of its maximum value, when approximated
as a Gaussian. Equation (8) includes a factor f0, discussed
below, to correct for the effects of electronic screening on
nuclear reactions occurring in the solar plasma.

Rates in an astrophysical plasma can be calculated given
SðEÞ which by virtue of its slow energy dependence, in the
case of nonresonant reactions, can be approximated by its
zero-energy value Sð0Þ and possible corrections determined
by its first and second derivatives, S0ð0Þ and S00ð0Þ. It is these
quantities that we need to determine by fitting laboratory
data, or in cases where such data cannot be obtained, through
theory. For most of the reactions contributing to the pp
chain and CNO bicycle, data have been obtained only for
energies in regions above the Gamow peak, e.g., typically
E * 100 keV, so that extrapolations to lower energies de-
pend on the quality of the fit to higher-energy data. Ideally
one desires a fitting function that is well motivated theoreti-
cally and tightly constrained by the existing, higher-energy
data. The purpose of this review is to provide current best
values and uncertainties for Sð0Þ and, if feasible, its
derivatives.

S-factor uncertainties, when folded into SSM calculations,
then limit the extent to which that model can predict observ-
ables, such as the depth of the convective zone, the sound
speed profile, and the neutrino fluxes. It has become custom-
ary in the SSM to parametrize the consequences of input
uncertainties on observables through logarithmic partial
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Abstract. We review the results of the most recent calculation for the astrophysical S-factor
of the weak proton-proton capture reaction, over a range for the center-of-mass relative energy
of 0–100 keV. The so-called chiral effective field theory approach is used, where the chiral two-
nucleon potential is derived up to next-to-next-to-next-to leading order and is augmented by the
full electromagnetic interaction. The low-energy constants (LEC’s) entering the weak current
operators are fixed so as to reproduce the A = 3 binding energies and magnetic moments, and
the Gamow-Teller matrix element in tritium β-decay. Contributions from S and P partial waves
in the incoming two-proton channel are retained. The S-factor at zero energy is found to be ∼

1% larger than the value reported in the literature, mostly due to the P -waves contributions.

1. Introduction
The proton weak capture on protons, i.e., the reaction 1H(p, e+νe)2H (hereafter labelled pp), is
the most fundamental process in stellar nucleosynthesis: it is the first reaction in the pp chain,
which converts hydrogen into helium in main sequence stars like the Sun. Its reaction rate is
expressed in terms of the astrophysical S-factor, S(E), where E is the two-proton center-of-mass
(c.m.) energy, by the relation

S(E) = E exp(2π η)σ(E) , (1)

where η = α/vrel, α being the fine structure constant and vrel the pp relative velocity, and σ(E)
is the pp weak capture cross section. The energy-dependence of S(E) is often parametrized as [1]

S(E) = S(0) + S′(0)E + S′′(0)E2/2 + · · · , (2)

where S(0), S′(0) and S′′(0) are the zero-energy value of the S-factor, its first and second
derivatives, both evaluated at E = 0. At the center of light stars like the Sun, with temperature
of the order of 1.5 × 107 K, the Gamow peak is at E ≃ 6 keV, while in larger-mass stars,
whose central temperature becomes of the order of 5 × 107 K, the Gamow peak turns out to
be E ∼ 15 keV. At these energies, the reaction cross section cannot be measured in terrestrial
laboratories, and it is necessary to rely on theoretical predictions. The many studies on S(0),
and the few for S′(0) and S′′(0), have been extensively reviewed in Ref. [1]. The currently
recommended value for S(0), (4.01 ± 0.01) × 10−23 MeV fm2 [1], is the average of values
obtained within three different approaches, the “potential model” approach (PMA), “hybrid
chiral effective field theory” (χEFT*) and “pionless effective field theory” (\πEFT). The first
one uses phenomenological realistic models for the nuclear potential, fitted to reproduce the
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in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as

d

H
/ R%0:32

pd ;
3He

H
/ R0:38

pd ;
7Li

H
/ R0:59

pd ; (27)

where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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in quadrature, we find that the current best estimates for
S11ð0Þ are

4:01ð1# 0:009Þ $ 10%25 MeV b potential models;

4:01ð1# 0:009Þ $ 10%25 MeV b EFT&;

3:99ð1# 0:030Þ $ 10%25 MeV b pionless EFT:

(24)

The larger uncertainty in the pionless EFT result is due to the
relatively weak constraints on L1;A that can be imposed within
two-nucleon systems, but, as mentioned, this situation will
soon be improved. The agreement of the central values
obtained in the potential model and EFT* indicates the
robustness of the results as long as the two-body current is
constrained by tritium ! decay. Meanwhile, the agreement of
the error estimates in the two approaches is primarily due to
the fact that, as explained above, the dominant part of the
uncertainty has been estimated using the same argument.
Based on the result obtained in the potential model and
EFT*, we adopt as the recommended value

S11ð0Þ ¼ 4:01ð1# 0:009Þ $ 10%25 MeV b: (25)

We adopt the Bahcall and May (1969) value for S011ð0Þ

S011ð0Þ ¼ S11ð0Þð11:2# 0:1Þ MeV%1: (26)

Bahcall and May (1969) also estimated dimensionally that
S0011ð0Þ would enter at the level of (1%, for temperatures
characteristic of the solar center. As this is now comparable to
the overall error in S11, we recommend that a modern calcu-
lation of S0011ð0Þ be undertaken.

