Proton rms-radius from electron scattering

Ingo Sick

Proton form factors studied for long time since the time of Bob Hofstadter measured up to the largest q's with σ 's as accurate as 0.5%

RMS-radius R

result of fits to data not much of an issue changed in 2010

$\bullet~R$ measured via Lambshift in muonic hydrogen

energy difference gave R in 0.84fm region much more precise than value from (e,e) disagrees with $R \sim 0.88fm$ from (e,e)

• R from hyper-precise transition energies in electronic hydrogen determine R despite very small effect situation at present not clear Munich experiment close to muonic radius Paris experiment close to value from (e,e)

Has generated intense interest

embarrassing to not know R accurately affects definition of fundamental Rydberg constant many re-analyses of data often sloppy (see Phys. Rev. C 95 (2017) 012501)
several new experiments partly with non-optimal approaches 12GeV accelerator to measure q = 0 property? with initial-state radiation?
with muons instead of electrons (PSI experiment) many speculations about new physics

Will not enter this discussion

my job: do the best one can to get R from existing data on (e,e) subject is tricky enough all by itself

Published results on R: disturbing

large scatter of results values between 0.84 and 0.92 fmwith error bars of typically 0.015 fmthe more serious ones near 0.88 fm disagree with muonic hydrogen $.8409 \pm .0004 fm$

Main problem: interpretation of data smaller problem: differences between data sets

Goal of talk

go to bottom of discrepancies understand causes for differences redo to-be-taken-seriously analyses to locate origin will not discuss obviously flawed ones

What to expect

survey of methods used identification of main problems occurring determination of average of trustworthy results $\rightarrow R \pm \delta R$

Main insight

apparently "simple" task of determining R surprisingly complex "naive" extrapolation to q = 0 very model-dependent

State right away

results do not fix discrepancy with μH

Generalities

Sachs form factors $G_e(q), G_m(q)$ from

$${d\sigma\over d\Omega}=\sigma_{Mott}\;f_{recoil}\left[(G_e^2+ au G_m^2)/(1+ au)+2 au\;G_m^2\;tg^2(heta/2)
ight]$$

with momentum transfer

 $q^2 = 4 \,\, E \,\, E' \,\, sin^2(heta/2), ~~~ au = q^2/4m^2$

E and E' incident and scattered electron energies, and θ scattering angle

Separation of G_e and G_m

data at same q but variable θ difficult for G_e at large q, difficult for G_m at low qhelped by polarization transfer which yields G_e/G_m

Two-photon exchange corrections

 $\begin{array}{l} \text{Coulomb distortion (second soft photon)} \\ \text{important at low } q, \quad \Delta R \sim 0.01 fm \\ \text{second hard photon, important at large } q \\ \text{fixes problems with } G_e \text{ from Rosenbluth} \leftrightarrow \text{polarization transfer} \end{array}$

Optimal approach to get G's

parameterize G_e and G_m , fit to world data, L/T during fit

Charge radius and density

Radius R defined via

$$R^2\equiv\int_0^\infty
ho(r)\,\,r^4\,\,4\pi\,\,dr$$

with (non-relativistically) $\rho(r)$ from

$$G_e(q) = rac{4\pi}{q} \int_0^\infty
ho(r) \, sin(qr) \, r \, dr$$

or, inverted

$$ho(r)=rac{1}{2\pi^2 r}\int_0^\infty G_e(q)\,\,sin(qr)\,\,q\,\,dq$$

Not practical as

1. Maximum $q \neq \infty$

fit model- $\rho(r)$ or model-G(q) to data

2. Relativistic corrections

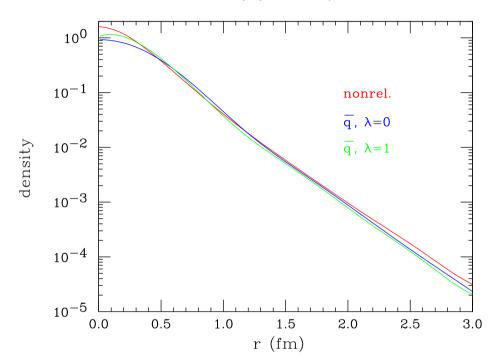
• Relevant coordinate system = Breit frame, not nucleon rest frame Lorentz contraction

corrected using $\tilde{q}^2=q^2(1+q^2/4m^2)$

• Boost operator in some theories interaction dependent additional multiplicative correction $(1+q^2/4m^2)^\lambda$ $\lambda = 0$ or 1 for G_e

Effect of relativistic corrections

explore using [3/5]Pade fit to $G_e, q_{max} = 10 f m^{-1}$ determine $\rho(r)$ with/without relativistic corrections and $\lambda = 0, 1$



Result

important change at $r \sim 0$, fixes problems with cusp minor effect at large r, hardly affects shape of $\rho(r > 1fm)$

Despite relativistic corrections $\rho(r)$ at large r remains well-defined this $\rho(r)$ strongly affects R! (see below)

Standard idea to get R

from slope of G_e at q = 0, without ever considering $\rho(r)$

$$R^2 = - 6 \left. rac{dG_e(q^2)}{dq^2}
ight|_{q=0}$$

This is the origin of many problems of R-determinations

- q = 0 slope cannot be measured
- model dependence of q = 0 extrapolation from q's that are measurable and sensitive to R

Peculiarities and difficulties for proton

1. Importance of $\rho(r)$ at large r

charge at radius r_0 generates Fourier component $sin(qr_0)/(qr_0)$ for large r_0 generates curvature of G(q) at low $q_0 \sim \pi/(2r_o)$ this curvature affects extrapolation to q = 0

Density very different from standard Woods-Saxon as $G(q) \sim$ dipole

$$G_D(q) = 1/(1+q^2R_D^2/12)^2$$

Hence density close to exponential

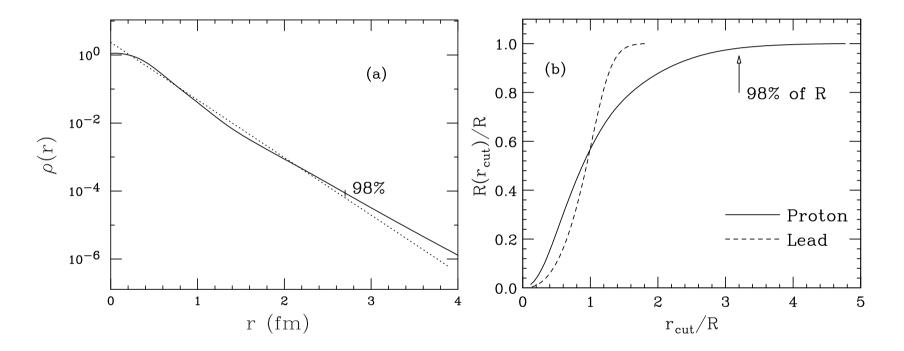
$$ho_D(r) \propto e^{-\sqrt{12} \; r/R_D}$$

exhibits long tail towards large r which contributes a lot to R

Study partial integral determining R

$$R(r_{cut}) = \left[\int_{0}^{r_{cut}}
ho(r) \; r^4 \; dr \; \left/ \int_{0}^{\infty}
ho(r) \; r^4 \; dr
ight]^{1/2}$$

with $R=R(r_{cut}=\infty)$

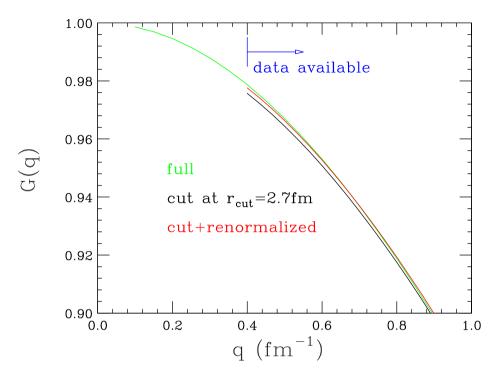


dotted: dipole, solid: realistic

To get 98% of R must integrate out to 2.7 fm

there $\rho(r)$ has dropped to ~ 10⁻⁴ of central value!

Effect of ho(r>2.7fm) upon G(q)



green=dipole black=cut at $2.7 fm \text{ red}=cut+renormalized}$

Difference green-red <0.12%, not measurable!

same argument applicable to $r_{cut} = 2.4 fm \rightarrow 4\%$ error of R

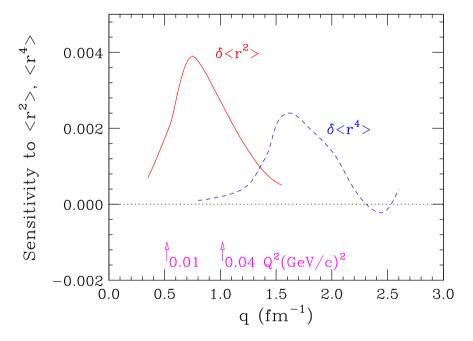
- \rightarrow cannot be fixed by curve-fitting of data of realistic precision
- \rightarrow need to constrain $\rho(r)$ at large r

2. Smallness of contribution of R to G(q)where is it maximal? how large?

Notch-test

change G(q) in narrow region around q_0 refit data, get ΔR

plot ΔR as function of q_0



Data sensitive at $0.5 < q <\! 1.2~{\rm fm^{-1}}$ ($0.01 < Q^2 < 0.04 GeV^2/c^2)$ at $0.8 fm^{-1}$ effect of $R \sim q^2 R^2/6 \sim 0.08$

To measure R to 1% must measure G(q) to ± 0.0016 , i.e. 0.17%!

