Nuclear spectra and weak response: a status report

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

April 23, 2018

Few-nucleon systems from LQCD

- NPLQCD spectra calculations $\left(m_{\pi}=806 \mathrm{MeV}\right)$

- NPLQCD calculations of magnetic moments and weak transitions in few-nucleon systems also available

$2 N$ potential from LQCD and nuclear spectra

- LQCD calculation of $2 N$ potential by HAL collaboration

Basic model

Nuclear χ EFT

Chiral $2 N$
potentials

Chiral $3 N$
potentials

Outline

- The basic model of nuclear theory
- Chiral $2 N$ and $3 N$ potentials, nuclear spectra, and neutron matter EOS
Chiral $3 N$
- Electroweak currents and (mostly weak) transitions
- Outlook:
- Going beyond LO in the $3 N$ potentials
- Weak transitions with NV2+3 potential models

The basic model

- Effective potentials:

Basic model
Nuclear χ EFT
Chiral $2 N$ potentials

$$
H=\sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j=1}^{A} \underbrace{v_{i j}}_{\text {th+exp }}+\sum_{i<j<k=1}^{A} \overbrace{V_{i j k}}^{\text {th+exp }}+\cdots
$$

- Assumptions:
- Quarks in nuclei are in color singlet states close to those of N 's (and low-lying excitations: Δ 's, ...)
- Series of potentials converges rapidly
- Dominant terms in $v_{i j}$ and $V_{i j k}$ are due to π exchange

$$
\text { leading } \pi N \text { coupling }=\frac{g_{A}}{2 f_{\pi}} \tau_{a} \boldsymbol{\sigma} \cdot \boldsymbol{\nabla} \phi_{a}(\mathbf{r})
$$

- Effective electroweak currents:

$$
j^{E W}=\sum_{i=1}^{A} j_{i}+\sum_{i<j=1}^{A} j_{i j}+\sum_{i<j<k=1}^{A} j_{i j k}+\cdots
$$

JE

Earlier developers of the basic model ．．．

Basic model
Nuclear χ EFT

Chiral $2 N$ potentials

Chiral $3 N$ potentials

Day 1-2 in the 1977 workshop

WORKSHOP ON NUCLEAR AND DENSE MATTER

$$
\text { May } 3-6,1977 \text {, Urbana, IL }
$$

Nuclear χ EFT

Chiral $2 N$ potentials

Chiral $3 N$ potentials

EW interactions

Outlook

Tuesday, May 3
$9: 00-9: 30$
$9: 30-10: 20$
$10: 25-11: 05$
$11: 10-11: 30$
$11: 30-1: 30$
$1: 30-2: 20$
$2: 30-2: 55$
$3: 05-3: 30$
$3: 30-4: 00$
$4: 00-4: 45$
$4: 50-5: 30$
$6: 00-8: 00$

Registration and Coffee (South Lounge, Physics Building)
M. H. Kalos - Monte Carlo Methods in the Quantum Many-Body Problem
G. V. Chester - Monte Carlo Calculations of Nuclear and Neutron Matter
C. E. Campbe11 - Comments on Feenberg-Wu Approximation Lunch (Levis Faculty Center - 3rd floor)
S. Rosati - CLuster Expansion \& Chain Summation Techniques for Fermion Systems
S. Fantoni - Recent Calculations on Fermion Systems
J. Zabolitzky - Convergence Properties of FHNC Methods

Coffee (South Lounge)
K. E. Schmidt - Variational Calculations of Liquid ${ }^{3}$ He with a Complex f
R. B. Wiringa - Variational Calculations of Nuclear Matter with Realistic Potentials

Reception (Center for Advanced Study)

Wednesday, May 4
$9: 00-9: 30$
$9: 30-10: 30$
$10: 40-11: 30$

11:30-1:30
$1: 30-2: 20$
2:30-2:55
3:05-3:30
$3: 30-4: 00$
$4: 00-4: 20$
$4: 30-5: 30$
7:00-8:00
8:00 -

[^0]Day 3-4 in the 1977 workshop

Thursday, May 5
$9: 00-9: 30$
$9: 30-10: 15$
$10: 25-11: 10$
$11: 15-11: 45$
$11: 45-1: 40$
$1: 40-2: 30$
$2: 40-3: 00$
$3: 10-3: 30$
$3: 30-4: 00$
$4: 00-5: 00$

[^1]Friday, May 6

EW

interactions
9:00-9:20
9:20-9:50
9:55-10:30
10:40-11:05
11:10-11:40
12:00

[^2]All lectures are in Room 144.
Lounge - Room 118.

