

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

Nuclear spectra and weak response: a status report

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

April 23, 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Few-nucleon systems from LQCD

Beane et al. (2013); Chang et al. (2015); Savage et al. (2017)

• NPLQCD spectra calculations ($m_{\pi} = 806 \text{ MeV}$)

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

 NPLQCD calculations of magnetic moments and weak transitions in few-nucleon systems also available

2N potential from LQCD and nuclear spectra

Aoki et al. (2012); McIlroy et al. (2017)

• LQCD calculation of 2N potential by HAL collaboration

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

- The basic model of nuclear theory
- Chiral 2N and 3N potentials, nuclear spectra, and neutron matter EOS
- Electroweak currents and (mostly weak) transitions

Outlook:

- Going beyond LO in the 3N potentials
- Weak transitions with NV2+3 potential models

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The basic model

- Effective potentials:
 - $H = \sum_{i=1}^{A} \frac{\mathbf{p}_i^2}{2m_i} + \sum_{i < j=1}^{A} \underbrace{v_{ij}}_{\mathsf{th}+\mathsf{exp}} + \sum_{i < j < k=1}^{A} \underbrace{v_{ijk}}_{V_{ijk}} + \cdots$
- Assumptions:
 - Quarks in nuclei are in color singlet states close to those of N's (and low-lying excitations: Δ's, ...)
 - Series of potentials converges rapidly
 - Dominant terms in v_{ij} and V_{ijk} are due to π exchange

leading
$$\pi N$$
 coupling $= \frac{g_A}{2f_\pi} \tau_a \,\boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \phi_a(\mathbf{r})$

• Effective electroweak currents:

$$j^{EW} = \sum_{i=1}^{A} j_i + \sum_{i < j = 1}^{A} j_{ij} + \sum_{i < j < k = 1}^{A} j_{ijk} + \cdots$$

Basic model

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Earlier developers of the basic model ...

- Basic mode
- Nuclear χ EFT
- Chiral 2N potentials
- Chiral 3N potentials
- EW interactions
- Outlook

Day 1-2 in the 1977 workshop

Tuesday, May 3

W

WORKSHOP ON NUCLEAR AND DENSE MATTER

May 3 - 6, 1977, Urbana, IL

PROGRAM

basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

0:00 -	9:30	Registration and Coffee (South Lounge, Physics Building) M. H. Kalos - Monte Carlo Methods in the Quantum Many-Body Problem
1.25 -	11.05	6 V Chester - Monte Carlo Calculations of Nuclear and Neutron Matter
1.10 -	11-30	C. F. Campbell - Comments on Feenberg-Wu Approximation
1.30 -	1:30	Lunch (Levis Faculty Center - 3rd floor)
1:30 -	2:20	S. Rosati - Cluster Expansion & Chain Summation Techniques for Fermion Systems
2.30 -	2:55	S. Fantoni - Recent Calculations on Fermion Systems
3.05 -	3:30	J. Zabolitzky - Convergence Properties of FHNC Methods
3:30 -	4:00	Coffee (South Lounge)
1:00 -	4:45	K. E. Schmidt - Variational Calculations of Liquid "He with a Complex f
1:50 -	5:30	R. B. Wiringa - Variational Calculations of Nuclear Matter with Realistic Potentials
. 00	8:00	Reception (Center for Advanced Study)

9:00 9:30 10:40 11:30 1:30 2:30 3:05 3:30 4:00 4:30 7:00 8:00	 9:30 10:30 11:30 2:20 2:55 3:30 4:00 4:20 5:30 8:00	Coffee (South Lounge) B. D. Day - Numerical Calculation and Tests of the Brueckner-Bethe Method Comments: C. Mahaux - Quasi-Particle Energies for Intermediate States S. Köhler - Convergence of the Brueckner-Bethe Method C. W. Wong - Comparison of Brueckner and Jastrow Energies at Three-Body Level Lunch (Levis Faculty Center - 3rd floor) R. Vinh Mau - The Paris Nucleon-Nucleon Potential O. Maxwell - Variational Calculations with the Paris Potentiai P. J. Siemens - Optimal Correlation Function for FHNC Coffee (South Lounge) G. Ripka - Healing and Pauli Effects in Jastrow Theory of Fermi Systems H. A. Bethe - Status of the Nuclear Matter Problem Cocktails (Levis Faculty Center - 2nd floor) Morkshop Dinner (Levis Faculty Center - 2nd floor)
		(日)(四)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)