IV. THE dðp;!Þ3He RADIATIVE-CAPTURE REACTION

The radiative capture of protons on deuterium is the second
reaction occurring in the pp chain. Because this reaction is so
much faster than the pp weak rate discussed in the previous
section, it effectively instantaneously converts deuterium to
3He, with no observable signature. Thus uncertainties in its
rate have no consequences for solar energy generation. By
comparing the pp and dðp;"Þ3He rates, one finds that the
lifetime of a deuterium nucleus in the solar core is (1 s, and
that the equilibrium abundance of deuterium relative to H is
maintained at (3$ 10%18.

However, the dðp;"Þ3He reaction plays a more prominent
role in the evolution of protostars. As a cloud of interstellar
gas collapses on itself, the gas temperature rises to the point
of dðp;"Þ3He ignition, (106K. The main effect of the onset
of deuterium burning is to slow down the contraction and, in
turn, the heating. As a consequence, the lifetime of the
protostar increases and its observational properties (surface
luminosity and temperature) are frozen until the original
deuterium is fully consumed (Stahler, 1988). Because of the
slow evolutionary time scale, a large fraction of observed
protostars are in the d-burning phase, while only a few are
found in the earlier, cooler, rapidly evolving phase. A reliable
knowledge of the rate of dðp;"Þ3He down to a few keV (the

Gamow peak in a protostar) is of fundamental importance for
modeling protostellar evolution.

The pd reaction also plays an important role in big bang
nucleosynthesis, which begins when the early Universe has
cooled to a temperature of (100 keV. The uncertainty in the
pd reaction in the relevant energy window (25–120 keV)
propagates into uncertainties in the deuterium, 3He, and 7Li
abundances, scaling as
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where Rpd is the value of S12 relative to the fiducial value in

Cyburt (2004). Thus a 10% error in the pd capture rate
propagates into roughly 3.2%, 3.8%, and 5.9% uncertainties
in the light element primordial abundances, d, 3He, and 7Li,
respectively.

A. Data sets

The extensive experimental data sets for pd radiative
capture include total cross sections and spin polarization
observables at center-of-mass energies E ranging from sev-
eral tens of MeV to a few keV, covering all the relevant
astrophysical energies. In the regime E & 2 MeV (below
the deuteron breakup threshold), the relevant experimental
data include Griffiths et al. (1962, 1963), Bailey et al.
(1970), Schmid et al. (1995, 1996), Ma et al. (1997), and
Casella et al. (2002). The Griffiths et al. (1963) and Bailey
et al. (1970) low-energy data may be(15% too high because
of the use of incorrect stopping powers (Ma et al., 1997;
Schmid et al., 1995, 1996). Also, the Schmid et al. (1995),
(1996) data sets may have not propagated their energy-
dependent systematic uncertainties. In Fig. 3, the data for
S12 used for the best fit in Sec. IV.C are plotted together with
theoretical predictions of Marcucci et al. (2005). The ob-
served linear dependence of S12 on E at low energies as well
as the angular distributions of the cross section and polariza-
tion observables indicates that the dðp;"Þ3He reaction pro-
ceeds predominantly through s- and p-wave capture,
induced, respectively, by magnetic (M1) and electric (E1)
dipole transitions. The M1 transitions (proceeding through
2S1=2 and

4S3=2 pd channels) are especially interesting, as the

one-body M1 operator cannot connect the main s-state com-
ponents of the pd and 3He wave functions at low energies.
Because of this ‘‘pseudo-orthogonality,’’ only the small com-
ponents of the wave functions contribute in the impulse
approximation (IA). In contrast, as exchange current opera-
tors are not similarly hindered, their matrix elements are
exceptionally large relative to those obtained with the one-
body M1 operator. The suppression of matrix elements cal-
culated in the IA and their consequent enhancement by
exchange current contributions are a feature common to other
M1-induced processes in A ¼ 3 and 4 systems, such as the nd
and n3He radiative captures at thermal neutron energies.

B. Theoretical studies

The most extensive and recent theoretical studies of the
dðp;"Þ3He reaction at low energies have been carried out by
Marcucci et al. (2005). The calculated S12, shown in Fig. 3, is
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SFII recommended value (2011):

Marcucci et al., PRL (2013), cEFT :

Table 3. Cumulative S- and P -wave contributions to S(0) in units of 10−23 MeV fm2. The
results labelled “χEFT(500)” and “χEFT(600)” have been obtained within the χEFT approach
with two different cutoff values, 500 and 600 MeV. The results obtained within the PMA are
also shown. The theoretical uncertainties are given in parentheses and are due to the fitting
procedure adopted for the LEC’s (or g∗A within the PMA) in the weak current.

1S0 · · · + 3P0 · · · + 3P1 · · · + 3P2

χEFT(500) 4.008(5) 4.011(5) 4.020(5) 4.030(5)
χEFT(600) 4.007(5) 4.010(5) 4.019(5) 4.029(5)

PMA 4.000(3) 4.003(3) 4.015(3) 4.033(3)

In conclusion, the χEFT results of table 3 can be summarized in the conservative range
S(0) = (4.030±0.006)×10−23 MeV fm2, with a P -wave contribution of ≃ 0.2×10−23 MeV fm2.

Finally, we show in figure 2 the energy dependence of S(E) in the energy range 2 – 100 keV,
as obtained within the χEFT approach. The S- and (S + P )-wave contributions are displayed
separately, and the theoretical uncertainty is included—the curves are in fact very narrow bands.
As expected, the P -wave contributions become significant at higher values of E. From these
results, a least-squares polynomial fit to S(E) has been performed up to order O(E2), i.e., by
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Figure 2. (Color online) Energy dependence of S(E) in the range 2 – 100 keV. The S- and
(S + P )-wave contributions are displayed separately. In the inset, S(E) is shown in the range
3–15 keV.
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FIG. 2. (Color online). The green band indicates the spread
of S(0)-values due to variations in Tmax

Lab used in the opti-
mization of the NNLO chiral force, as well as the propagated
statistical uncertainties of all LECs and gA, as a function of
the cuto↵ ⇤EFT in the �EFT. ⇤EFT was varied between 450
MeV and 600 MeV in steps of 25 MeV. The cuto↵ in the
current and the interaction sectors were always equal to each
other. This figure demonstrates that the S-factor is relatively
insensitive to reasonable variations in the cuto↵.