χ EFT formulation of the basic model

- χ EFT is a low-energy approximation of QCD
- Lagrangians describing the interactions of π, N, \ldots are expanded in powers of $Q / \Lambda_{\chi}\left(\Lambda_{\chi} \sim 1 \mathrm{GeV}\right)$
- Their construction has been codified in a number of papers ${ }^{1}$

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\ldots \\
& +\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\ldots
\end{aligned}
$$

- $\mathcal{L}^{(n)}$ also include contact $(\bar{N} N)(\bar{N} N)$-type interactions parametrized by low-energy constants (LECs)
- Initial impetus to the development of χ EFT for nuclei in the early nineties ${ }^{2,3}$

[^3]
General considerations

- Time-ordered perturbation theory (TOPT):

$$
\langle f| T|i\rangle=\langle f| H_{1} \sum_{n=1}^{\infty}\left(\frac{1}{E_{i}-H_{0}+i \eta} H_{1}\right)^{n-1}|i\rangle
$$

- Momentum scaling of contribution

$$
\underbrace{\left(\prod_{i=1}^{N} Q^{\alpha_{i}-\beta_{i} / 2}\right)}_{H_{1} \text { scaling }} \times \underbrace{Q^{-\left(N-N_{K}-1\right)} Q^{-2 N_{K}}}_{\text {denominators }} \times \underbrace{Q^{3 L}}_{\text {loop integrations }}
$$

- Each of the N_{K} energy denominators involving only nucleons is of order Q^{-2}
- Each of the other $N-N_{K}-1$ energy denominators involving also pion energies is expanded as

$$
\frac{1}{E_{i}-E_{I}-\omega_{\pi}}=-\frac{1}{\omega_{\pi}}\left[1+\frac{E_{i}-E_{I}}{\omega_{\pi}}+\frac{\left(E_{i}-E_{I}\right)^{2}}{\omega_{\pi}^{2}}+\ldots\right]
$$

- Power counting:

$$
T=T^{L O}+T^{N L O}+T^{N^{2} L O}+\ldots, \text { and } T^{N^{n} L O} \sim\left(Q / \Lambda_{\chi}\right)^{n} T^{L O}
$$

From amplitudes to potentials

- Construct v such that when inserted in LS equation

$$
v+v G_{0} v+v G_{0} v G_{0} v+\ldots \quad G_{0}=1 /\left(E_{i}-E_{I}+i \eta\right)
$$

leads to T-matrix order by order in the power counting

- Assume

$$
v=v^{(0)}+v^{(1)}+v^{(2)}+\ldots \quad v^{(n)} \sim\left(Q / \Lambda_{\chi}\right)^{n} v^{(0)}
$$

- Determine $v^{(n)}$ from

$$
\begin{aligned}
v^{(0)} & =T^{(0)} \\
v^{(1)} & =T^{(1)}-\left[v^{(0)} G_{0} v^{(0)}\right] \\
v^{(2)} & =T^{(2)}-\left[v^{(0)} G_{0} v^{(0)} G_{0} v^{(0)}\right]-\left[v^{(1)} G_{0} v^{(0)}+v^{(0)} G_{0} v^{(1)}\right]
\end{aligned}
$$

and so on, where

$$
v^{(m)} G_{0} v^{(n)} \sim\left(Q / \Lambda_{\chi}\right)^{m+n+1}
$$

Chiral $2 N$ potentials with Δ 's

- Two-nucleon potential: $v=v^{\mathrm{EM}}+v^{\mathrm{LR}}+v^{\mathrm{SR}}$
- EM component v^{EM} including corrections up to α^{2}
- Chiral OPE and TPE component $v^{\text {LR }}$ with Δ 's

$$
\begin{aligned}
& \text { LO: }\left.Q^{0}{ }_{\mathbf{p}}^{\mathbf{p}}\right|_{-\cdots} ^{\mathbf{k},-\mathbf{p}^{\prime}}{ }_{-\mathbf{p}}
\end{aligned}
$$