Day 3-4 in the 1977 workshop

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

Thursday, May 5	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Coffee (South Longe) D. Pines - Polarization Potentials and Elementary Excitations C. Mhaux - Shell Model Theory of Nuclear Matter E. J. Moniz - Issbar Propagation in the Nuclear Medium Lunch (Levis Faculty Center - 3rd floor) G. E. Brown - Pion Nucleus Many-Body Problem L. McLerran - Recent Results of Quark Matter Calculations F. Coester - Relativistic Many-Body Theories Coffee (South Longe with Physics Colloquium) Physics Colloquium - T. C. Koopmans - Approaches of Different Professions to Common Problems
Friday, May 6	
9:00 - 9:20 9:20 - 9:50	Coffee (South Lounge) C. W. Woo - Variational Calculations of Fermi Systems with a New Integral Fountion (tentative)
9:55 - 10:30 10:40 - 11:05 11:10 - 11:40 12:00	E. Krotscheck - Formal Properties and Convergence of FHNC R. A. Smith - HNC in Spin-Dependent Systems J. Clark - Perturbation Theory with Correlated Basis Functions Conclusion
All lectures are in Lounge - Room 118.	Room 144.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

χ EFT formulation of the basic model

- χEFT is a low-energy approximation of QCD
- Lagrangians describing the interactions of π , N, ... are expanded in powers of Q/Λ_{χ} ($\Lambda_{\chi} \sim 1$ GeV)
- Their construction has been codified in a number of papers¹

$$\mathcal{L} = \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \dots \\ + \mathcal{L}_{\pi \pi}^{(2)} + \mathcal{L}_{\pi \pi}^{(4)} + \dots$$

- $\mathcal{L}^{(n)}$ also include contact $(\overline{N}N)(\overline{N}N)$ -type interactions parametrized by low-energy constants (LECs)
- Initial impetus to the development of $\chi {\rm EFT}$ for nuclei in the early nineties ^{2,3}

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

General considerations

• Time-ordered perturbation theory (TOPT):

$$\langle f \mid T \mid i \rangle = \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle$$

Momentum scaling of contribution

- Each of the N_K energy denominators involving only nucleons is of order Q^{-2}
- Each of the other $N N_K 1$ energy denominators involving also pion energies is expanded as

$$\frac{1}{E_i - E_I - \omega_{\pi}} = -\frac{1}{\omega_{\pi}} \left[1 + \frac{E_i - E_I}{\omega_{\pi}} + \frac{(E_i - E_I)^2}{\omega_{\pi}^2} + \dots \right]$$

• Power counting:

$$T = T^{LO} + T^{NLO} + T^{N^2LO} + \dots, \text{ and } T^{N^nLO} \sim (Q/\Lambda_{\chi})^n T^{LO}$$

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

From amplitudes to potentials

Pastore et al. (2009); Pastore et al. (2011)

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

Construct v such that when inserted in LS equation

 $v + v G_0 v + v G_0 v G_0 v + \dots$ $G_0 = 1/(E_i - E_I + i \eta)$

leads to T-matrix order by order in the power counting

Assume

$$v = v^{(0)} + v^{(1)} + v^{(2)} + \dots \qquad v^{(n)} \sim (Q/\Lambda_{\chi})^n v^{(0)}$$

• Determine $v^{(n)}$ from

 $\begin{aligned} v^{(0)} &= T^{(0)} \\ v^{(1)} &= T^{(1)} - \left[v^{(0)} G_0 v^{(0)} \right] \\ v^{(2)} &= T^{(2)} - \left[v^{(0)} G_0 v^{(0)} G_0 v^{(0)} \right] - \left[v^{(1)} G_0 v^{(0)} + v^{(0)} G_0 v^{(1)} \right] \end{aligned}$

and so on, where

 $v^{(m)} G_0 v^{(n)} \sim \left(Q/\Lambda_{\chi}\right)^{m+n+1}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Chiral 2N potentials with Δ 's

Piarulli et al. (2015); Piarulli et al. (2016)

- Two-nucleon potential: $v = v^{\text{EM}} + v^{\text{LR}} + v^{\text{SR}}$
- EM component $v^{\rm EM}$ including corrections up to α^2
- Chiral OPE and TPE component $v^{\rm LR}$ with Δ 's

- Short-range contact component $v^{\rm SR}$ up to order Q^4 parametrized by (2+7+11) IC and (2+4) IB LECs
- v^{SR} functional form taken as $C_{R_S}(r) \propto e^{-(r/R_S)^2}$ with R_S =0.8 (0.7) fm for a (b) models