FIG. 3. (Color online). Correlation matrix of the zero-energy
S-factor (S(0)), the squared radial wave function overlap
(⇤2), and the ratio of the 2B and 1B current matrix elements
(�2B). We also show the correlations between theese quan-
tities and the ground state energies (E), point-proton radii
(rpt�p) for A = 2, 3, 4 nuclei as well as the matrix element of
the reduced axial-vector current (E1

A) of the triton �-decay
and the quadrupole moment (Q(2H)) and D-state probability
(D(2H)) of the deuteron.

tract those with the spline Jacobians extracted in this
work. A graphical representation of the relevant correla-
tions is shown in Fig. 3. This particular correlation ma-
trix is based on the NNLO interaction with ⇤EFT = 500
MeV and T

max
Lab = 290 MeV. The same pattern emerges

with any of the 42 di↵erent interactions employed in this
work. As expected from the Q-value dependence of the
phase space volume, the S-factor strongly anticorrelates
with the deuteron ground state energy. It is noteworthy

that the squared radial overlap ⇤2 of the deuteron and
relative-proton wave functions does not correlate signif-
icantly with S(0). This indicates that the dependence
of the S-factor on binding energy indeed occurs pre-
dominantly through the phase space. We also observe
that an increase in the deuteron radius would increase
the radial overlap with the proton-proton wave function.
The quadrupole moment of the deuteron and its D-state
probability anti-correlate with ⇤2. Here, it is important
to point out that our squared radial overlap only con-
tains the 1B piece of the current operator. Thus it only
measures the overlap between S-wave components. A
smaller D-state probability implies a larger S-state prob-
ability. Consequently, the anti-correlation between ⇤2

and Q(2H)/D(2H) mostly traces the same underlying S-
wave component of the deuteron wave function. Finally,
we observe a strong correlation between the strength of
the 2B current and the reduced axial-vector current of
the triton �-decay. In fact, the LEC cD plays a domi-
nant role for both currents. In conclusion, we quantify
all expected correlations and confirm that they emerge
in our statistical analysis.

IV. RESULTS AND DISCUSSION

We have calculated the pp-fusion S-factor using �EFT
and carried out a state-of-the-art uncertainty analysis by
employing a family of mathematically optimized chiral
potentials at NNLO with consistently renormalized cur-
rents. We focused on the threshold S-factor and have
therefore only considered initial S-wave pp scattering. To
O(↵), we obtain a threshold S-factor

S(0) = (4.081+0.024
�0.032) ⇥ 10�23 MeV fm2

, (19)

where we combined, for simplicity, all uncertainties
by adding them in quadrature, and then taking the
min/max values of the green band in Fig 2. This error
represents all uncertainties originating from �EFT, the
computational method, and the statistical extrapolation
to obtain the threshold value. The e↵ects of higher or-
der electromagnetic contributions that are proportional
to ↵

2 remains to be accounted for. These corrections
lower the threshold S-factor by about a percent [6, 7, 9].
From the energy dependence of these corrections, calcu-
lated in Ref. [6], we estimate a 0.84% reduction in S(0).
The inclusion of these electromagnetic e↵ects leaves the
uncertainties that are due to the strong interaction un-
changed, and the final result becomes

Scor(0) = (4.047+0.024
�0.032) ⇥ 10�23 MeV fm2

. (20)

For comparison, the uncertainty presented here is four
times larger than the estimate reported in the pioneer-
ing �EFT calculation in Ref [9]. The comparison of the
central values, however, is not so straightforward since
their calculation includes additional terms in the cur-
rent operator involving additional LECs, namely g4S and
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underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
body axial currents [16]. The uncertainty, which is al-
most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
dence, the small number of parameters as well as their
obvious relation to measured quantities, e.g., nucleon-
nucleon scattering length and e↵ective ranges, and the
natural pertubative expansion make ⇡/EFT ideal for pre-
dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761

�
+14

�17

�

[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
A

i=1
⌧
(a)

i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT

(a)

= �gA

P
A

i=1
~�i⌧

(a)

i
(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value

GTn = hnkGT(�)
kpi =

p
3 · ( 1

gA
)

GTemp

3H
= h

3HkGT(�)
k
3Hei =

p
3 · ( 1.213±0.002

gA
)

This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].

SETTING UP ⇡/EFTTO NEXT-TO-LEADING

ORDER

The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
body axial currents [16]. The uncertainty, which is al-
most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
dence, the small number of parameters as well as their
obvious relation to measured quantities, e.g., nucleon-
nucleon scattering length and e↵ective ranges, and the
natural pertubative expansion make ⇡/EFT ideal for pre-
dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761
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[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
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i=1
⌧
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i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT
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P
A

i=1
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(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value
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3 · ( 1

gA
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GTemp
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= h

3HkGT(�)
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3Hei =
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3 · ( 1.213±0.002
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This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].