Consequence

Fits aiming at $\delta R \sim 1\%$ must reproduce data to <0.17%requires best χ^2 possible requires look at difference data-fit with <0.1% resolution visual fits (often standard) not good enough fits achieving small χ^2 by rescaling error bars neither: need small $G_{exp} - G_{fit}$

3. Parameterizations restricted to q-space are problematic

standard in analysis of data ho(r) systematically ignored can generate uncontrolled effects

Example

Fit of Bernauer data up to $2fm^{-1}$ using Pade

$$G(q) = \left[1 + a_1 q^2
ight] ig/ \left[1 + b_1 \,\, q^2 + b_2 \,\, q^4 + b_3 \,\, q^6
ight]$$

Fit has none of diseases often encountered no poles, no unphysical behavior for $q \to \infty$ achieves χ^2 as low as spline-fit analytical form as acceptable as standard parameterizations of G(q)

Yields R = 1.48 fm!

Reason for large R: curvature of G(q) at very low q



Note: above $0.2fm^{-2}$ Pade and standard fit parallel Pade and standard fit have same χ^2 as data floating

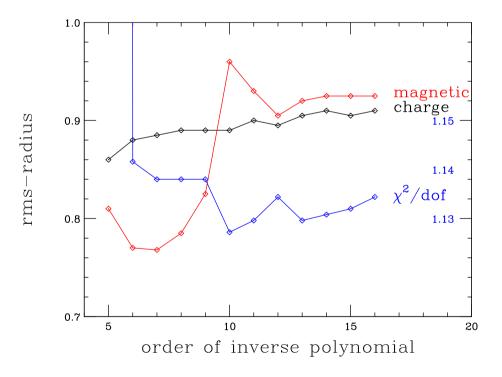
Problem immediately seen when looking at ho(r)outrageously long tail

Generic problem with q-space parameterizations most do not have Fourier transform, therefore no $\rho(r)$ cannot certify absence of anomalies of above type Second example

some parameterization have poles at $q > q_{max}$ power series, inverse polynomials, some Pade can cause problems poles \rightarrow oscillations in $\rho(r)$ out to extremely large r

consequences

large-r contributions can have adverse effects on R cannot judge if large-r behavior of $\rho(r)$ sensible



example: IP fit Bernauer jump at N=10 due to close pole

note: choice of N \rightarrow arbitrariness of R

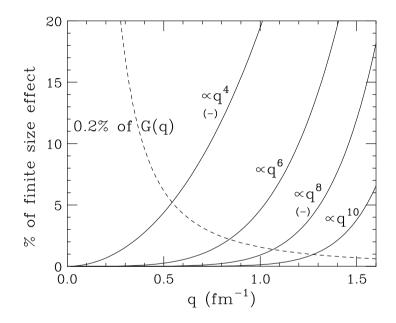
4. R from low-q data impractical

$$G(q) = 1 - q^2 R^2 / 6 + \dots$$

Can get R from low-q-data without worrying about higher moments?

Exponential shape of $\rho(r) \rightarrow large \langle r^n \rangle$

illustrated by contributions of $\langle r^n \rangle$ to finite size effect 1 - G(q)



at $q = 0.8 fm^{-1}$ effect $\langle r^4 \rangle$ 15%

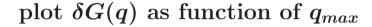
To reduce contribution of $n \ge 2$ to <1% in R need $q_{max} = 0.34 fm^{-1}$ there $q^2 R^2/6$ is extremely small: 0.015 but experimental uncertainties are (at best) fraction of 0.01

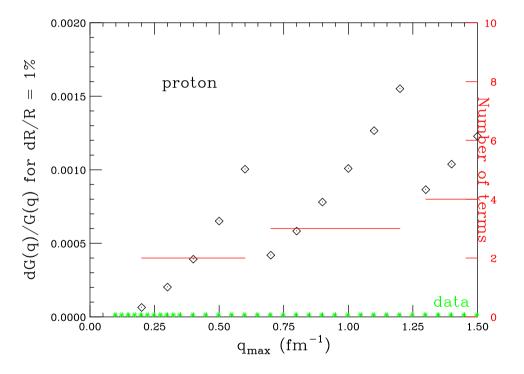
A 1% measurement of R would need δG of 0.03%! Not realistic! Accurate q = 0 slope *without* dealing with higher moments hopeless

Numerical example

invent $G(q) \pm \delta G(q)$ data (at green q's in plot) fit with suitable function, *e.g.* N'th order polynomial in q^2

adjust N such that a_{N+1} has significance $< 5\sigma$ adjust values $\delta G(q)$ such that δR becomes 1%





jumps of δG due to jump in N

required δG extremely small not achievable in practice

true: slope determined by Rbut: slope not accurately measurable must get R from $\rho(r)$

5. A counter-intuitive observation

in many analyses R depends on q_{max} fits with large q_{max} , $5fm^{-1} - 10fm^{-1}$, tend to give R > 0.88fmshow as example q_{max} -dependence of Lee *et al.*

0.94 How can these large q's affect R? 0.92 supposedly R 'measured' at q = 0! (fm)0.90 പ 0.88 *region sensitive to R 0.86 0.2 0.0 0.4 0.6 0.8 1.0 Q^2_{max} (GeV²)

This behavior calls for explanation!

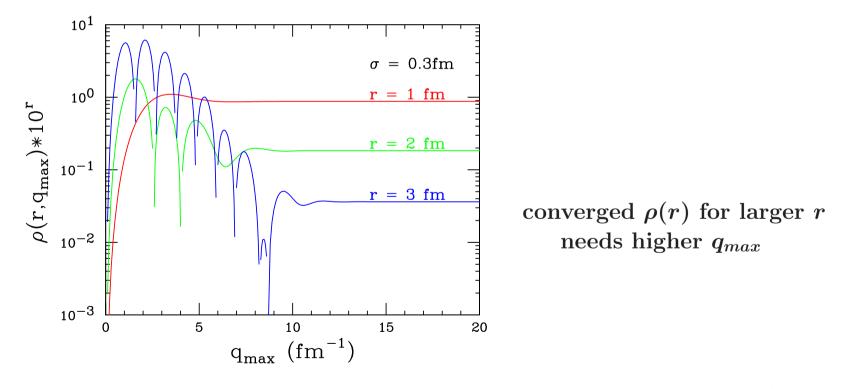
Understanding: effect of large-r tail of ho(r)

remember: R sensitive to large r due to r^4 weight large r affect low q and curvature of G(q) below q_{min}

Data up to large q fix shape of $\rho(r)$ including large-r tail

this reduces arbitrariness of shape of fitted G(q) at low qthis leads to more reliable extrapolation from q_{min} to q = 0

For demonstration study $ho(r,q_{max})=...rac{1}{r}\int_{0}^{q_{max}}G(q)\,\,sin(qr)\,\,q\,\,dq$



Important observation: to fix $\rho(r)$ at the larger r must include G(q) at the higher q's Fits with maximal q_{max} yield the most reliable extrapolation to q = 0

Importance of high q data for $dG/dq^2(q=0)$ is not a contradiction

low-q data important to fix G(q) in region where data sensitive to R

high-q data fix shape of $\rho(r)$ i.e. shape of G(q) needed for extrapolation to q = 0

Or more simply said:

rms-radius depends strongly on density at large $r \colon R^2 = \ldots \int \rho(r) r^4 dr$

to fix (implicitly) this density need G(q) up to large q

G(q) at high q small, fixes small Fourier components important for $\rho(r)$ at large r

In following discuss fits that:

include world data up to large $q \sim 10 fm^{-1}$ parameterizations that do correspond to densities do allow to check for sensible ρ at large r

Above considerations special case of more general point:

6. Lack of an important physics constraint in G(q)-fits

Do parameterizations of G(q) guarantee $\rho(r > 3fm) = 0$?

does G(q) contain components of $\sin(qr)/qr$ with r > 3fm? would be undesirable as we believe charge of p to be confined to r < 3fm

can be checked if G(q) has Fourier Transform is difficult if G(q) has no FT (\pm standard in literature)

Lenz, 1969, investigated model-independent information from (e,e) is contained in first moment function

$$T(Q) = \int_0^Q r(Q') \; dQ'$$

integral over ho(r) up to fractional charge Q

Convenient distribution for ρ and T(Q):

$$ho(r) = \sum_i a_i \; \delta(r_i) o T(Q_i) = \sum_{l=1}^i a_l \; r_l$$

Can approximate moment function to any desired accuracy

same $T(Q) \longrightarrow$ same cross sections

Test model-G(q) via fit with $\sum a_i \; \delta(r_i)$

for G(q) from $\rho(r)$ with $\rho(r > 3fm) = 0$ expect $a_i = 0$ for $r_i > 3fm$

for G(q) not from $\rho(r)$ could get $a_i \neq 0$ for $r_i > 3fm$

would indicate that G(q) contains unphysical Fourier components

Practicalities

fit model-G(q) with $\sum a_i \ \delta(r_i)$, 10 terms for $r_i < 7fm$, uniformly distributed sum contributions to linear moment from $\delta(r_i > 3fm)$

Results

Find no contribution for:

MD, [3/5]Pade, Laguerre, Borisyuk, [1/3]Pade Kelly

Find contributions of several % for:

Lee, Horbatsch+Hessels, Inv.Polynomial, Polynomial Higibotham/Griffioen

G(q) without FT often contain unphysical contributions implying charge at r > 3fm!..... which affect curvature of G(q) below q_{min}

 \longrightarrow Use G(q)'s that do correspond to ρ 's with ho(r>3fm)=0

Parameterizations and fits

1. [3/5] Pade, Arrington *et al*

Often "best" approximation of curve by rational function of given order

$$G(q) = \left(1 + \sum_{i=1}^{I} a_i \; q^{2i}
ight) \left/ \left(1 + \sum_{j=1}^{J} b_j \; q^{2j}
ight)$$

use $b_j > 0$ and $J \ge I+2$ avoids poles and divergences

Fit of world data up to $10fm^{-1}$, excellent χ^2 without Bernauer data (disagree) includes two-photon corrections finds 'well behaved' large-r density (shown above)

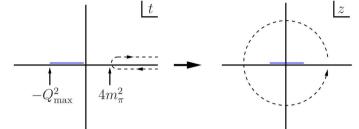
yields R = 0.878 fm.