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

np (T = 0 and 1) and pp phase shifts

Ab initio methods utilized by our group

• Hyperspherical harmonics (HH) expansions for *A* = 3 and 4 bound and continuum states

$$|\psi_V\rangle = \sum_{\mu} c_{\mu} \underbrace{|\phi_{\mu}\rangle}_{\text{HH basis}} \text{ and } c_{\mu} \text{ from } E_V = \frac{\langle\psi_V|H|\psi_V\rangle}{\langle\psi_V|\psi_V\rangle}$$

• Quantum Monte Carlo for A > 4 bound states

Chiral 3N potentials with Δ 's

Piarulli et al. (2018)

• 3N potential up to N2LO¹:

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

• c_D and c_E fixed by fitting $E_0^{\exp}({}^{3}\text{H}) = -8.482 \text{ MeV}$ and nd doublet scattering length $a_{nd}^{\exp} = (0.645 \pm 0.010) \text{ fm}$

			with $3N$					
Model	c_D	c_E	$E_0({}^{3}\mathrm{H})$	$E_0({}^3\mathrm{He})$	$E_0({}^4\mathrm{He})$	${}^{2}a_{nd}$	$E_0({}^{3}\mathrm{He})$	$E_0({}^4\mathrm{He})$
la	3.666	-1.638	-7.825	-7.083	-25.15	1.085	-7.728	-28.31
lb	-2.061	-0.982	-7.606	-6.878	-23.99	1.284	-7.730	-28.31
lla	1.278	-1.029	-7.956	-7.206	-25.80	0.993	-7.723	-28.17
llb	-4.480	-0.412	-7.874	-7.126	-25.31	1.073	-7.720	-28.17

• Alternate strategy: fix c_D and c_E by reproducing $E_0^{\exp}({}^{3}\text{H})$ and the GT^{exp} matrix element in ${}^{3}\text{H} \beta$ -decay

(日) (日) (日) (日) (日) (日) (日)

Spectra of light nuclei

Piarulli et al. (2018)

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Neutron matter equation of state

Piarulli et al., private communication

Chiral 3N potentials

EW interactions

- Sensitivity to 3N contact term:
 - $c_E < 0$ repulsive in $A \le 4$
 - but attractive in PNM
- Outoff sensitivity:
 - modest in NV2 models
 - large in NV2+3 models

Nuclear weak interactions at low energies

- Shell model in agreement with exp if $g_A^{\rm eff}\simeq 0.7\,g_A$
- Understanding "quenching" of g_A in nuclear β decays
- Relevant for neutrinoless 2eta-decay since rate $\propto \,g_A^4$

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Including electroweak (ew) interactions

Pastore et al. (2009,2011); Piarulli et al. (2013); Baroni et al. (2017)

• Power counting of ew interactions (treated in first order)

$$T_{\rm ew} = T_{\rm ew}^{(-3)} + T_{\rm ew}^{(-2)} + T_{\rm ew}^{(-1)} + \dots \quad T_{\rm ew}^{(n)} \sim (Q/\Lambda_{\chi})^n T_{\rm ew}^{(-3)}$$

• For $v_{\rm ew}^{(n)} = A^0 \, \rho_{\rm ew}^{(n)} - {\bf A} \cdot {\bf j}_{\rm ew}^{(n)}$ to match $T_{\rm ew}$ order by order

$$\begin{aligned} & v_{\text{ew}}^{(-3)} &= T_{\text{ew}}^{(-3)} \\ & v_{\text{ew}}^{(-2)} &= T_{\text{ew}}^{(-2)} - \left[v_{\text{ew}}^{(-3)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\text{ew}}^{(-3)} \right] \\ & v_{\text{ew}}^{(-1)} &= T_{\text{ew}}^{(-1)} - \left[v_{\text{ew}}^{(-3)} \, G_0 \, v^{(0)} \, G_0 \, v^{(0)} + \text{permutations} \right] \\ & - \left[v_{\text{ew}}^{(-2)} \, G_0 \, v^{(0)} + v^{(0)} \, G_0 \, v_{\text{ew}}^{(-2)} \right] \end{aligned}$$

Outlook

and so on up to n = 1

• $\rho_{\rm ew}^{(n)}$ and $\mathbf{j}_{\rm ew}^{(n)}$ (generally) depend on off-the-energy shell prescriptions adopted for $v^{(\leq n)}$ and $v_{\rm ew}^{(\leq n)}$

Nuclear axial currents at one loop

Park et al. (1993,2003); Baroni et al. (2016); Krebs et al. (2017)