SETTING UP ⇡/EFTTO NEXT-TO-LEADING

ORDER

The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
body axial currents [16]. The uncertainty, which is al-
most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
dence, the small number of parameters as well as their
obvious relation to measured quantities, e.g., nucleon-
nucleon scattering length and e↵ective ranges, and the
natural pertubative expansion make ⇡/EFT ideal for pre-
dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
this pivot nuclear astrophysics theoretical challenge. For
the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761
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[23] and gA = 1.2766(25)(05)[24].
Calculation of weak nuclear reaction rates includes the

evaluation of matrix elements of the weak nuclear cur-
rent between initial and final nuclear wave function. The
weak current includes a polar vector part V(a)

µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
(a)

µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡

p
2MkBTR ⇡ 0.8

(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
(⇡ 20 keV), i.e., qR . 10�4. In these kinematics, the

conservation of vector current hypothesis simplifies the
weak interaction polar-vector current to the Fermi op-

erator V
(a)

0
= F =

P
A

i=1
⌧
(a)

i
, i.e. a sum of the isospin

lowering, raising or projection of each of the A nucle-
ons in the nucleus, and the axial-vector is given by a
Gamow-Teller (GT) operator, which is usually written
in a form that neglects correlations between the nucleons
~A
(a) = ~GT

(a)

= �gA

P
A

i=1
~�i⌧

(a)

i
(~�i is the spin oper-

ator of the i-th nucleon). The low momentum transfer
suggests that the protons in pp-fusion are essentially in
relative s-wave angular momentum (p-wave relative state
contributes at the few per-mille level to the cross section
[15]). As a result, S

11(0) and the comparative triton
half-life (fT1/2)t[25], are computed in the following way

(fT1/2)t =
2(fT1/2)0+!0+

h3HekF(+)
k3Hi2 + fA

fV
h3HekGT(+)

k3Hi2
,

(2)

S
11(0) = 4.01. (3)

Here, (fT1/2)0+!0+ = 3071.4 ± 0.8s [26], and
fA/fV = 1.00529 [27] accounts for the small di↵er-
ence in the statistical rate function between vector and
axial-vector transitions. The comparative half-life of
the triton (fT1/2)t = 1129.6 ± 3.0, together with a
theoretical estimate for the minor (about one per-mille)
isospin breaking e↵ect in the F transition, an empirical
value
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This value allows to quantify the many-nucleon weak
correlations in this transition, which, augmented by a
theory for these correlations, can be used to predict
S
11(0) [15, 27, 28].
In order to accomplish this consistently, one needs to

connect the many-body weak correlations consistently
to QCD. Here, we use ⇡/EFT to next-to-leading order
(NLO). We solve the nuclear problem as a scattering
problem. A simplification is achieved by using Hubbard-
Stratonovich transformation, introducing an auxiliary
di-baryon field into the NLO microscopic Lagrangian
[29, 30].
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ORDER

The nuclear system at low-energies is characterized by
the properties of two body clusters, i.e., the scattering
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underlying theory, e.g., lattice QCD calculations [13, 14],
or by fitting to low-energy experiments.

Recently, a calculation of S11 for proton energies up to
100 keV was calculated [15], using “chiral” EFT (�EFT )
potentials. A state-of-the-art calculation led to a recom-
mendation of S11(0) = (4.03 ± 0.0015) · 10�23 MeV fm2,
using the consistency of three nucleon forces and two-
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most an order of magnitude better than previous recom-
mendation, is based only on the di↵erence between the
two variants of �EFTpotentials.

The renormalizability, which ensures cuto↵ indepen-
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dictions of low energy nuclear reactions with reliable un-
certainty estimates. This makes pp-fusion an ideal case
for ⇡/EFT [17], however, an obstacle is found in the cali-
bration of a next-to-leading order two-body low-energy-
constant L1,A, which is the strength an axial probe cou-
ples to a contact of two nucleons [17]. L1,A appears in any
weak reaction with a Gamow-Teller contribution. How-
ever, at the two body level the constraints are not ideal.
In particular, the stringent consistent constraint to date
comes from ⌫̄ � d scattering [17, 18], a fact which lim-
ited the prediction accuracy of ⇡/EFT for solar pp-fusion
[19, 20].

In the current letter, we progress on several fronts of
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the first time, we calculate a three body weak � de-
cay, namely 3H !

3 He + ⌫̄e + e
�, and use it to fix the

two-body-contact L1,A, needed to predict pp-fusion rate.
We complement the prediction with theoretical uncer-
tainty, as well as experimental systematic uncertainty,
which is substantially larger than previously estimated,
due to contradicting measurements of the axial constant
of the nucleon gA, leading to systematic uncertainty be-
tween PDG recommended value gA = 1.2701(25) [21] and
newer estimates gA = 1.2756(30) [22], gA = 1.2761
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µ , which in
the standard model is an isospin rotation of the iso-vector
electromagnetic current to iso-spin projection a = 0, ±1,

as well as an axial vector part A
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µ . Additional sim-
plification is achieved by considering the low momen-
tum transfer q compared to the nuclear length scale,
e.g., r.m.s radius R ⇡ 1 fm, in both pp-fusion, where
the momenta of the protons is dictated by solar tem-
perature kBT ⇡ 1.5 keV, i.e., qR ⇡
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(M ⇡ 939MeV/c2 is the mass of the nucleon), and 3H
decay, where q is smaller than the Q-value of the decay
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contributes at the few per-mille level to the cross section
[15]). As a result, S
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(NLO). We solve the nuclear problem as a scattering
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!"" 0 astrophysical	
S-factor	[4. 6]

Short	range	
contributions

LO NLO,	
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corrections
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AB = 1.271 AB = 1.275	

AB = 1.271 AB = 1.275	

3H decay calculation, fixing L1AAstrophysical pp fusion S factor.



A CALCULATION OF PP-FUSION

THUS,
▸ Benchmark: using the same parameters as cEFT calc. 

(caveat – pending mistake in cD)

▸ Consistent also with NPLQCD.