- Short-range contact component v^{SR} up to order Q^{4} parametrized by $(2+7+11)$ IC and $(2+4)$ IB LECs
- v^{SR} functional form taken as $C_{R_{S}}(r) \propto \mathrm{e}^{-\left(r / R_{S}\right)^{2}}$ with $R_{S}=0.8$ (0.7) fm for $a(b)$ models
la-lb: $E_{\text {lab }}=125 \mathrm{MeV}$ Ila-Ilb: $E_{\text {lab }}=200 \mathrm{MeV}$

Ab initio methods utilized by our group

- Hyperspherical harmonics (HH) expansions for $A=3$ and 4 bound and continuum states

$$
\left|\psi_{V}\right\rangle=\sum_{\mu} c_{\mu} \underbrace{\left|\phi_{\mu}\right\rangle}_{\text {HH basis }} \text { and } c_{\mu} \text { from } E_{V}=\frac{\left\langle\psi_{V}\right| H\left|\psi_{V}\right\rangle}{\left\langle\psi_{V} \mid \psi_{V}\right\rangle}
$$

- Quantum Monte Carlo for $A>4$ bound states

(C)VMC		
GFMC	light systems	$A \leq 12$
AFDMC		
CVMC	light to medium-	$A \sim 50$
AFDMC	heavy nuclei	
AFDMC	infinite matter	$A \rightarrow \infty$

Chiral $3 N$ potentials with Δ 's

- $3 N$ potential up to $\mathrm{N2LO}^{1}$:
- c_{D} and c_{E} fixed by fitting $E_{0}^{\exp }\left({ }^{3} \mathrm{H}\right)=-8.482 \mathrm{MeV}$ and $n d$ doublet scattering length $a_{n d}^{\exp }=(0.645 \pm 0.010) \mathrm{fm}$

	without $3 N$							with $3 N$	
Model	c_{D}	c_{E}	$E_{0}\left({ }^{3} \mathrm{H}\right)$	$E_{0}\left({ }^{3} \mathrm{He}\right)$	$E_{0}\left({ }^{4} \mathrm{He}\right)$	${ }^{2} a_{n d}$	$E_{0}\left({ }^{3} \mathrm{He}\right)$	$E_{0}\left({ }^{4} \mathrm{He}\right)$	
la	3.666	-1.638	-7.825	-7.083	-25.15	1.085	-7.728	-28.31	
lb	-2.061	-0.982	-7.606	-6.878	-23.99	1.284	-7.730	-28.31	
Ila	1.278	-1.029	-7.956	-7.206	-25.80	0.993	-7.723	-28.17	
Ilb	-4.480	-0.412	-7.874	-7.126	-25.31	1.073	-7.720	-28.17	

- Alternate strategy: fix c_{D} and c_{E} by reproducing $E_{0}^{\exp }\left({ }^{3} \mathrm{H}\right)$ and the GT ${ }^{\exp }$ matrix element in ${ }^{3} \mathrm{H} \beta$-decay

Spectra of light nuclei

Piarulli et al. (2018)

Basic model

Nuclear χ EFT
Chiral $2 N$ potentials

Chiral $3 N$ potentials

EW
interactions

Outlook

Neutron matter equation of state

- Sensitivity to $3 N$ contact term:
- $c_{E}<0$ repulsive in $A \leq 4$
- but attractive in PNM
- Cutoff sensitivity:
- modest in NV2 models
- large in NV2+3 models

Nuclear weak interactions at low energies

- Shell model in agreement with \exp if $g_{A}^{\text {eff }} \simeq 0.7 g_{A}$
- Understanding "quenching" of g_{A} in nuclear β decays
- Relevant for neutrinoless 2β-decay since rate $\propto g_{A}^{4}$