2. Conformal mapping, Lee et al

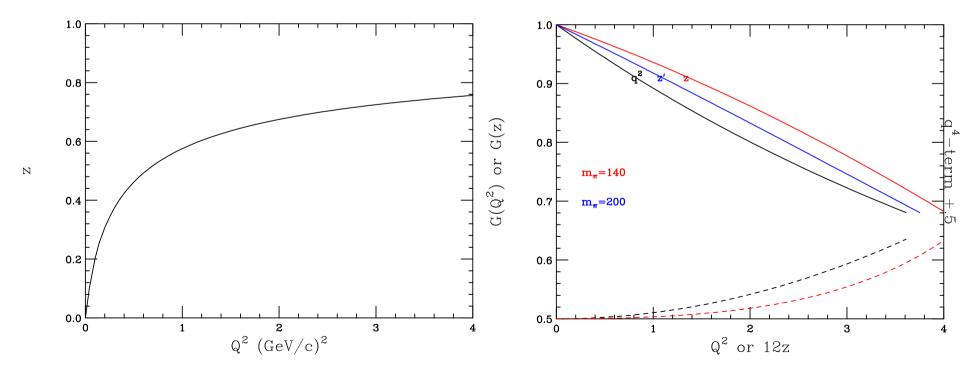
flexible expansions of G(q) in terms of q not optimal expansion parameter can become >1 variable-transformation could help

$$ext{Standard choice } z = rac{\sqrt{t_c - t} - \sqrt{t_c - t_0}}{\sqrt{t_c - t} + \sqrt{t_c + t_0}}, \hspace{0.5cm} t = -q^2$$

most often with $t_0 = 0$ and $t_c = 4m_{\pi}^2$ yields expansion parameter z < 1, see figure

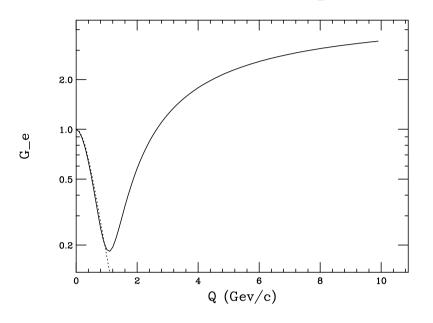


Claimed to 'linearize' extrapolation: only to small extent



From careful analysis of world data Lee *et al* find $R=0.916\pm0.024fm$ what is reason for large *R*?

Even in terms of z, use of power-series is highly unwise!



Standard disease of power-expansions

must generate small G(q) at large q via cancellations large contribution at q_{max} of low-order terms for $q_{max} = 5fm^{-1}$ term yielding R contributes 70% of FSE!

Better choice: parameterization a la Borisyuk

G(q) = polynomial in z times dipole in q then q^{-4} fall-off guaranteed, polynomial remains of order 1 polynomial only parameterizes deviation from dominant dipole

Analysis following closely Lee *etal*, but with better parameterization:

find R systematically 0.03 fm lower find large-r density close to MD, VDM densities (see below) \rightarrow large R of Lee not due to use of z, but due to unphysical G(z(q))

3. Polynomial in ξ times dipole, Borisyuk

$$\xi = q^2/(1+q^2/\xi_0), \qquad \xi_0 = 0.71 GeV^2/c^2$$

 ξ very similar to z, maximum value 0.7

 $G(q)=(1-\xi/\xi_0)^2\sum a_k\xi^k$

then q^{-4} fall-off guaranteed, polynomial remains of order 1

Repeating analysis of Borisyuk with world data up to $10fm^{-1}$ 2-photon exchange corrections

yields $0.880{\pm}0.011fm$

large-r density close to MD, VDM density (see below)

4. R from Bayesian inference, Graczyk+Juszcak

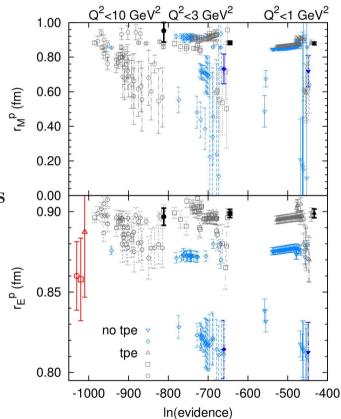
form factors come from large class of models sigmoid functions times dipole combination determined from neural network with 1 hidden layer fixed via maximum a posteriori weights likelihood via χ^2 plus Occam factor

Applied to

world data up to $10fm^{-1}$ including 2-photon corrections

find $R = 0.899 \pm 0.003 fm$

well-behaved density out to 2.7 fm0.003 seems low given systematic errors



5. R from Vector Dominance Model fits

Basic assumption of VDM

ρ,ω,...

leads a priori to form factor $G(q) = \sum_i a_i/(1+q^2\gamma_i), \quad \rho(r) = \sum a_i e^{-\gamma_i r}/r$ $\gamma_i^{-1} =$ masses squared of vector mesons

The promise: VDM could fix problem with large-r behavior tail $\sim e^{-\gamma r}/r$ is given by *physics*

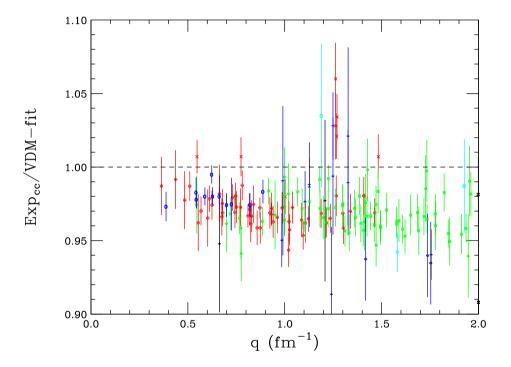
Complication

'pole' closest to physical region (responsible for low q) is *not* a pole it is a cut starting at $4m_{\pi}^2$ accounts for interaction with pion tail of N (triangle diagram)

Strength distribution in cut: difficult to come by determined by Hoehler *et al.* in 1976 using dispersion relations only partly updated since Result of VDM-fits: $R \sim 0.84 fm$

Generic problem of VDM analyses

 χ^2 is too large systematic differences to data at low q: fit Mergel *et al.*



difference to true Rcan be trivially read off figure ±same for all VDM fits since Hoehler's time

Reason for too large χ^2

VDM spectral function is too strong a constraint has not enough flexibility to allow good fit of (e,e)

Demonstration of constraining role of spectral function

VDM analysis of Adamuscin *et al.* want to fit (e,e) data over largest q^2 -range (< 0, > 0)

Difficulty: TPE in (e,e) cross sections (G_e from L/T and PT disagree) their 'solution': omit σ , fit only polarization transfer data result: $\mathbf{R} = 0.848 \pm 0.007 fm$ amazingly small error bar!

BUT...

PT data measure only ratio G_e/G_m contain no information whatsoever on charge form factor

Conclusion

spectral function all by itself fixes R to amazing precision adding cross section data only leads to bad χ^2 ! explains the problem of VDM analyses since Hoehler's time find always poor χ^2 and 0.84fm + systematic deviations from data

6. VDM-motivated parameterization: MD

VDM adherents claim that analytic structure of G(q) important indeed: helps to control large-r tail

use VDM-type form factor:

sum of monopoles times dipole = $M \cdot D$ -parameterization

$$G(q) = \sum_i a_i / (1 + q^2 \gamma_i) ~~1/(1 + q^2 \Gamma)^2$$

with free a_i , γ_i with VDM-constraint $\gamma_i^{-1} > 4m_{\pi}^2$ ensures physical fall-off of large-r density $\Gamma < \gamma_i/5$ (such as not to affect shape of tail) has been very successful in past: IJL, BZ, ...