▸ However, recent measurements of the neutron half life 
indicate that a much higher 𝑔� is favored 
[UCNA col. (2013,17)]
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𝑆cc
�l��(Acharya	et	al. ) 4.081"K.KWEbK.KE� ×10"EWMeV ⋅ 	 fmE

𝑆cc 4.076×10"EWMeV ⋅ 	fmE

𝑆cc 0, 𝑔� = 1.2701 4.09 ±�� 0.06 ±W^	���'	�*'& 0.02×10"EWMeV ⋅ 	fmE PDG	
recom.	

𝑆cc 0, 𝑔� = 1.2766 4.22 ±�� 0.06 ±W^	���'	�*'& 0.02×10"EWMeV ⋅ 	fmE UCNA

Still missing the theoretical systematic uncertainty…
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qReproducing other 
experimentally measured 
reactions.

qQuantitative error 
assessment. 
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THE ELECTROMAGNETIC WORLD

ELECTROMAGNETIC ANALOGUES TO THE WEAK OBSERVABLES
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48µd µ 3H
µ 3Hen + p→ d + γ

3H→3 He + e− +νe

e en

p + p→ d +νe + e
+

e en

n→ p + e− +νe

e

νe

µ p µn

Weak	observables

EM	observables

EM Weak
1-b (𝜇R,c)	𝜎, 𝜎𝜏K 𝑔�	𝜎𝜏b,"
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3H and 3He are very similar! Operator structure similarity!

Similarity in LEC calibration

The GT operator similarity to the M1V operator suggests that one can 
adopt the uncertainty assessment from the E&M sector!
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gA systematic 
uncertainty

theoretical 
uncertainty

gA
stat.
unc.

3H 
halflife
syst.
unc.

𝑆CC 𝑔� = 1.2701 = 4.09 ± 0.02 ±�� 0.06 ±  0.02 ⋅ 10"EWMeV ⋅ 	fmE

𝑆CC 𝑔� = 1.2766 = 4.22 ± 0.02 ±�� 0.06 ±  0.02 ⋅ 10"EWMeV ⋅ 	fmE

A predicted increase of 2-5% over SFII
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)
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+
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(
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+
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]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′
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ϵ
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−
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)(
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
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∫
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L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),
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me
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where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
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[1], where CT /C A (C ′
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the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since
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(allowed) ∝ '(ϵ)
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1 + b
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The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′
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C A
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5
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2
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(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

286 A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288

than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
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]}
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

∝ 𝑞�

∝ 𝑞�"C

∝ 𝑞�

∝ 𝐸�� 



PRECISION B-DECAY STUDIES TO PINPOINT BSM EFFECTS 55

286 A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288

than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
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∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me
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+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
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, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)
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+
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]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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0

��� Ji
E���

2

+
|CA|

2 +
���C

0

A

���
2

2
3

✓
1�

1

3
⌫̂ · ~�

◆ ���
D
Jf

���L̂A
1

��� Ji
E���

2

9
>=

>;
+O (q)

C
A
1 M

V
1 L

V
0 _ (qr)1

3 ·

⇣
P

2mN

⌘1

d!
V�A
�⌥

d✏
d⌦k
4⇡

d⌦⌫
4⇡

=
4

⇡2
(Q� ✏)2 k✏F± (Zf , ✏)

1

2Ji + 1
·

·

8
><

>:

|CV |
2 +

���C
0

V

���
2

2

h
1 + �

0+

1 +
⇣
1 + �

0+

�⌫

⌘
⌫̂ · ~�

i ���
D
Jf

���ĈV
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

i.e., for general Gamow-Teller transition:
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],
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final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-
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1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
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∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),
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where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since
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(
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)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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(
ν̂ · k̂
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. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1
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[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:
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with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
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∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)
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dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
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∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me
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+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′
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)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.

Thus, measurements of correlation coefficients 
indicative to BSM tensor type of couplings
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e.g., allowed transitions

Note (2):

a) Sensitive to combination of tensor couplings, with spectrum averaging of energy

b) Spectrum, i.e., integration over angle, sensitive only to Fierz term, i.e., insensitive 
to fully right handed couplings.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
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angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2
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[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
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| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)
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where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),
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vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since
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(allowed) ∝ '(ϵ)
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The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),
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beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
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T is possible, allowing 

studies of right and left handed neutrino couplings.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
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k⃗ and direction β⃗ = k⃗
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'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,
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the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
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[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
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final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
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where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
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quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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right handed case, which arises due to quadratic dependence on 
CT − C ′

T .
In addition to resolution effects, energy calibration effects may 

also play a role in the extraction of the spectrum. We performed 
the same analysis using an energy calibration offset of ±0.5%, no 
effect was observed for the extracted parameters. We note that 
energy calibration errors are significant when measuring endpoint 
energies, where the spectral shape is not parametrized. In the case 
of a measurement of the full spectrum, it is the resolution effects 
(which move events between energy bins in a non-trivial manner) 
that play an important role. We further note that since the end-
point energy does not depend on the exact shape of the spectrum 
an additional constraint may be imposed in the fitting procedure 
by using measured endpoint energies.

In conclusion, we have proposed the β-spectrum of unique 
first-forbidden decay as a novel probe for beyond the standard 
model couplings in the weak interaction. Analyzing possible sys-
tematic uncertainties demonstrates that such studies may surpass 
the accuracy level of correlation measurements in allowed β de-
cays, and, contrary to allowed β decays, enable simultaneous ex-
traction of exotic tensor couplings to both right and left handed 
neutrinos in an uncorrelated manner. Of course, the use of a dif-
ferent experiment to study BSM couplings allows the examination 
of systematic uncertainties in the experiments, particularly essen-
tial in precision studies of such minute effects. Our initial study 
shows that similar results are expected in other forbidden decays.

