Short-Range Correlations And The EMC Effect In Effective Field Theory

Exploring the role of electroweak currents in atomic nuclei

The Nuclear Landscape

The Nuclear Landscape

Extending The Nuclear Landscape

Cutting-edge experimental results

Neutron-star mergers

Rare-isotope facilities

adapted from M. McLaughlin, APS Physics Viewpoint, October 16, (2017)

adapted from A. B. Balentekin et al., Mod. Phys. Lett. A **29**, 1430010 (2014) Nuclear theory has experienced a renaissance in the past few decades thanks (in part) to two developments.

- 1. Advances in *ab initio* many-body methods.
- 2. Chiral effective field theory (EFT) for nuclear interactions.

Nuclear theory has experienced a renaissance in the past few decades thanks (in part) to two developments.

- 1. Advances in *ab initio* many-body methods.
- 2. Chiral effective field interactions.

work with protons + neutrons & controlled approximations

- Quantum Monte Carlo Methods
- Local Chiral EFT
- $\cdot\,$ The EMC effect and SRCs in EFT
- \cdot Outlook and Conclusion

Quantum Monte Carlo (QMC) Methods

QMC methods in two lines:

$$H |\Psi\rangle = E |\Psi\rangle$$
$$\lim_{\tau \to \infty} e^{-H\tau} |\Psi_T\rangle \to |\Psi_0\rangle$$

QMC methods in more than two lines:

J. Carlson et al, RMP **87**, 1067 (2015).

- 1. Start with a trial wave function Ψ_T and generate a random position: $\mathbf{R} = \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A$.
- 2. Metropolis algorithm: Generate new positions \mathbf{R}' based on the probability $P = \frac{|\Psi_T(\mathbf{R}')|^2}{|\Psi_T(\mathbf{R})|^2}$. $\longrightarrow \{\mathbf{k}\}$
- 3. Invoke the variational principle: $E_T = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} > E_0$.

QMC Methods - Diffusion Monte Carlo Method

- The wave function is imperfect: $|\Psi_T\rangle = \sum_{i=0}^{\infty} \alpha_i |\Psi_i\rangle$.
- Propagate in imaginary time to project out the ground state $|\Psi_0\rangle$.

$$\begin{split} \left| \Psi(\tau) \right\rangle &= \mathrm{e}^{-(H-E_{T})\tau} \left| \Psi_{T} \right\rangle \\ &= \mathrm{e}^{-(E_{0}-E_{T})\tau} \left[\alpha_{0} \left| \Psi_{0} \right\rangle + \sum_{i\neq 0} \alpha_{i} \mathrm{e}^{-(E_{i}-E_{0})\tau} \left| \Psi_{i} \right\rangle \right]. \end{split}$$

QMC Methods - Diffusion Monte Carlo Method

- The wave function is imperfect: $|\Psi_T\rangle = \sum_{i=0}^{\infty} \alpha_i |\Psi_i\rangle$.
- Propagate in imaginary time to project out the ground state $|\Psi_0\rangle$.

$$\begin{split} |\Psi(\tau)\rangle &= e^{-(H-E_{T})\tau} |\Psi_{T}\rangle \\ &= e^{-(E_{0}-E_{T})\tau} [\alpha_{0} |\Psi_{0}\rangle + \sum_{i\neq 0} \alpha_{i} e^{-(E_{i}-E_{0})\tau} |\Psi_{i}\rangle]. \\ |\Psi(\tau)\rangle \xrightarrow{\tau \to \infty} |\Psi_{0}\rangle \,. \end{split}$$

QMC Methods - An Example

$$H = \frac{p^2}{2} + \frac{1}{2}\omega^2 x^2$$
$$\psi_0(x) = \left(\frac{\omega}{\pi}\right)^{1/4} e^{-\omega x^2/2}$$

Trial wave function; e.g.

$$\Psi_T(x) = \sqrt{30}x(1-x).$$

 $\tau = 1.00$

T = 1.25

 $\tau = 1.50$

T = 1.75

 $\tau = 2.00$

T = 2.25

 $\tau = 2.50$

 $\tau = 2.75$

 $\tau = 3.00$

 $\tau = 3.00$

QMC Methods - The Rug

Green's function Monte Carlo (GFMC)

- Among the most accurate nuclear many-body *ab initio* methods.
- Exponential scaling in A (sum over all spinisospin states).
- Auxiliary-field diffusion Monte Carlo (AFDMC)
 - Still in development but now maturing quickly.
 - Polynomial scaling in A (sample spin-isospin states).

Of course, the nuclear Hamiltonian is complicated.

$$H = \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{i< j}^{A} V_{ij} + \sum_{i< j< k}^{A} V_{ijk} + \cdots$$

Where should it come from?

Chiral EFT

Motivation - Chiral EFT

- If probed at high energies, substructure is resolved.
- At low energies, details are not resolved.
- Can replace fine structure by something simpler (think of multipole expansion): low-energy observables unchanged.

Motivation - Chiral EFT

- If probed at high energies, substructure is resolved.
- At low energies, details are not resolved.
- Can replace fine structure by something simpler (think of multipole expansion): low-energy observables unchanged.

Chiral EFT

- Chiral EFT: Expand in powers of Q/Λ_b . $Q \sim m_{\pi} \sim 100$ MeV $\Lambda_b \sim 500$ MeV
- Long-range physics: π exchanges.
- Short-range physics: Contacts × LECs.
- Many-body forces & currents enter systematically.

Results

A simultaneous description of properties of light nuclei, *n*-α scattering and neutron matter is possible. Uncertainty analysis as in E. Epelbaum et al, EPJ **A51**, 53 (2015).