Result of fit of *world* data up to $10 fm^{-1}$

variation of γ_i 's (±uniform distribution) not even needed fit of parameters a_i enough χ^2 as low as other best fits (SOG, Laguerre) of same data

Find $R = 0.891 \pm 0.013 fm$

M·D parameterization optimal for (partial) control of large-r density

7. Laguerre function fits

often difficult to find parameters for multi-parameter functions local minima of χ^2 , many failed fits in literature orthogonal basis should help

Laguerre functions

optimal since incorporates $e^{-\mu r}/r$ shape expected from pion tail

$$ho(r) = \sum_{n=0}^{N} a_n \; e^{-x} \; L_n(x) = \sum_{n=0}^{N} a_n \sum_{m=0}^{n} c_{nm} \; x^m \; e^{-x}$$

with $x = r/\beta$, L_n =Laguerre polynomial

Similar to other multi-parameter expansions

sensitive to N too many parameters \rightarrow correlations between higher-order a_n 's avoided with penalty in χ^2

Fits to world data

 $q_{max} = 10 fm^{-1}$, two-photon corrections for 2.7+1 parameters, 604 data get $\chi^2 = 540$

find $R = 0.879 \pm 0.02 fm$

ho(r) out to 2.6 fm agrees with VMD, SOG, MD

8. Sum-Of-Gaussians with tail constraint

SOG often employed for A > 1width Γ limits fine structure of ρ decouples densities at different r

Best used together with tail constraint

at r < 1 fm quark/gluon structure of p complicated at large $r \rho$ dominated by Fock component $n + \pi^+$ example: cloudy bag model for r > 0.8 fm

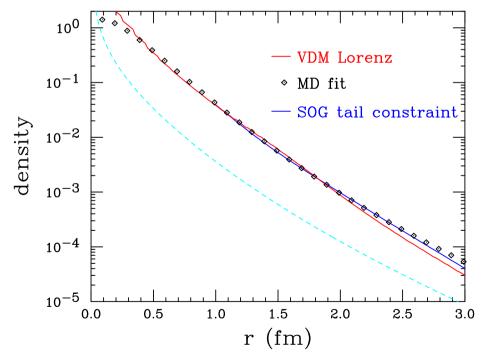
Shape of density at large r:

asymptotic w.f. of pion $W_{-\eta,3/2}(2\kappa r)/r$ can be used as constraint on *shape* used extensively for $A \geq 2$

Corrections+sophistications

 $\begin{array}{ll} {\rm CM,\ π-size,\ π+Δ components,\ ...} \\ {\rm investigated,\ minor\ numerical\ importance} \\ {\rm Physics} \equiv \ 2\pi \ {\rm triangle\ diagram\ in\ VDM} \\ {\rm Fit\ of\ world\ data\ up\ to\ 10 fm^{-1},\ 2\gamma\ corrections,} \\ {\rm constraint\ for\ r>1.2 fm} \end{array}$

find $R = 0.886 \pm 0.008 fm$



Summary

Pointed out in this talk;

difficulties of standard $q \rightarrow 0$ extrapolation curvature of parameterized function model-dependent lacks constraint that $\rho(r)$ confined to $r \leq 3fm$

Emphasized

curvature at low q related to $\rho(r)$ at large rthere have knowledge: density dominated by least-bound Fock state for reliable R: $\rho(r)$ must be close to this behavior

Three consequences

- Use physical G(q) which does correspond to density
- Fit data up to largest q_{max} data fix shape $\rho(r)$ including large-r tail
- Verification that shape ρ at large r is *physical* fix shape using *physics* constraint

Unweighted average of fits respecting above insights:

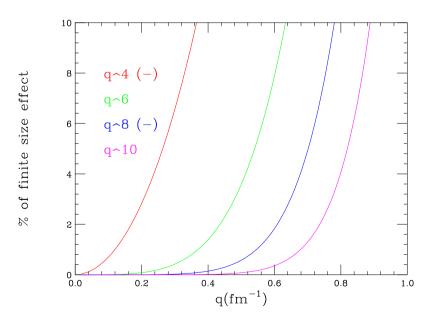
[3/5]Pade, Dip.·Poly(z), Dip.·Poly(ξ), Bayesian, MD, Laguerre, SOG radii .878, .886, .880, .899, .891, .879, .886fm

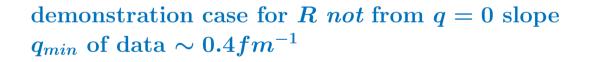
 $R=0.887\pm0.012 fm,$ disagrees with $.8409\pm.0004 fm$ from $\mu\mathrm{H}$

Reason for difference: many speculations! address only a popular one: $e \leftrightarrow \mu$ discuss by looking at other nuclei

Deuteron

 $\begin{array}{l} \mbox{Problematic in past: large scatter of results} \\ \mbox{main problem same as for proton: large-r tail actually much worse than for proton \\ \mbox{last 2\% of R come from $r >7$ fm! \\ \mbox{corresponding contribution in $G(q)$ not measurable} \end{array}$





precise R would be of high interest as theory predicts very accurate radius from V_{NN}

Added complication: 3 form factors, need T_{20} data separation of C0 enhances uncertainty

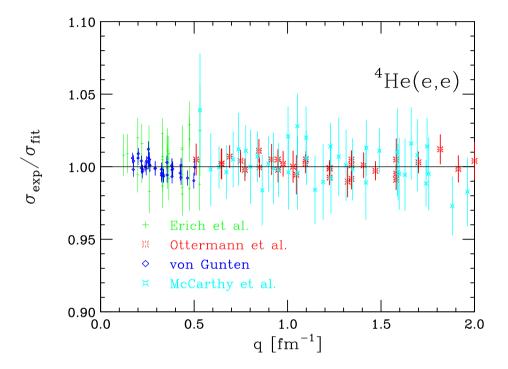
Determination of R: use same approach as for proton use world data up to largest q_{max} possible use tail constraint shape of large-r density well known from theory Hankel function determined by binding energy include 2-photon corrections (Coulomb distortion) previously always neglected significantly change R

(e,e)	$2.130 \pm 0.010 \ fm$ (Sick 1998)
μH	$2.1289 \pm 0.0012 fm$ (prelim.)
a_{n-p}	2.131 fm

Find perfect agreement with μX data from Pohl et al.

agreement within 0.5% significant given 4% discrepancy for proton

Helium 4



Simple-most case: only one form factor no error-enhancing L/T-separation needed

Perform exactly same type analysis as for proton parameterize ρ in *r*-space using SOG employ data up to largest q_{max} use tail constraint Most helpful: FDR analysis of *world* data on p $-^{4}$ He scattering

determines residuum of closest singularity corresponding to exchange scattering at 0° yields *absolute* normalization of tail to $\pm 10\%$ can use in fitting (e,e) data

Consequence: get most precise rms-radius of all nuclei

 $R=1.681\pm0.004 \ fm \ (Sick \ 2008)$

R=1.6783 \pm 0.0005 fm μ^4 H, Antognini et al. (prelim.)

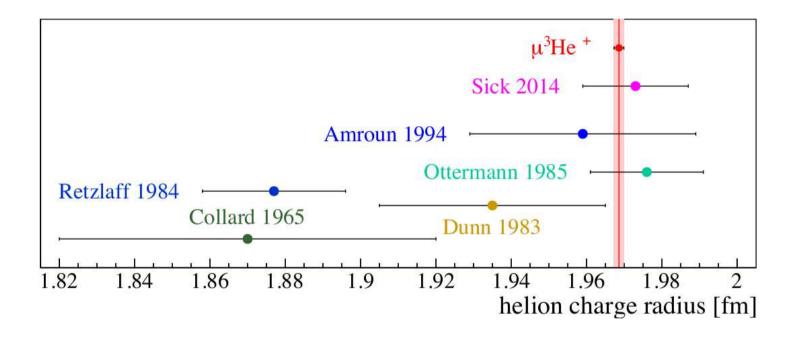
Highly significant: agreement (e,e)- μX within 0.25%

as compared to 4% for proton

Conclude: problem is not $e \leftrightarrow \mu$, problem is with *proton*

Similar agreement for ${}^{3}He$

though less precise recent data from Antognini etal



Generic problem for proton:

extremely large higher moments due to $ho(r) \sim$ exponential

	$\langle r^4 angle / \langle r^2 angle^2$ ($\langle r^6 angle / \langle r^2 angle^3$	
naive estimate	$\sim 1.$		
exponential density	2.49	8.82	
experimental value	4.32	64.2	fit of $q \leq 5 f m^{-1}$ data Bernauer 2010
Horbatsch, Hessels, Pineda	1.25	14.5	

large-r contribution even worse than for exponential density

Consequence: at $q \sim 0.8 fm^{-1}$ of maximal sensitivity to $\langle r^2 \rangle$:

contribution of $\langle r^4 \rangle \sim 15\%$ of finite-size effect, even $\langle r^6 \rangle$ contributes 4%