First-forbidden unique decays are abundant in nature [27], vary 
in Q -values, and are amenable for precision spectra measure-
ments, e.g., as studied in antineutrino mass effects on the endpoint 
of the first forbidden unique decay of 187Re [28,29], or in search 
for hints Lorentz violation in the decay rate [30]. Thus, our pre-
diction increases significantly the number of relevant experiments 
searching BSM effects, and in particular the dimension six tensor 
type corrections. One such potential measurement which may be 
carried out is the beta decay of 90Y, with an endpoint energy of 
∼ 2.3 MeV, and may be easily produced via the 90Zr(n,p) reaction 
in copious amounts.
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than a precise determination of the β–ν correlation coefficient, 
demand neither trapping nor cooling, and require a single ob-
servable to characterize. Additionally, a measurement of the full 
β spectrum, is less amenable to detector calibration and resolution 
issues, which plague beta endpoint measurements. More impor-
tantly, they provide constraints on exotic couplings and thus allow 
identifying systematic errors, a valuable feature for precision stud-
ies.

In order to show the difference between allowed and unique 
first-forbidden decays, it is convenient to write the general differ-
ential distribution of β-electron (positron) of energy ϵ , momentum 
k⃗ and direction β⃗ = k⃗

ϵ , and neutrino ν̄(ν) of momentum ν⃗ in a β∓

decay process, as follows:

d5ωβ∓

d%k/4πd%ν/4πdϵ
= '(ϵ) · ((q, β⃗ · ν̂). (1)

With q⃗ = k⃗ + ν⃗ is the momentum transfer in the process.
'(ϵ) is a nuclear independent part, related to the electrostatic 

interaction between the β particle and the decaying nucleus,

'(ϵ) = 2G2

π2

2) J + 1
) J (2 J i + 1)

(ϵ0 − ϵ)2kϵ F (± )(Z f ,ϵ), (2)

with G the Fermi constant, J i is the total angular momentum of 
the decaying (mother) nucleus, ) J is the difference between the 
angular momenta of the mother and daughter nuclei, Z f is the 
charge of the daughter nucleus, and ϵ0 = 2Q +Q 2+m2

e
2Q +2mr

[15] is the 
maximum electron energy (me and mr are electron and daugh-
ter nucleus masses, respectively, Q is the decay Q -value). The 
deformation of the lepton wave function due to the long-range 
electromagnetic interaction with the nucleus is taken into account 
in the Fermi function F (± ) for a β(± ) decay [16,17],

F (± )(Z f ,ϵ) = 2(1 + γ0)(2ϵR f )
2(γ0− 1) | +(γ0 + iρ) |2

| +(2γ0 + 1) |2 eπρ (3)

with α ≈ 1/137 the fine structure constant, R f the radius of the 
final nucleus, ρ = ∓ αZ f /β f (β f is the momentum to energy ra-

tio of the β particle), and γ0 =
√

1 − (αZ f )2 (+(x) is the Gamma 
function).

Assuming the Standard Model (V − A) coupling, the second 
term in Eq. (1), i.e., the function ((q, β⃗ · ν̂), depends on the nuclear 
wave functions, and is usually written using a multipole expansion 
[18],

((q, β⃗ · ν̂)

= ) J
2) J + 1

⎧
⎨

⎩

[
1 −

(
ν̂ · q̂

)(
β⃗ · q̂

)]∑

J≥1

(
|⟨∥Ê J ∥⟩|2 + |⟨∥M̂ J ∥⟩|2

)

± q̂ ·
(
ν̂ − β⃗

)∑

J≥1

2ℜ⟨∥Ê J ∥⟩⟨∥M̂ J ∥⟩∗

+
∑

J≥0

[[
1 − ν̂ · β⃗ + 2

(
ν̂ · q̂

)(
β⃗ · q̂

)]
|⟨∥L̂ J ∥⟩|2

+
(

1 + ν̂ · β⃗
)

|⟨∥Ĉ J ∥⟩|2

− 2q̂ ·
(
ν̂ + β⃗

)
ℜ⟨∥Ĉ J ∥⟩⟨∥L̂ J ∥⟩∗

]}
, (4)

where, ⟨∥Ô J ∥⟩, is the reduced matrix element of a rank J spher-
ical tensor operator Ô J , between the daughter and mother wave 
functions.

The multipole operator decomposition of the nuclear current, 
viz. the Coulomb, electric, magnetic, and longitudinal operators:

Ĉ J M(q) =
∫

dx⃗ j J (qx)Y J M(x̂)Ĵ0(x⃗) (5)

Ê J M(q) = 1
q

∫
dx⃗∇⃗ × [ j J (qx)Y⃗ J J M(x̂)] · ˆ⃗J (x⃗) (6)

M̂ J M(q) =
∫

dx⃗ j J (qx)Y⃗ J J M(x̂) · ˆ⃗J (x⃗) (7)

L̂ J M(q) = i
q

∫
dx⃗∇⃗[ j J (qx)Y J M(x̂)] · ˆ⃗J (x⃗), (8)

where Ĵ µ(x⃗) is the nuclear current coupling to the probe. 
For β-decays, which are characterized by a low-energy transfer 
qR ≪ 1, further simplification is possible expanding in this small 
parameter. For example, for allowed β-decays with ) Jπ = 1+

(Gamow–Teller decays),

( ∝ (1 + b
me

ϵ
+ aβνβ⃗ · ν̂)⟨∥L̂1∥⟩2, (9)

where me is the electron mass. This is accurate up to (recoil) 
corrections of order qR . The V − A structure of the weak in-
teraction entails aβν = − 1