$0 \nu-2 \beta$ amplitude

Including electroweak (ew) interactions

- Power counting of ew interactions (treated in first order)

$$
T_{\text {ew }}=T_{\text {ew }}^{(-3)}+T_{\text {ew }}^{(-2)}+T_{\text {ew }}^{(-1)}+\ldots \quad T_{\text {ew }}^{(n)} \sim\left(Q / \Lambda_{\chi}\right)^{n} T_{\text {ew }}^{(-3)}
$$

- For $v_{\mathrm{ew}}^{(n)}=A^{0} \rho_{\mathrm{ew}}^{(n)}-\mathbf{A} \cdot \mathbf{j}_{\mathrm{ew}}^{(n)}$ to match T_{ew} order by order

$$
\begin{aligned}
v_{\text {ew }}^{(-3)} & =T_{\text {ew }}^{(-3)} \\
v_{\text {ew }}^{(-2)} & =T_{\text {ew }}^{(-2)}-\left[v_{\text {ew }}^{(-3)} G_{0} v^{(0)}+v^{(0)} G_{0} v_{\text {ew }}^{(-3)}\right] \\
v_{\text {ew }}^{(-1)}= & T_{\text {ew }}^{(-1)}-\left[v_{\text {ew }}^{(-3)} G_{0} v^{(0)} G_{0} v^{(0)}+\text { permutations }\right] \\
& \quad-\left[v_{\text {ew }}^{(-2)} G_{0} v^{(0)}+v^{(0)} G_{0} v_{\text {ew }}^{(-2)}\right]
\end{aligned}
$$

and so on up to $n=1$

- $\rho_{\text {ew }}^{(n)}$ and $\mathbf{j}_{\text {ew }}^{(n)}$ (generally) depend on off-the-energy shell prescriptions adopted for $v^{(\leq n)}$ and $v_{\mathrm{ew}}^{(\leq n)}$

Nuclear axial currents at one loop

Park et al. (1993,2003); Baroni et al. (2016); Krebs et al. (2017)

- Some of the contributions—panels (m) and (s)—differ in the Baroni et al. and Krebs et al. derivations
- 1 unknown LEC in \mathbf{j}_{5} (4 unknown LECs in ρ_{5})

Fitting d_{R} in the contact axial current

- Correct relation between c_{D} and d_{R}

$$
d_{R}=-\frac{m}{4 g_{A} \Lambda_{\chi}} c_{D}+\frac{m}{3}\left(c_{3}+2 c_{4}\right)+\frac{1}{6}
$$

- Fix c_{D} via ${ }^{3} \mathrm{H}$ GT m.e. with axial current at $\mathrm{N} 3 \mathrm{LO}{ }^{\dagger}$

400 k MC configs.; NVIa with tau $12, \mathrm{R}_{\mathrm{S}}=0.8 \mathrm{fm}^{-1}$

400k MC configs.; NV2 +3 Ib

${ }^{\dagger}$ with w.f.'s from either p-space (Entem and Machleidt) or r-space (Piarulli et al.) potentials

- χ EFT predictions with conservative error estimates ${ }^{1}$:

$$
\Gamma\left({ }^{2} \mathrm{H}\right)=(399 \pm 3) \sec ^{-1} \quad \Gamma\left({ }^{3} \mathrm{He}\right)=(1494 \pm 21) \sec ^{-1}
$$

- Errors due primarily to:
- experimental error on GT ${ }^{\text {EXP }}$ (0.5\%)
- uncertainties in EW radiative corrections ${ }^{2}$ (0.4\%)
- cutoff dependence
- Using $\Gamma^{\mathrm{EXP}}\left({ }^{3} \mathrm{He}\right)=(1496 \pm 4) \sec ^{-1}$, one extracts

$$
G_{P S}\left(q_{0}^{2}=-0.95 m_{\mu}^{2}\right)=8.2 \pm 0.7
$$

versus $G_{P S}^{\mathrm{EXP}}\left(q_{0}^{2}=-0.88 m_{\mu}^{2}\right)=8.06 \pm 0.55^{3}$ and a χ PT prediction of 7.99 ± 0.20^{4}

- Upcoming measurement of $\Gamma\left({ }^{2} \mathrm{H}\right)$ by the MuSun collaboration at PSI with a projected 1% error ...