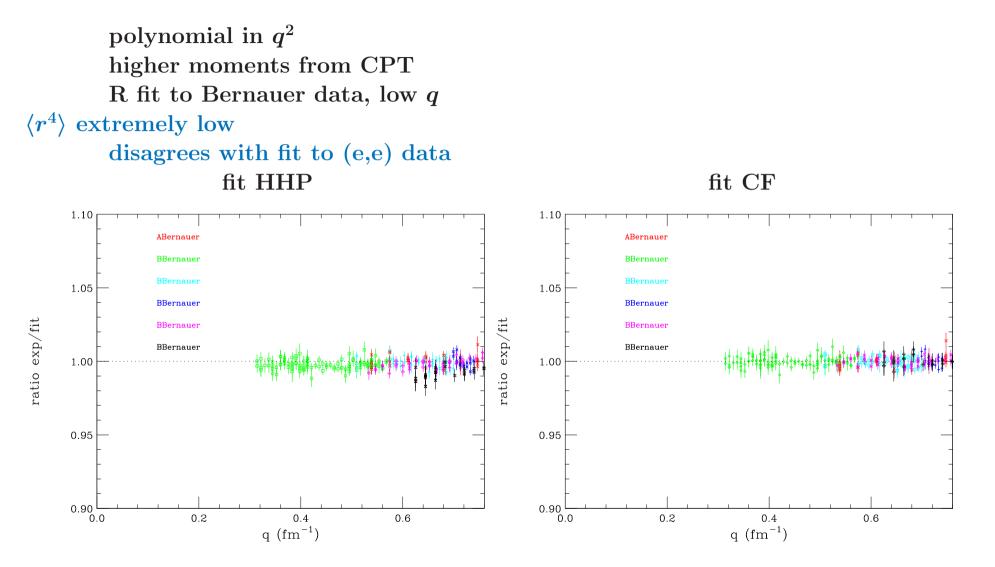
even at $q^2=0.6$, where finite size effect only 0.077, $\langle r^4 \rangle$ contributes 10%

 \rightarrow serious interference of higher moments

Wrong $\langle r^4
angle$ or wrong $\langle r^6
angle o$ wrong R

= short version why some determinations of R, discussed below, are wrong

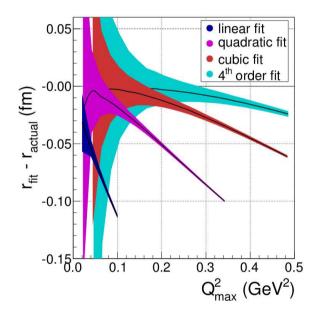
Example: fit of Horbatsch, Hessels, Pineda



difference in χ^2 : factor 1.5

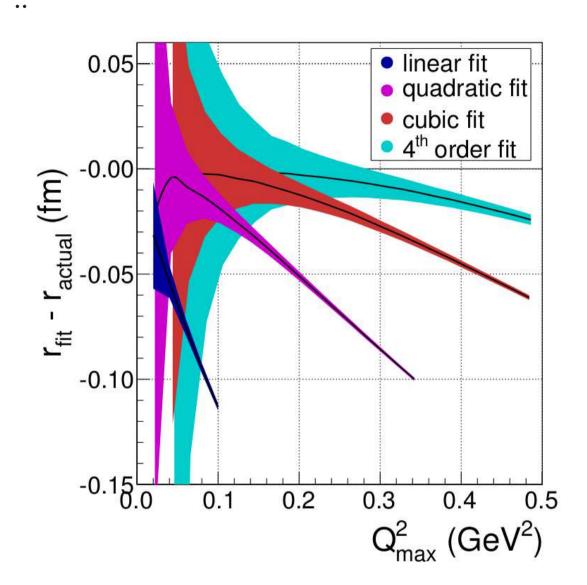
G(q) as polynomial in q^2 : $1 - q^2 \langle r^2 \rangle / 6 + q^4 \langle r^4 \rangle / 120 - ...$??

used by many authors in past shown already in 2003 that *not* suitable, Phys. Lett. B 576 (2003) 62 in 2014 quantitatively studied by Kraus *et al.* parameterized $G(q) \rightarrow$ pseudo data $\pm 0.4\% \rightarrow$ power series fit $\rightarrow R_{fit}$ always gives low R_{fit} , and R_{fit} depends strongly on q_{max}



e.g. for $Q^2 = 0.03$ (typical) and linear fit defect according to figure = 0.04 fmas large as discrepancy (e,e)... μX

must be dumb to use low-order polynomial but some authors do it anyway



Understanding of low R's

discuss for "very low-q" linear fit in q^2

corresponds to $\langle r^4
angle = 0$

how can produce $\langle r^2 \rangle \neq 0$ with $\langle r^4 \rangle = 0$?

What would a physicist think?

would try to think how corresponding $\rho(r)$ would look like: positive inside, negative at very large rthen negative tail can compensate positive part in $\langle r^4 \rangle$ to yield $\langle r^4 \rangle = 0$ given r^6 weight in $\langle r^4 \rangle$ -integral

But: negative tail also impacts $\langle r^2
angle$ will yield too small value for R

> remember: $\langle r^4 \rangle$ contributes ~15% of finite-size effect at q of maximal sensitivity to R

= physical explanation of above results of Kraus *et al.*

= general argument why truncated polynomial (also higher order) generates problems

Illustration of problems with low-order polynomial fits

recent fit of Higinbotham *et al.* Mainz80+Saskatoon data $q_{max}^2 = 0.8 fm^{-2}$ for R with smallest δR $G(q) = a_0(1 + a_1q^2)$

Find $R = 0.844 \pm 0.009 fm$

conclude that is compatible with μX result

Wrong, as a trivial back-of-the-envelope estimate shows! For $q^2=0.8$

 $\left. \begin{array}{l} q^2 R^2/6 &= 0.094 \ q^4 \langle r^4
angle/120 &= 0.0138 \end{array}
ight\} \hspace{0.2cm} q^4 ext{ contribution is } 14.7\% ext{ of } q^2 ext{ contribution} \
ightarrow q^2 ext{ contribution wrong by } \sim 14.7\% \
ightarrow R^2 ext{ is wrong by } \sim 14.7\%$

... and this sort of analysis is claimed to provide insight on radius-puzzle!

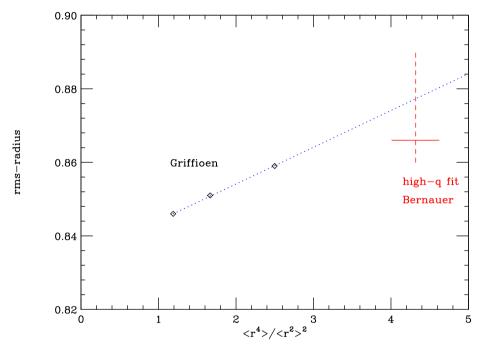
Another illustration: recent fit by Griffioen, Carlson, Maddox

use $G(q) = 1 - q^2 \langle r^2 \rangle / 6 + q^4 \langle r^4 \rangle / 120$ $Q^2 \leq 0.02 GeV^2$, "Bernauer" data, $R = 0.850 \pm 0.019 fm$ compatible with μX ?

 $\left. \begin{array}{l} \text{find contribution } q^4\text{-term } 0.0018 \\ \text{experimental } \langle r^4 \rangle \text{ yields } 0.011 \end{array} \right\} \quad \Delta \sim 15\% \text{ error in } \langle r^2 \rangle. \ R{=}0.850 \text{ simply wrong!} \end{array}$

Another demonstration of effect of $\langle r^4 angle$

 $\langle r^2 \rangle \ vs \ \langle r^4 \rangle$ for different densities $\delta(r-c)$, exponential, gaussian Griffioen *et al.*



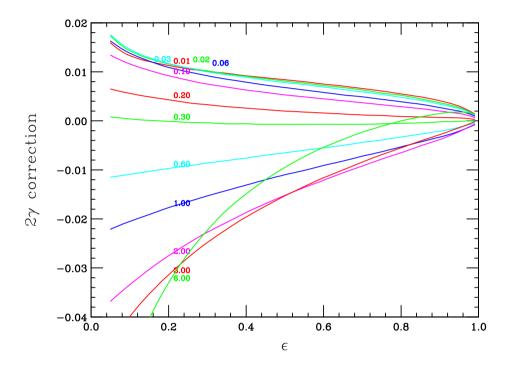
R linear function of $\langle r^4 \rangle / \langle r^2 \rangle^2$

extrapolate to true $\langle r^4 \rangle$ (Bernauer high-q fit)

get $R \sim 0.88 fm$

Two-photon effects

PWIA relation $\sigma \leftrightarrow G(q)$ complicated by 2- γ exchange TPE at low q mainly Coulomb distortion, well under control



At q of maximum sensitivity to $R = 1 - G(q) \sim 0.2$, so TPE~0.01 do matter!