3 and b = 0. In the presence of be-
yond standard model interaction with tensor symmetry aβν ≈
− 1

3

(
1 − |CT |2+|C ′

T |2
|C A |2

)
, and b = 2 CT +C ′

T
C A

[1], where CT /C A (C ′
T /C A ) is 

the relative strength of the tensor (pseudo-tensor) and the axial-
vector interactions.1 Thus, β–ν correlation measurements are sen-
sitive to interactions of exotic, e.g., tensor, symmetries. However, 
the β energy spectrum form shows sensitivity only to the Fierz 
interference term b, since

dωβ∓

dϵ
(allowed) ∝ '(ϵ)

(
1 + b

me

ϵ

)
. (10)

The Fierz term is linear in the exotic couplings, while aβν is 
quadratic. In addition, the Fierz term vanishes for right-handed 
neutrinos, for which CT = − C ′

T . As a result, allowed β decay mea-
surements are better able to constrain the combination CT + C ′

T . 
Moreover, current experiments cannot fit separately both aβν and 
the Fierz term (even when including a non-zero Fierz term in the 
analysis) [14], due to the fact that the correlation and Fierz terms 
have different recoil momentum dependence. This, however, is not 
the case for a first forbidden unique transition, where a different 
result is obtained (see, e.g., [19]),

((q, β⃗ · ν̂) ∝ 1 ± 2γ0
CT + C ′

T

C A

me

ϵ

− 1
5

(
2
(
ν̂ · β⃗

)
−

(
ν̂ · q̂

)(
β⃗ · q̂

))(
1 − |CT |2 + |C ′

T |2
|C A |2

)
.

(11)

The last term linearly depends on 
(
ν̂ · k̂

)2
. As a result, integration 

over angles, i.e., the energy spectrum of the decay, is sensitive to 
beyond the standard model tensor interactions, and can be used to 
probe them. Moreover, a full spectrum measurement enables a si-
multaneous extraction of CT +C ′

T and CT − C ′
T is possible, allowing 

studies of right and left handed neutrino couplings.

Theory related systematic corrections In the derivation of Eq. (11), 
we have used an expansion in qR . The neglected recoil corrections 
terms compete with signatures of tensor and/or other beyond the 
standard model contributions. In order to estimate the recoil cor-
rections, let us write the decay rate of a unique first-forbidden 
decay up to the next-to-leading order in the parameter qR (as-
suming no tensor terms):

1 For simplicity, we assume here real couplings, i.e., time reversal symmetry.
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d5ωβ∓

d#k/4πd#ν/4πdϵ
= 2G2

π2

1
2 J i + 1

(ϵ0 − ϵ)2kϵ F ± (Z f ,ϵ)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂·β⃗)ν̂ · β⃗

+ 1
5

(
ν̂ · q̂

)(
β⃗ · q̂

)]
⟨∥L̂ A

2 ∥⟩2
}

, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ϵ

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + k2

ϵ

q
ℜ⟨∥Ĉ A

2 ∥⟩
⟨∥L̂ A

2 ∥⟩

}

, (13)

δν̂·β⃗ = 2

{

±
√

3
2

ϵ − ν

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + ϵ

q
ℜ⟨∥Ĉ A

2 ∥⟩
⟨∥L̂ A

2 ∥⟩

}

(14)

where the superscript A (V ) denotes multipole operators calcu-
lated with the axial-vector (polar-vector) symmetry contribution to 
the weak nuclear current. Ordering the multipoles by their qR de-
pendence, we see that L̂ A

2 is O(qR), while Ĉ A
2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ ≪ 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
such that: J µ†(r) = ∑A

i=1 τ−
i

[
δµ0 J 0

i,1b − δµk Jk
i,1b

]
δ(r − ri), where 

τ− = 1
2 (τ x − iτ y) is the isospin lowering operator, that turns a 

neutron into a proton, has temporal and spatial parts in momen-
tum space:

J 0
i,1b(p2) = 1 − g A

P · σ i

2m
, (15)

Ji,1b(p2) = g A σ i + iκV
σ i × p

2m
, (16)

where P = pi + p′
i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:

dwβ∓

dϵ
∝ +(ϵ)

(

2 + 4γ0
CT + C ′

T

C A

me

ϵ
+ β

5
(a2 − 1) tanh−1(a) + a

a2

×
(

1 − |CT |2 + |C ′
T |2

|C A |2

))

, (17)

where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.
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+ 1
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with
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5
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ϵ

q
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q
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where the superscript A (V ) denotes multipole operators calcu-
lated with the axial-vector (polar-vector) symmetry contribution to 
the weak nuclear current. Ordering the multipoles by their qR de-
pendence, we see that L̂ A

2 is O(qR), while Ĉ A
2 , M̂ V

2 are suppressed 
by an additional factor of qR , which for relevant Q -values of a 
unique first-forbidden decay, i.e., Q ≈ 10 MeV, leads to a factor 
of 20. Moreover, as j J (ρ) ∼ ρ J

(2 J+1)!! (for ρ ≪ 1), we find an addi-
tional suppression factor of 5. An important aspect for estimating 
the neglected recoil corrections, originates in the fact that the nu-
clear weak current can be organized perturbatively using chiral 
effective field theory. We keep only leading and next-to leading or-
der. To this order, the weak probe interacts with a single nucleon, 
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i , g A ≈ 1.27 is the axial constant, and κV ≈ 4.70

is the nucleon magnetic moment. We notice that the polar-vector 
part of the charge operator and the axial-vector part of the cur-
rent operator are of leading order, while the axial-vector charge 
and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
nuclear model.