[^4]
JL

Low-energy neutrinos

Basic model
Nuclear χ EFT

Chiral $2 N$ potentials

Chiral $3 N$ potentials

EW
interactions

Outlook

ES from (mostly) $\mathrm{e}^{-}+\nu_{\mathrm{e}} \longrightarrow \mathrm{e}^{-}+\nu_{\mathrm{e}}$
NC from $d+\nu_{x} \longrightarrow p+n+\nu_{x}$
SNO experiment

Low-energy inclusive $\nu-d$ scattering in χ EFT

Baroni and Schiavilla (2017)

Basic model

Nuclear χ EFT

Chiral $2 N$ potentials

Chiral $3 N$ potentials

EW

interactions

Outlook

convergence pattern

JL

Outlook

Basic model

M. Piarulli et al., arXiv:1707.02883

Subleading contact $3 N$ potential

- There are 146 operators with two derivatives ...
- But Fierz identities and relativistic covariance lead to 10 independent operator structures; a possible choice:

$$
\begin{aligned}
\sum_{n=1}^{4} V_{i j k}^{(n)} & =\left(E_{1}+E_{2} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}+E_{3} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}+E_{4} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right) \\
\times & {\left[C_{R_{\mathrm{S}}}^{\prime \prime}\left(r_{i j}\right)+2 \frac{C_{R_{\mathrm{S}}}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] C_{R_{\mathrm{S}}}\left(r_{j k}\right)+(j \rightleftharpoons k) } \\
\sum_{n=5}^{6} V_{i j k}^{(n)} & =\left(E_{5}+E_{6} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}\right) S_{i j}\left[C_{R_{\mathrm{S}}}^{\prime \prime}\left(r_{i j}\right)-\frac{C_{R_{\mathrm{S}}}^{\prime}\left(r_{i j}\right)}{r_{i j}}\right] C_{R_{\mathrm{S}}}\left(r_{j k}\right)+(j \rightleftharpoons k) \\
\sum_{n=7}^{8} V_{i j k}^{(n)} & =-2\left(E_{7}+E_{8} \boldsymbol{\tau}_{j} \cdot \boldsymbol{\tau}_{k}\right) \frac{C_{R_{\mathrm{S}}}^{\prime}\left(r_{i j}\right)}{r_{i j}}\left\{(\mathbf{L} \cdot \mathbf{S})_{i j}, C_{R_{\mathrm{S}}}\left(r_{j k}\right)\right\}+(j \rightleftharpoons k) \\
\sum_{n=9}^{10} V_{i j k}^{(n)} & =\left(E_{9}+E_{10} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}\right) \boldsymbol{\sigma}_{i} \cdot \hat{\mathbf{r}}_{i k} \boldsymbol{\sigma}_{j} \cdot \hat{\mathbf{r}}_{j k} C_{R_{\mathrm{S}}}^{\prime}\left(r_{i k}\right) C_{R_{\mathrm{S}}}^{\prime}\left(r_{j k}\right)+(j \rightleftharpoons k)
\end{aligned}
$$

- For consistency $V_{i j k}^{\mathrm{CT} 2}$ should go along with $N N^{1}$ and (multi-pion exchange) $3 N^{2}$ potentials at N4LO ...