Inappropriate TPE:

no corrections, corrections for point nucleus (McKinley-Feshbach) phenomenological corrections (not determined at low q)

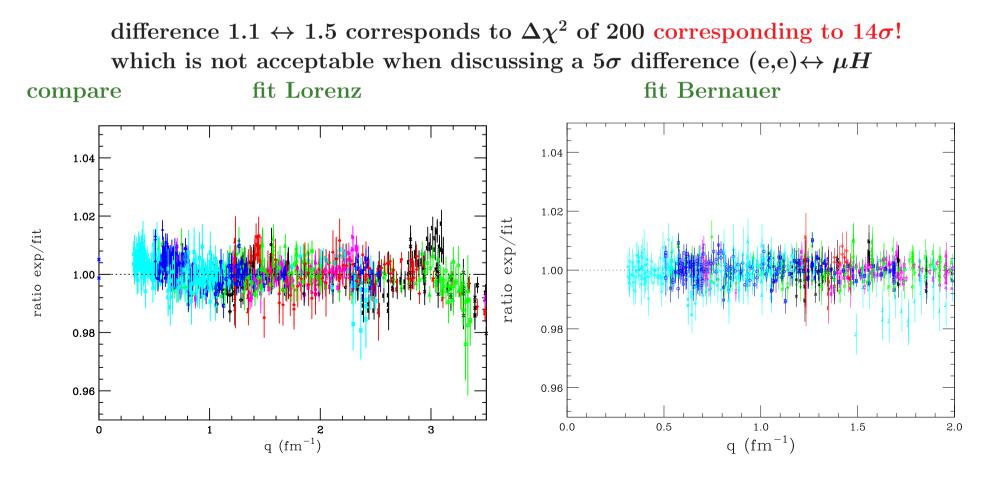
For valid result on R must use valid TPE

Good χ^2

Remember: one standard deviation σ corresponds to $\Delta \chi^2 = 1$

many analyses take cavalier-attitude about χ^2 accept χ^2 of (say) 1.5 per degree of freedom while good fits give 1.1

With (typically) 500 data points



Important distinction: absolute value of χ^2 is not the main issue

depends on optimism of experimentalist assigning $\delta\sigma$ depends on eventual rescaling of $\delta\sigma$

Really relevant: comparison of fits to same $\sigma \pm \delta \sigma$

if fit "A" gives significantly larger χ^2 than fit "B" then fit "A" has *systematic* differences to data then fit "A" must be discarded

Many published fits have $\chi^2 \gg \chi^2_{min}$, hence are irrelevant

Illustration

recent fit of Higinbotham *et al.* use dipole form factor fit Mainz80+Saskatoon+Stanford+JLab data

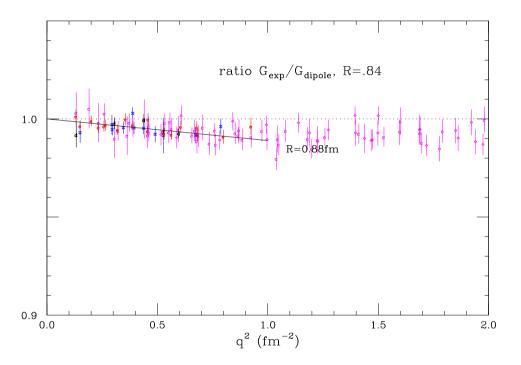
fit has reduced χ^2 of 1.25 find $R = 0.849 \pm 0.006 fm$

conclude that R is compatible with μX

But χ^2 is much too large

take one of my fits of *world* data (603 data points) find reduced χ^2 of 0.96, *not* 1.25

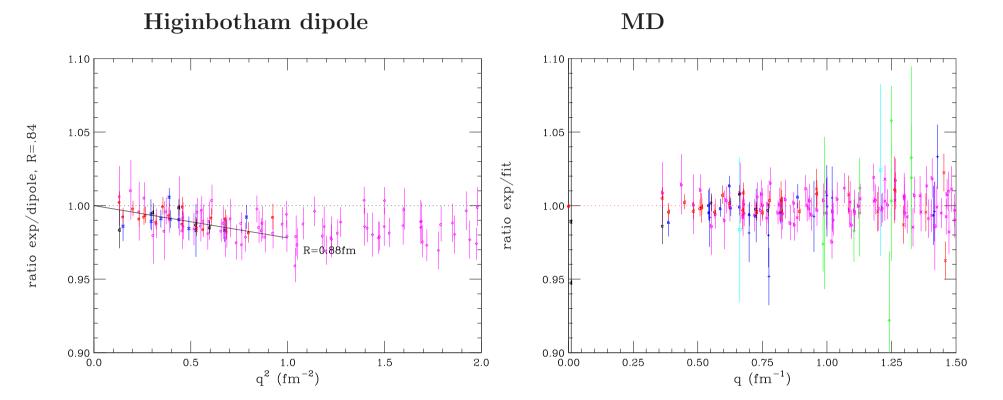
Consequence: systematic deviation of Higibotham dipole fit from cross section data



solid line shows change of low-q slope to R = 0.88 fm fits data!

the dipole "fit" (dotted line) is simply wrong

A direct comparison of cross section ratios of "fit" and fit



Another illustration: CF fit of Griffioen et al.

fit Bernauer data $q_{max} = 5fm^{-1}$ get reduced χ^2 of 1.61 (+pole ...) find $R = 0.8389 \pm 0.0004 fm$

conclude that agrees with μX

```
But Bernauer data can be fit with reduced \chi^2 of 1.14 shown years ago
```

For 1400 data points difference 1.61 .. 1.14 is $\Delta \chi^2 = 660!$

Who in his right mind would call that a "fit"?

Model-dependence due to choice of fit-function

some authors use 1- parameter fits at low qpower of q^2 , linear in z, single dipole, then $\langle r^4 \rangle / \langle r^2 \rangle$ is fixed by fit-function, not data $\langle r^4 \rangle \neq$ true value known from fit of data over whole q-range

then $\langle r^2\rangle$ must compensate for wrong $\langle r^4\rangle\to$ wrong value of R also gives larger χ^2

Illustration: low-q fits of Horbatsch+Hessels

fit Bernauer data, $q_{max} \sim 1.6 fm^{-1}$ use 1-parameter dipole resp. 1-parameter linear function in zfind R = 0.842(2) resp. 0.888(1)fm

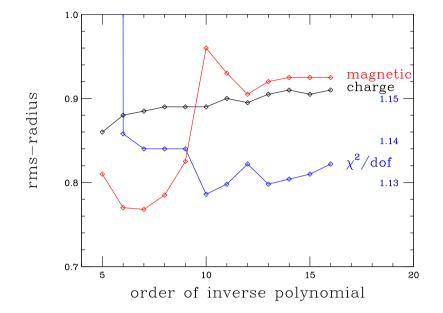
fit-function fixes $\langle r^4 \rangle$ to $1.244 fm^4$ resp. $2.15 fm^4$. True value $2.58 fm^4$ (fit to all data)

explains both low and discrepant radii

is reason why $\chi^2/dof = 1.11$ instead of 1.03 for 761 points $\Delta\chi^2 = 61!~(\sim 8\sigma' s)$

'Fits' 8σ 's from minimum are irrelevant when discussing 5σ difference (e,e) $\leftrightarrow \mu X$!

$$G(q^2) = 1/(1 + a_1q^2 + a_2q^4 +)$$



Curious behavior:

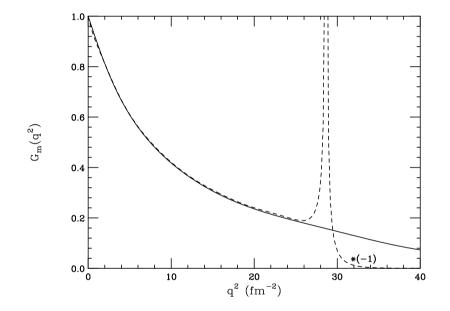
between order N=7 and N=10 R^M jumps from 0.76 fm to 0.96 fm χ^2 best for N=10 would nominally be the best fit!

Bernauer *et al.* chose order N=7 ($\chi^2 \pm \text{stabilized}$)

Question remains:

what is responsible for jump? how can the q^{20} -term affect the rms-radius?

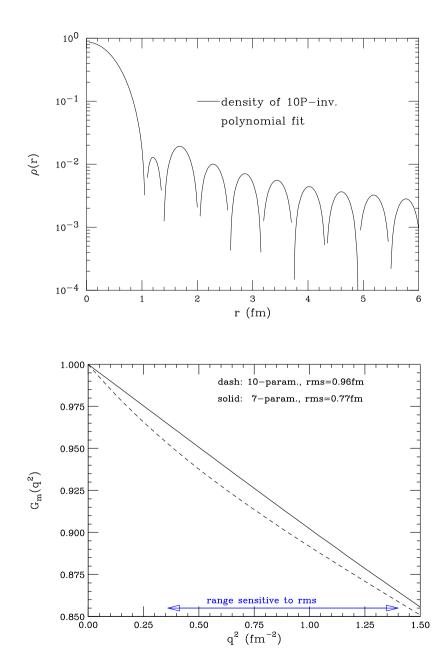
Understanding



 G_M for N=10 has pole at $q > q_{max}$

In $\rho(r)_m$ this leads to oscillatory tail extending to very large r, see next page

Density from G(q) with pole



Tail affects $G_m(q)$ at very low qbelow q_{min} of data

N=10 fit pathological

N=7 better? Has pole too, at larger q

Cannot believe either radius

Failed fits with too large χ^2 continued fraction fits by Lorenz *et al.*

$$G(q) = rac{1}{1 + rac{q^2 b_1}{1 + rac{q^2 b_2}{1 + \cdots}}}$$

many fits of Bernauer data with variable q_{max}

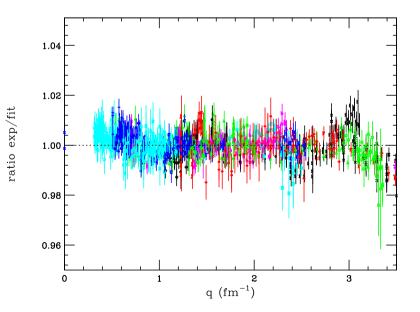
for e.g. 5 terms and $q_{max} = 3.5 fm^{-1}$ find charge-rms-radius 0.84 fmdisagrees with "accepted" result of 0.88 fm

One reason

 $\chi^2 \sim 1.4/dof$ much to big

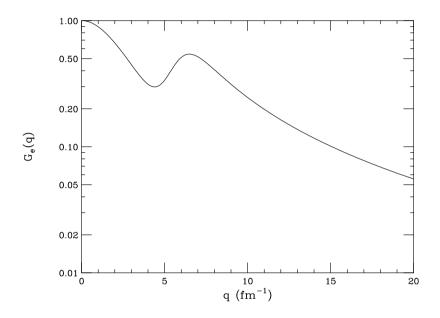
 \rightarrow systematic deviations at low q Spline fit gives 1.06/dof

from such a fit cannot draw conclusions



Main problem of Lorenz et al.