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

- Some of the contributions—panels (m) and (s)—differ in the Baroni et al. and Krebs et al. derivations
- 1 unknown LEC in \mathbf{j}_5 (4 unknown LECs in ρ_5)

Fitting d_R in the contact axial current

Gardestig and Phillips (2006); Gazit et al. (2009)

†with w.f.'s from either p-space (Entem and Machleidt) or r-space (Piarulli et al.) potentials 🚛 🚛 🥠

μ^- capture on 2 H and 3 He at N3LO

Marcucci et al. (2012); Marcucci et al. Erratum (2018)

• χ EFT predictions with conservative error estimates¹:

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

 $\Gamma(^{2}H) = (399 \pm 3) \sec^{-1} \qquad \Gamma(^{3}He) = (1494 \pm 21) \sec^{-1}$

- Errors due primarily to:
 - experimental error on GT^{EXP} (0.5%)
 - uncertainties in EW radiative corrections² (0.4%)
 - cutoff dependence

• Using $\Gamma^{EXP}(^{3}He) = (1496 \pm 4) \text{ sec}^{-1}$, one extracts

$$G_{PS}(q_0^2 = -0.95 \, m_\mu^2) = 8.2 \pm 0.7$$

versus $G_{PS}^{\rm EXP}(q_0^2=-0.88\,m_\mu^2)=8.06\pm0.55^{\,3}$ and a $\chi{\rm PT}$ prediction of $7.99\pm0.20^{\,4}$

• Upcoming measurement of $\Gamma(^{2}H)$ by the MuSun collaboration at PSI with a projected 1% error ...

¹Based on Entem and Machleidt potentials; ²These corrections increase rate by 3%, see Czarnecki *et al.* (2007); ³From a measurement of Γ^{EXP}(¹H), Andreev *et al.* (2013); ⁴₋Bernard *et al.* (1994), Kaiser (2003), o, o

Low-energy neutrinos

Basic mode

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

SNO experiment

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Low-energy inclusive ν -d scattering in χ EFT

Baroni and Schiavilla (2017)

Subleading contact 3N potential

Girlanda et al. (2011); Girlanda, private communication

- There are 146 operators with two derivatives ...
- But Fierz identities and relativistic covariance lead to 10 independent operator structures; a possible choice:

$$\begin{split} \sum_{n=1}^{4} V_{ijk}^{(n)} &= \left(E_1 + E_2 \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + E_3 \, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j + E_4 \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j \, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j\right) \\ &\times \left[C_{R_{\rm S}}^{\prime\prime}(r_{ij}) + 2 \, \frac{C_{R_{\rm S}}^{\prime}(r_{ij})}{r_{ij}}\right] C_{R_{\rm S}}(r_{jk}) + (j \rightleftharpoons k) \\ \sum_{n=5}^{6} V_{ijk}^{(n)} &= \left(E_5 + E_6 \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j\right) S_{ij} \left[C_{R_{\rm S}}^{\prime\prime}(r_{ij}) - \frac{C_{R_{\rm S}}^{\prime}(r_{ij})}{r_{ij}}\right] C_{R_{\rm S}}(r_{jk}) + (j \rightleftharpoons k) \\ \sum_{n=7}^{8} V_{ijk}^{(n)} &= -2 \left(E_7 + E_8 \, \boldsymbol{\tau}_j \cdot \boldsymbol{\tau}_k\right) \frac{C_{R_{\rm S}}^{\prime}(r_{ij})}{r_{ij}} \left\{ (\mathbf{L} \cdot \mathbf{S})_{ij} , \, C_{R_{\rm S}}(r_{jk}) \right\} + (j \rightleftharpoons k) \\ \sum_{n=9}^{10} V_{ijk}^{(n)} &= \left(E_9 + E_{10} \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j\right) \boldsymbol{\sigma}_i \cdot \hat{\mathbf{\tau}}_{ik} \, \boldsymbol{\sigma}_j \cdot \hat{\mathbf{\tau}}_{jk} \, C_{R_{\rm S}}^{\prime}(r_{ik}) \, C_{R_{\rm S}}^{\prime}(r_{jk}) + (j \rightleftharpoons k) \end{split}$$

 For consistency V^{CT2}_{ijk} should go along with NN¹ and (multi-pion exchange) 3N² potentials at N4LO ...