JEL et al, PRL **116**, 062501 (2016)

Energies and charge radii of selected nuclei up to ¹⁶O well reproduced.

D. Lonardoni, J. Carlson, S. Gandolfi, JEL, K. E. Schmidt, A. Schwenk, X. Wang, PRL 120, 122502 (2018)

SRCs & EMC Effect

Deep inelastic scattering (DIS) cross section for EM interactions of charged leptons with nuclear targets:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}Q^2\mathrm{d}x} \propto \frac{4\pi\alpha^2}{Q^4} \frac{F_2^A(x,Q^2)}{x}$$

Bjorken $x = Q^2/(2p \cdot q)$, and $Q^2 = -q^2$ are defined in terms of the target four-momentum p and the momentum transfer from the lepton to the target, q.

One-picture/One-sentence summary

J. J. Aubert et al. (EMC), Phys. Lett. B. **123**, 275

"We are not aware of any published detailed prediction presently available which can explain the behaviour of these data." The strength of the EMC effect is given in terms of the slope:

 $dR_{EMC}(A, x)/dx|_{0.35 < x < 0.7} \sim d(\sigma^{A}/\sigma^{d})/dx|_{0.35 < x < 0.7}$

The ratio $R_{EMC}(A, x) = \frac{2F_2^A(x, Q^2)}{AF_2^d(x, Q^2)} \sim \frac{2\sigma^A}{A\sigma^d}$ plays an important role.

Later (~2000 And Beyond) Higher x Data

SRC scaling factor
$$a_2(A, x) \equiv \frac{2\sigma^A}{A\sigma^d}|_{1.5 < x < 2}$$

 $dR_{\rm EMC}/dx \propto a_2$

 $Q \gg \Lambda \gg P$

J.-W. Chen & W. Detmold, Phys. Lett. B **625**, 165 (2005): Structure functions factorize: $F_2^A(x)/A = F_2^N(x) + g_2(A, \Lambda)f_2(x, \Lambda)$ $g_2(A, \Lambda) = \frac{1}{A} \langle A | (N^{\dagger}N)^2 | A \rangle_{\Lambda}$

J.-W. Chen, W. Detmold, JEL, A. Schwenk, PRL **119**, 262502, (2017):

$$a_2(A, x > 1) = \frac{g_2(A, \Lambda)}{g_2(2, \Lambda)} \Rightarrow \frac{dR_{EMC}}{dx} \propto a_2.$$

Two-Body Distribution Functions (g_2)

$$g_2(A,\Lambda) = \rho_{2,1}(A,r=0)/A, \ \rho_{2,1}(A,r) \equiv \frac{1}{4\pi r^2} \left\langle \Psi_0 \right| \sum_{i < j} \delta(r - r_{ij}) \left| \Psi_0 \right\rangle$$

Scale and scheme dependent

SRC Factors

$$a_2 \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

Scale and scheme *independent*!

Detailed comparison of experiment and theory

N²LO (
$$R_0 = 1.0 - 1.2 \text{ fm}$$
)AV18+UIXExp³H2.1(2) - 2.3(3)2.0(4)³He2.1(2) - 2.1(3)2.0(4)⁴He3.8(7) - 4.2(8)3.4(3)

$$a_2 \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

Values extracted for a_2 identical to GFMC results.

$$a_2 \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

$$a_2 \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

$$a_2 \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

⁴⁰Ca w/simplified interaction: a_2 saturates as expected.

$$a_{2} \equiv \lim_{r \to 0} \frac{2\rho_{2,1}(A, r)}{A\rho_{2,1}(2, r)}$$

$$N^{2}LO(R_{0} = 1.0 - 1.2 \text{ fm}) \quad \text{Exp.*}$$

$$^{3}H \quad 2.2(3) - 2.3(3)$$

$$^{3}He \quad 2.1(2) - 2.2(1) \quad 2.13(4)$$

$$^{4}He \quad 3.8(3) - 4.2(2) \quad 3.60(10)$$

$$^{6}He \quad 3.2(2) - 3.5(2)$$

$$^{6}Li \quad 3.4(2) - 3.8(2)$$

$$^{12}C \quad 4.6(2) - 4.75(16)$$

$$^{16}O \quad 4.3(1) - 4.5(1)$$

*O. Hen, G. A. Miller, E. Piasetzky, L. B. Weinstein, RMP 89, 045002 (2017)

Preliminary!

- QMC methods + chiral EFT: A powerful combination.
- EFT predicts (postdicts) the linear relationship between $R_{\rm EMC}$ and a_2 .
- Two-body distributions are **scheme and scale dependent**, but ratios are **observable**.
- Our results for a_2 seem to depend on the inclusion of 3N interactions.
- EFT can shed light on the existence of *a*₃ or the isospin dependence of the EMC effect.
- Values for a₂ might provide an uncorrelated observable for fitting nuclear interactions.

Acknowledgments

Collaborators

J. Carlson,
S. Gandolfi,
D. Lonardoni

• A. Schwenk

TECHNISCHE UNIVERSITÄT

DARMSTADT

• A. Gezerlis

• K. E. Schmidt

• W. Detmold

I. Tews

• J.-W Chen

Acknowledgments

Collaborators

J. Carlson,
S. Gandolfi,
D. Lonardoni

• A. Schwenk

LOS Alamos

TECHNISCHE UNIVERSITÄT

DARMSTADT

• A. Gezerlis

• K. E. Schmidt

• W. Detmold

• I. Tews

• J.-W Chen

Thank you for your attention!