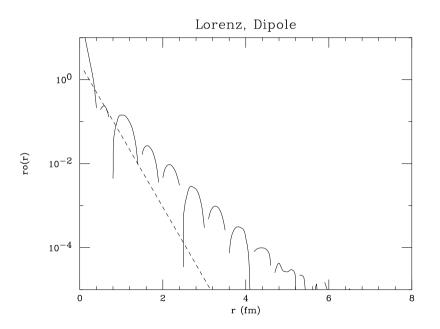
Unphysical behavior of G at $q > q_{max} = 3.5 fm^{-1}$



large G(q) at large q

falls very slowly \rightarrow structure of $\rho(r)$ at very large r

large contribution to rms-radius main effect on G(q) at $q < q_{min}$



Physical model for large r

least-bound Fock state: $p = n + \pi^+$ dominates $\rho(r)$ completely at large-enough $r \ (> 0.8 fm$ in cloudy bag model)

To maximally fix $\rho(r)$ from G(q)-data

want to use data up to largest q's measured must account for relativistic corrections

 $ho(r)_{exp}$ from (e,e) vs relativistic corrections

non-relativistic: $\rho(r)$ = Fourier-transform of $G_e(q)$

Relativistic corrections:

1. Determine $\rho(r)$ in Breit-frame, accounts for Lorentz contraction

use as momentum transfer $\kappa^2 = q^2/(1+ au), \ \ au = q^2/4M^2$

2. For composite systems boost operator depends on structure

various theoretical results (Licht, Mitra, Ji, Holzwarth,...), all of form $G_e(q) \rightarrow G_e(q)(1+\tau)^{\lambda}$, $\lambda=1$ or 2

numerical test: $\lambda=1$ or 2 makes little difference for ρ at large r(but fixes unphysical behavior at $r \sim 0$)

Calculation of density at very large r

```
a priori: asymptotic form = Whittaker function W_{-\eta,3/2}(2\kappa r)/r
with physical masses m_N, m_\pi, l=1
with separation energy = m_\pi, include CM-correction
```

makes sense only at large n- π relative distance: $R^p = 0.89 fm$, $R^{\pi} = 0.66 fm$ only at large r overlap of n and π small

potential difficulty

need to fold W^2/r^2 with charge distribution of n, π could get into trouble with r = 0 divergence of $W(2\kappa r)/r$

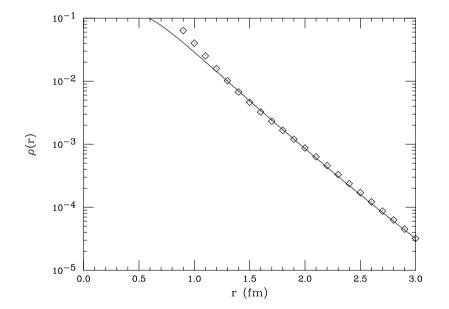
In practice

calculate w.f. in square well potential, $V(r > r_0) = 0$ (courtesy D.Trautmann) radius $r_0 = 0.8 fm$ (not important), depth adjusted to separation energy

for $r > r_0$ shape of $\psi^2 \equiv$ shape of Whittaker function can easily fold

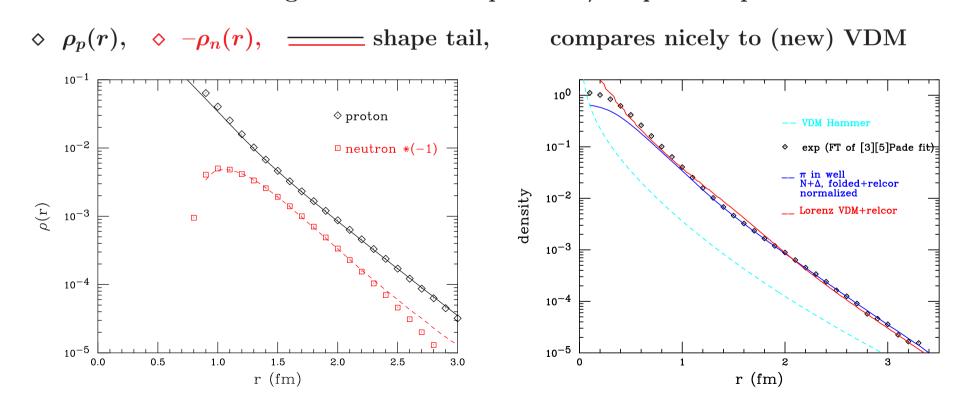
Result

excellent agreement with shape of $\rho_{exp}(r)$ \diamond (= fit *world* data with [3][5] Pade) (normalization fitted to ρ_{exp})



"Refinements" of model (not needed, nice consistency check) allow also for $\Delta + \pi$ contribution coefficients of various terms from Dziembowski,...,Speth 'Pionic contribution to nucleon EM properties in light-front approach' include all states: π^+n , π^-p , $\pi^-\Delta^{++}$, $\pi^+\Delta^0$, $\pi^-\Delta^+$, $\pi^+\Delta^-$

effect on p-tail: small, tail even a bit closer to ρ_{exp} at small reffect on n-tail: larger, gets close to ρ_{exp} with exactly *same* parameters nice consistency check will ignore n since components $\neq \pi^- p$ too important



Details of SOG fit

Data used world (e,e) data up to 12 fm^{-1} both cross sections and polarization data, 605 data points for some fits add Bernauer σ with 0.4% quadr. added to $\delta\sigma$ accounts for problems with background subtraction, target offsets two-photon exchange corrections needed to make G_{ep} from σ and P agree includes both soft+hard photons, Melnitchouk+Tjon (relative) tail density for r > 1.3 fm

Parameterization for G_e and G_m

use r-space SOG parameterization to implement constraint equivalent results with Laguerre

Results

average over various combinations of data sets floating or not of normalization

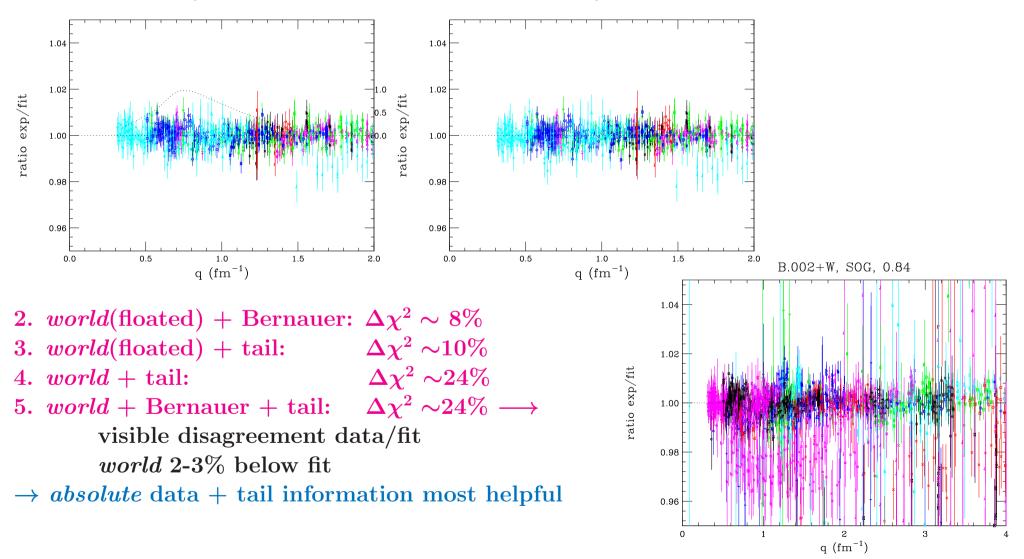
 $R^{ch} = .886 \pm 0.008 \; fm \qquad \qquad R^m = .858 \pm .024 \; fm$

Conclusion: disagreement with μ -H confirmed

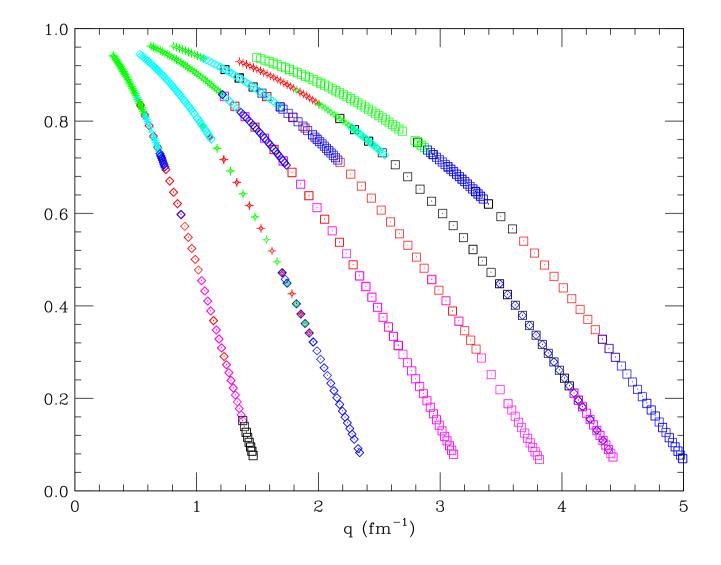
Question: to which degree could fit (e,e) with $R_{\mu X}$? redo analysis with various combinations of data, normalization 1. Bernauer data alone: $\Delta \chi^2 \sim 5\%$, not visible in $\sigma_{exp}/\sigma_{fit}$

 $R{=}0.84 fm$

R=0.88fm



Kinematics of Bernauer data



Bernauer data, background subtraction

 $R^{ch} = 0.879 \pm 0.007 \; fm, \;\; R^m = 0.777 \pm 0.02 \; fm$ at first sight nice confirmation of previous R^{ch}

Problematic: disagreement with world value $R^m = 0.855 \pm 0.035 fm$

Note: \mathbb{R}^m -discrepancy only 0.3% of σ at q of maximal sensitivity to rms-radius

At this level target-window subtraction no good

background 4 ... 10%, not measured, but simulated!