A different source of theoretical corrections are radiative and 
relativistic corrections to the decay process. In allowed beta de-
cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
only sensitive to ratios of matrix elements. This is similar to the 
β asymmetry parameter in allowed β decay, where the radiative 
corrections are of the order of 10−4 [23,24]. Fully relativistic treat-
ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
sitivity to BSM physics we simulate a first forbidden unique energy 
spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
each of the simulated events. The theoretical β energy spectrum 
can be calculated from integration over all angles in Eq. (11), to 
obtain:
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 
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details. The bold dot indicates the values of the couplings in the simulation.
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tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
T = 0, 

Fig. 1(a)), weak left handed coupling (CT /C A = C ′
T /C A = 0.005, 

Fig. 1(b)), and strong right handed coupling (CT /C A = −C ′
T /C A =

0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.

A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288 287

d5ωβ∓

d#k/4πd#ν/4πdϵ
= 2G2

π2

1
2 J i + 1

(ϵ0 − ϵ)2kϵ F ± (Z f ,ϵ)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂·β⃗)ν̂ · β⃗

+ 1
5

(
ν̂ · q̂

)(
β⃗ · q̂

)]
⟨∥L̂ A

2 ∥⟩2
}

, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ϵ

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + k2

ϵ

q
ℜ⟨∥Ĉ A
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spectrum (containing 10M events), using an endpoint energy of 
3.5 MeV. In order to account for experimental uncertainty in the β
energy measurement we introduce resolution effects of 20 keV to 
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obtain:

dwβ∓

dϵ
∝ +(ϵ)

(

2 + 4γ0
CT + C ′

T

C A

me

ϵ
+ β

5
(a2 − 1) tanh−1(a) + a

a2

×
(

1 − |CT |2 + |C ′
T |2

|C A |2

))

, (17)

where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
C ′

T )/C A and (CT − C ′
T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
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since in that case b = 0. Also note the reduced sensitivity to the 

Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
details. The bold dot indicates the values of the couplings in the simulation.

A. Glick-Magid et al. / Physics Letters B 767 (2017) 285–288 287

d5ωβ∓

d#k/4πd#ν/4πdϵ
= 2G2

π2

1
2 J i + 1

(ϵ0 − ϵ)2kϵ F ± (Z f ,ϵ)

×
{

5
2

[
1 + δ1 − 2

5
(1 + δν̂·β⃗)ν̂ · β⃗

+ 1
5

(
ν̂ · q̂

)(
β⃗ · q̂

)]
⟨∥L̂ A

2 ∥⟩2
}

, (12)

with

δ1 = 4
5

{

±
√

3
2

ν − k2

ϵ

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + k2

ϵ

q
ℜ⟨∥Ĉ A
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a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.

Experimental sensitivity In order to estimate the experimental sen-
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framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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T )/C A . Fig. 1 shows the results from 3 

such analyses, corresponding to no BSM couplings (CT = C ′
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T /C A = 0.005, 
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0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
cannot be detected in spectrum measurements of allowed decays, 
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and the weak magnetic current are sub-leading, suppressed by the 
nucleon mass. This leads to an additional suppression of the cor-
rection terms by a factor 3–5. As a result, these corrections are 
naturally of the order of 0.2–0.4% compared to the leading terms, 
and can be easily calculated, albeit introduce a dependence on a 
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A different source of theoretical corrections are radiative and 
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cays, decay probability and spectrum are affected by radiative cor-
rections of a few per-mille [20–22]. One expects similar effects 
in first-forbidden unique beta decays [21]. We note that radia-
tive corrections to the spectrum shape are small, as the shape is 
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β asymmetry parameter in allowed β decay, where the radiative 
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ment of the spectrum can affect the shape of the spectrum, up to 
a per-mill level, and will be calculated in the future [25].

Thus, these theoretical arguments suggest that the naïve ex-
pression of Eq. (11) is expected to be accurate to a few per-milles. 
Including radiative and recoil corrections is expected to allow a 
theoretical prediction accurate to ≈ 10−4.
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where a = 2kν/(k2 + ν2). A Bayesian analysis, using the JAGS 
framework [26] is then performed on the recorded spectra to ex-
tract the endpoint energy, overall normalization, and the two BSM 
parameters. Since CT and C ′

T are fully correlated we parametrize 
the BSM contribution on the uncorrelated parameters (CT +
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0.2, Fig. 1(c)). Note that the case of fully right handed couplings 
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ℜ⟨∥Ĉ A

2 ∥⟩
⟨∥L̂ A

2 ∥⟩

}

, (13)

δν̂·β⃗ = 2

{

±
√

3
2

ϵ − ν

q
ℜ⟨∥M̂ V

2 ∥⟩
⟨∥L̂ A

2 ∥⟩
− ν + ϵ

q
ℜ⟨∥Ĉ A
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naturally of the order of 0.2–0.4% compared to the leading terms, 
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T are fully correlated we parametrize 
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Fig. 1. 68% & 90% confidence intervals for the fits to the BSM couplings. See text for 
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Unique possibility to separate between left and right-handed couplings!
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SUMMARY

SUMMARY
▸ Solar p-p fusion: a simple, validated, pionless theory with 

only few parameters predicts the fusion rate with high 
precision.

▸ High experimental uncertainty stemming from gA

▸ For electromagnetic regime: accurate and precise theory 
with unique theoretical uncertainty estimate.

▸ Reviving the role of magnetic moments in 
understanding nuclear structure: flow of EFTs? SU(4) 
symmetry?  

▸ Some mysteries regarding NPLQCD/pionless EFT works.

▸ Beta decays are an intersection of new approaches in 
experiment and theory – to study BSM physics.
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