[^5]
Projecting in isospin $T=1 / 2$ and $3 / 2$ channels

$$
P_{1 / 2}=\frac{1}{2}-\frac{1}{6}\left(\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}+\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{k}+\boldsymbol{\tau}_{j} \cdot \boldsymbol{\tau}_{k}\right) \quad \text { and } \quad P_{3 / 2}=1-P_{1 / 2}
$$

- The (single) LO contact term ($\propto c_{E}$ in standard notation) can be expressed as

$$
V^{\mathrm{CT} 0}=\widetilde{c}_{E} P_{1 / 2}
$$

- The 10 subleading contact terms can be expressed as

$$
V^{\mathrm{CT} 2}=\widetilde{E}_{1} O_{1}^{(3 / 2)}+\sum_{i=2}^{10} \widetilde{E}_{i} O_{i}^{(1 / 2)}
$$

- There is not much flexibility to constrain the $T=3 / 2$ component of the $3 N$ contact potential ...
- But analysis relies on the use of Fierz identities and is valid up to cutoff effects

Reducing the number of subleading LECs

Girlanda, private communication

Implications from large $-N_{c}$ limit:

- $N N$ contact at LO: $C_{1}, C_{4} \sim N_{c}$ and $C_{2}, C_{3} \sim 1 / N_{c}$

$$
\begin{aligned}
\mathcal{L} & =-C_{1} N^{\dagger} N N^{\dagger} N-C_{2} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N-C_{3} N^{\dagger} \tau_{a} N N^{\dagger} \tau_{a} N-C_{4} N^{\dagger} \sigma_{i} \tau_{a} N N^{\dagger} \sigma_{i} \tau_{a} N \\
& =-\underbrace{\left(C_{1}-2 C_{3}-3 C_{4}\right)}_{C_{S}} N^{\dagger} N N^{\dagger} N-\underbrace{\left(C_{2}-C_{3}\right)}_{C_{T}} N^{\dagger} \sigma_{i} N N^{\dagger} \sigma_{i} N
\end{aligned}
$$

- $3 N$ contact at LO ${ }^{1}: D_{1}, D_{4}, D_{6} \sim N_{c}$, but only a single independent operator with associated LEC $\sim N_{c}$

$$
\mathcal{L}=-\sum_{i=1}^{6} D_{i} O_{i} \quad O_{i}=N^{\dagger} N N^{\dagger} N N^{\dagger} N \text { and } 5 \text { more }
$$

- $3 N$ subleading contact ${ }^{2}$: an analysis similar to above shows E_{2}, E_{3}, E_{5} and E_{9} vanish in the large- N_{c} limit

$$
\mathcal{L}=-\sum_{i=1}^{10} E_{i} O_{i} \quad O_{i}=\boldsymbol{\nabla}\left(N^{\dagger} N\right) \cdot \boldsymbol{\nabla}\left(N^{\dagger} N\right) N^{\dagger} N \text { and } 9 \text { more }
$$

${ }^{1}$ Phillips and Schat (2013); ${ }^{2}$ Girlanda, unpublished

Strategies to constrain the LECs

- Fix c_{D} via a measured GT m.e. (obvious choice ${ }^{3} \mathrm{H}$)
- Possible approaches to fix c_{E} and subleading LECs:
- Nd scattering observables at low energies
- Spectra of light- and medium-weight nuclei and properties of nuclear/neutron matter

Weak transitions with NV2+3 potential models

- Simple at tree level (and calculations are in progress); still a single LEC in the axial current

	la	lb
LO	0.9271	0.9248
N 2 LO	0.0347	0.0514
$\mathrm{~N} 3 L O \pi$	0.0328	0.0453
$\mathrm{~N} 3 L O c$	-0.0433	-0.0706
$\mathrm{~N} 4 \mathrm{OO}($ no $\Delta)$	-0.0266	-0.0406

	la	la	lb	lb
c_{D}	-0.89	-0.38	-4.99	-4.42
c_{E}	-0.01	-0.17	0.70	0.40

- Ranges in c_{D} and c_{E} from (conservative) estimate of error on GT ${ }^{\text {exp }}$; these c_{E} 's help in neutron matter EOS
- A major task at N4LO as there are a great many twoand three-body contributions at that order

Weak transitions in $A>3$ nuclei

Pastore et al. (2018) and unpublished; see also Pastore and Hagen's talks at this workshop

Basic model
Nuclear χ EFT

Chiral $2 N$ potentials

Chiral $3 N$ potentials

EW
interactions

Outlook

On two-body axial current contributions . . .