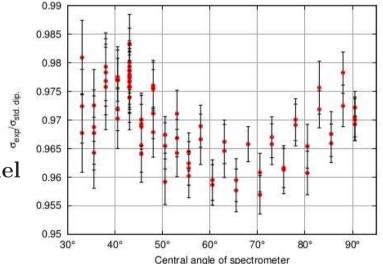
Window subtraction via model wrong data affected by detector inefficiency window model *not* affected

Window model much too primitive

radiative tail+q.e.-scattering in Fermi-Gas model no inelastic scattering, F-G model no good

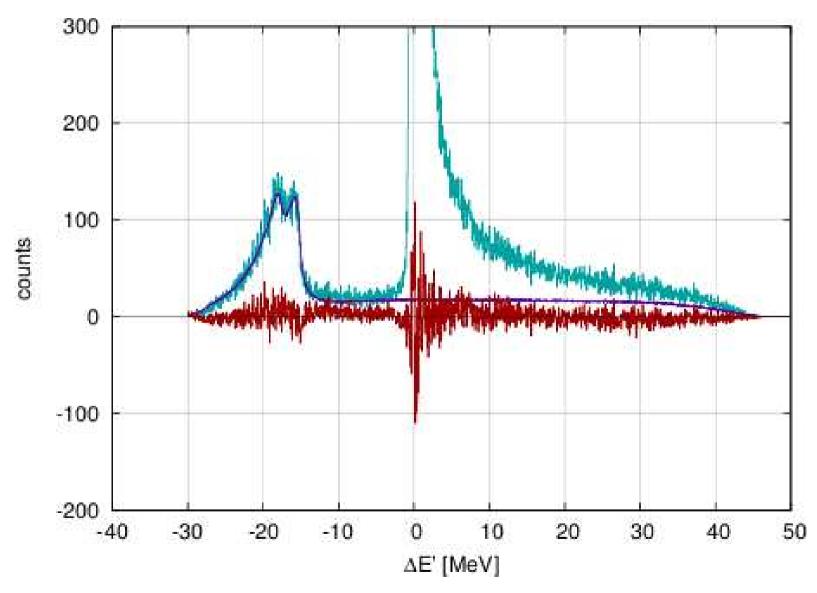
Fit of data poor

see next page



Spectrum shown in thesis

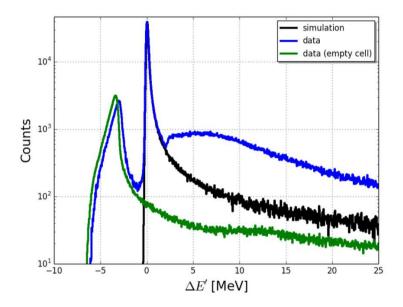
shows misfit amounting to 1.2% in cross section! Large compared to 0.3%!



Must be fixed before can believe results

Measured window contribution

MAMI d(e,e)-experiment



shows structure of background relevant in $1fm^{-1}$ region

Problem of Bernauer data also shown by fits

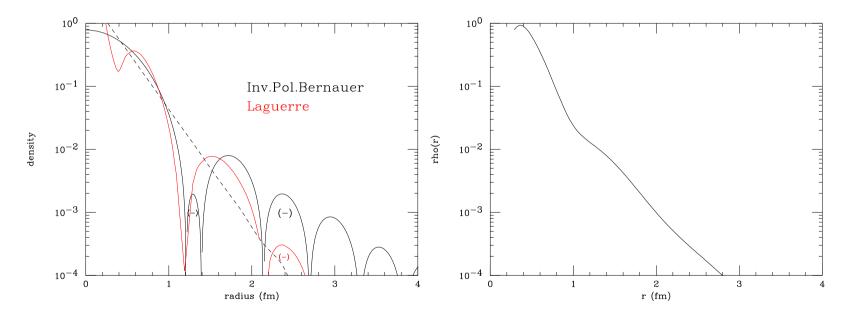
Inverse polynomial fit of Bernauer

 χ^2 as low as other best-fits

yields strongly oscillating density, same with Laguerre

Laguerre fits with tail constraint

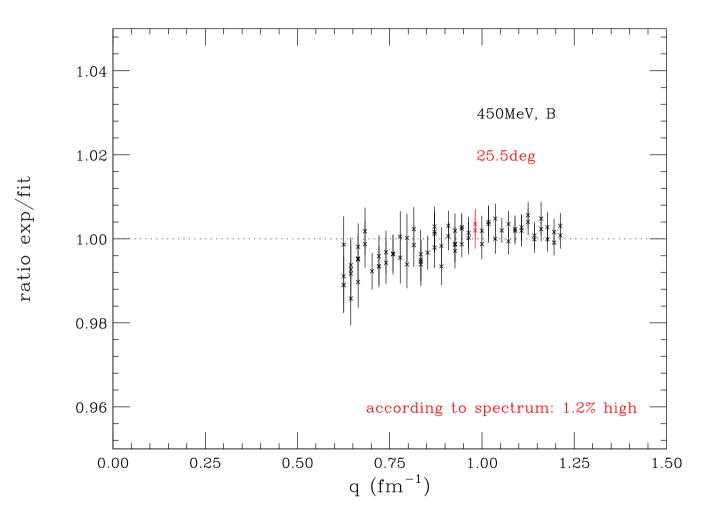
trying to reduce unphysical oscillations χ^2 higher by factor ~1.5 but density still shows remainders of oscillations



differences Bernauer-world of few % lead to unreasonable ρ

also true for other parameterizations MD, SOG, ..

1.2% problem is systematic

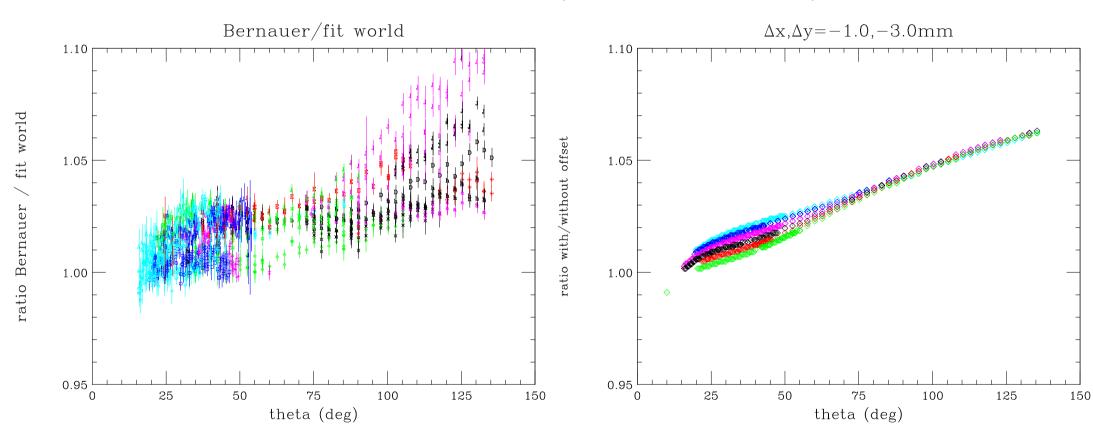


 \rightarrow concerns entire region of q

 \equiv region of maximal sensitivity to *rms*-radius

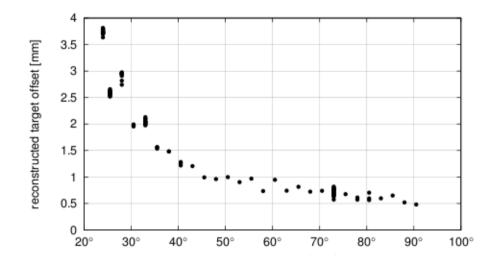
Disagreement Bernauer \leftrightarrow world data: very poor χ^2 of common fit

disagreement studied as function of different variables systematic difference seen in ratio as function of angle unlikely to be problem of world data (~ 20 independent sets)



Most likely reason: x/y-offset of target from center of rotation

Off-set indeed seen by Bernauer et al.



according to thesis: corrected for in data analysis

BUT: there is a possible *different* reason

magnetic asymmetry of spectrometer relative to mid-planeor misaligned detector systemwould also lead to incorrect reconstruction of target position

 \rightarrow different correction to σ : basically none

One A1 spectrometer now known to have asymmetry (partial short in coil)

not enough information available to make true correction