¹Entem et al. (2015) and Epelbaum et al. (2015); ²Bernard et al. (2008) and (2011)

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Projecting in isospin T=1/2 and 3/2 channels

Girlanda, private communication

$$P_{1/2} = \frac{1}{2} - \frac{1}{6} \left(\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_k + \boldsymbol{\tau}_j \cdot \boldsymbol{\tau}_k \right)$$
 and $P_{3/2} = 1 - P_{1/2}$

• The (single) LO contact term ($\propto c_E$ in standard notation) can be expressed as

$$V^{\rm CT0} = \widetilde{c}_E P_{1/2}$$

• The 10 subleading contact terms can be expressed as

$$V^{\text{CT2}} = \widetilde{E}_1 O_1^{(3/2)} + \sum_{i=2}^{10} \widetilde{E}_i O_i^{(1/2)}$$

- There is not much flexibility to constrain the T = 3/2 component of the 3N contact potential ...
- But analysis relies on the use of Fierz identities and is valid up to cutoff effects

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Reducing the number of subleading LECs

Girlanda, private communication

Implications from large- N_c limit: • NN contact at LO: C_1 , $C_4 \sim N_c$ and C_2 , $C_3 \sim 1/N_c$ Unclear χ EFT Chiral 2N otentials $\mathcal{L} = -C_1 N^{\dagger} N N^{\dagger} N - C_2 N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N - C_3 N^{\dagger} \tau_a N N^{\dagger} \sigma_i \sigma_a N N^{\dagger} \sigma_i \tau_a N$ $= -\underbrace{(C_1 - 2C_3 - 3C_4)}_{C_S} N^{\dagger} N N^{\dagger} N - \underbrace{(C_2 - C_3)}_{C_T} N^{\dagger} \sigma_i N N^{\dagger} \sigma_i N$

• 3N contact at LO¹: D_1 , D_4 , $D_6 \sim N_c$, but only a single independent operator with associated LEC $\sim N_c$

$$\mathcal{L} = -\sum_{i=1}^{6} D_i O_i \qquad O_i = N^{\dagger} N N^{\dagger} N N^{\dagger} N \text{ and } 5 \text{ more}$$

• 3N subleading contact²: an analysis similar to above shows E_2 , E_3 , E_5 and E_9 vanish in the large- N_c limit $\mathcal{L} = -\sum_{i=1}^{10} E_i O_i$ $O_i = \nabla (N^{\dagger}N) \cdot \nabla (N^{\dagger}N)$ and 9 more

¹Phillips and Schat (2013); ²Girlanda, unpublished

・ロト・西ト・山田・山田・山下

Strategies to constrain the LECs

- Fix c_D via a measured GT m.e. (obvious choice ³H)
- Possible approaches to fix c_E and subleading LECs:
 - Nd scattering observables at low energies
 - Spectra of light- and medium-weight nuclei and properties of nuclear/neutron matter

Basic model

Nuclear χ EFT

Chiral 2N potentials

Chiral 31 potentials

EW interaction

Weak transitions with NV2+3 potential models

Marcucci et al., unpublished

• Simple at tree level (and calculations are in progress); still a single LEC in the axial current

- Ranges in c_D and c_E from (conservative) estimate of error on GT^{exp}; these c_E's help in neutron matter EOS
- A major task at N4LO as there are a great many twoand three-body contributions at that order

Weak transitions in A > 3 nuclei

Pastore et al. (2018) and unpublished; see also Pastore and Hagen's talks at this workshop

Basic mode

Nuclear χ EFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

Hybrid GFMC with AV18/IL7 \rightarrow

VMC with NV-Ia and LO $\mathbf{j}_5 \rightarrow$

On two-body axial current contributions ...

Schiavilla et al. (1998)

- Pair wave functions of nuclei in TS = 01 and 10 have similar shapes for nucleon separations $\lesssim 2$ fm
- Two-body contributions in nuclei (at least, light ones) are proportional to those in processes $pn(nn) \rightarrow pp(pn)$

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

The HH/QMC team

 The ANL/JLAB/LANL/Lecce/Pisa collaboration members:

Basic model

Nuclear χEFT

Chiral 2N potentials

Chiral 3N potentials

EW interactions

Outlook

- A. Baroni (USC)
 - J. Carlson (LANL)
 - S. Gandolfi (LANL)
 - L. Girlanda (U-Salento)
 - A. Kievsky (INFN-Pisa)
 - D. Lonardoni (LANL)
 - A. Lovato (ANL/INFN-Trento)

L.E. Marcucci (U-Pisa)

- S. Pastore (LANL \rightarrow WASHU)
- M. Piarulli (ANL->WASHU)
- S.C. Pieper (ANL)
- R. Schiavilla (ODU/JLab)
- M. Viviani (INFN-Pisa)
- R.B. Wiringa (ANL)

• Computational resources from ANL LCRC, LANL Open Supercomputing, and NERSC