- Two-body terms primarily convert a $T S=01 \mathrm{pn}$ (or $T S=10 \mathrm{nn})$ pair into a $T S=10 \mathrm{pp}$ (or $T S=01 \mathrm{pn})$ pair

T,S=0,1 (d-like)

axial two-body contributions

- Pair wave functions of nuclei in $T S=01$ and 10 have similar shapes for nucleon separations $\lesssim 2 \mathrm{fm}$
- Two-body contributions in nuclei (at least, light ones) are proportional to those in processes $p n(n n) \rightarrow p p(p n)$

The HH/QMC team

- The ANL/JLAB/LANL/Lecce/Pisa collaboration members:
A. Baroni (USC)
J. Carlson (LANL)
S. Gandolfi (LANL)
L. Girlanda (U-Salento)
A. Kievsky (INFN-Pisa)
D. Lonardoni (LANL)
A. Lovato (ANL/INFN-Trento)
L.E. Marcucci (U-Pisa)
S. Pastore (LANL \rightarrow WASHU)
M. Piarulli (ANL \rightarrow WASHU)
S.C. Pieper (ANL)
R. Schiavilla (ODU/JLab)
M. Viviani (INFN-Pisa)
R.B. Wiringa (ANL)
- Computational resources from ANL LCRC, LANL Open Supercomputing, and NERSC

[^0]: Coffee (South Lounge)
 B. D. Day - Numerical Calculation and Tests of the Brueckner-Bethe Method Comments:
 C. Mahaux - Quasi-Particle Energies for Intermediate States
 S. Köhler - Convergence of the Brueckner-Bethe Method
 C. W. Wong - Comparison of Brueckner and Jastrow Energies at Three-Body Level Lunch (Levis Faculty Center - 3rd floor)
 R. Vinh Mau - The Paris Nucleon-Nucleon Potential
 0. Maxwell - Variational Calculations with the Paris Potential
 P. J. Siemens - Optimal Correlation Function for FHNC

 Coffee (South Launge)
 G. Ripka - Healing and Pauli Effects in Jastrow Theory of Fermi Systems
 H. A. Bethe - Status of the Nuclear Matter Problem

 Cocktails (Levis Faculty Center - 2nd floor)
 Workshop Dinner (Levis Faculty Center - 2nd floor)

[^1]: Coffee (South Lounge)
 D. Pines - Polarization Potentials and Elementary Excitations
 C. Mahaux - Shell Model Theory of Nuclear Matter
 E. J. Moniz - Isobar Propagation in the Nuclear Medium

 Lunch (Levis Faculty Center - 3rd floor
 G. E. Brown - Pion Nucleus Many-Body Problem
 L. McLerran - Recent Results of Quark Matter Calculations
 F. Coester - Relativistic Many-Body Theories

 Coffee (South Lounge with Physics Colloquium)
 Physics Colloquium - T. C. Koopmans - Approaches of Different Professions to Common Problems

[^2]: Coffee (South Lounge)
 C. W. Woo - Variational Calculations of Fermi Systems with a New Integral Equation (tentative)
 E. Krotscheck - Formal Properties and Convergence of FHNC
 R. A. Snith - HNC in Spin-Dependent Systems
 J. Clark - Perturbation Theory with Correlated Basis Functions

 Conclusion

[^3]: ${ }^{1}$ Gasser and Leutwyler (1984); Gasser, Sainio, and Švarc (1988); Bernard et al. (1992); Fettes et al. (2000)
 ${ }^{2}$ Weinberg (1990)-(1992); ${ }^{3}$ Park, Min, and Rho (1993) and (1996)

[^4]: ${ }^{1}$ Based on Entem and Machleidt potentials; ${ }^{2}$ These corrections increase rate by 3\%, see Czarnecki et al.
 (2007); ${ }^{3}$ From a measurement of $\Gamma^{\mathrm{EXP}}\left({ }^{1} \mathrm{H}\right)$, Andreev et al. (2013); ${ }^{4}$ Bernard et al. (1994), Kaiser (2003)

[^5]: ${ }^{1}$ Entem et al. (2015) and Epelbaum et al. (2015); ${ }^{2}$ Bernard et al. (2008) and (2011)

