Double Charge Exchange Reactions and their connections to neutrinoless double beta decay

Manuela Cavallaro INFN-LNS (Italy)

Recent advances and challenges in the description of nuclear reactions at the limit of stability

5 - 9 March 2018

Ονββ decay

Open problem in modern physics:

Neutrino absolute mass scale

Neutrino nature

Ονββ is considered the **most promising approach**

Process mediated by the weak interaction

 \checkmark Observable in even-even nuclei where the single β -decay is energetically forbidden

Search for 0vββ decay. A worldwide race

Experiment	lsotope	Lab	
GERDA	⁷⁶ Ge	LNGS [Italy]	
CUORE	¹³⁰ Te	LNGS [Italy]	
Majorana	⁷⁶ Ge	SURF [USA] Kamioka [Japan] WIPP [USA]	
KamLAND-Zen	¹³⁶ Xe		
EXO/nEXO	¹³⁶ Xe		
CUPID - Lucifer	⁸² Se, ¹⁰⁰ Mo	LNGS [Italy]	
SNO+	¹³⁰ Te	Sudbury [Canada]	
SuperNEMO	⁸² Se	LSM [France]	
CANDLES	⁴⁸ Ca	Kamioka [Japan] LNGS [Italy]	
COBRA	¹¹⁶ Cd		
DCBA	many	[Japan]	
AMoRe	¹⁰⁰ Mo	[Korea]	
MOON	MOON ¹⁰⁰ Mo [Ja		
PandaX-III	¹³⁶ Xe	CJPL [China]	

List not complete...

Consequences of $0\nu\beta\beta$ observation

- Beyond standard model
- Neutrino is its own anti-particle
- Access to effective neutrino mass
- Violation of lepton number conservation
- CP violation in lepton sector
- A way to leptogenesis and GUT

Still Still Storoc Seales

Nuclear Matrix Elements

Nuclear physics plays a key role!

Nuclear Matrix Elements

Nuclear Matrix Element (NME) $\left|M_{\varepsilon}^{0\nu\beta\beta}\right|^{2} = \left|\left\langle\Psi_{f}\right|\hat{O}_{\varepsilon}^{0\nu\beta\beta}|\Psi_{i}\right\rangle\right|^{2}$

Calculations (still sizeable uncertainties): QRPA, Large scale shell model, IBM, EDF, AB-INITIO ... Many body WaveFunctions!

A new experimental tool

Nuclear reactions **Double Charge Exchange reactions (DCE)** to stimulate in the laboratory the same nuclear transition (g.s. to g.s.) occurring in $0\nu\beta\beta$

Ονββ vs DCE

Differences

- DCE mediated by strong interaction, 0vββ by weak interaction
- Role of **neutrino** in $0\nu\beta\beta$, role of **projectile** in DCE
- DCE includes sequential transfer mechanism

Similarities

- Same initial and final states: Parent/daughter states of the $0\nu\beta\beta$ decay are the same as those of the target/residual nuclei in the DCE
- **Similar operator:** Short-range Fermi, Gamow-Teller and rank-2 tensor components are present in both the transition operators, with tunable weight in DCE
- Large linear momentum (~100 MeV/c) available in the virtual intermediate channel
- Non-local processes: characterized by two vertices localized in a pair of nucleons
- **Same nuclear medium**: Constraint on the theoretical determination of quenching phenomena on $0 \nu \beta \beta$
- Off-shell propagation through virtual intermediate channels

The project

- Transitions of interest for 0vββ:
 ⁷⁶Ge↔⁷⁶Se, ¹¹⁶Cd↔¹¹⁶Sn, ¹³⁰Te→¹³⁰Xe
- Two directions:
 ββ⁺ via (¹⁸O,¹⁸Ne) and ββ⁻ via (²⁰Ne,²⁰O)
- Complete net of reactions which can contribute to the DCE cross-section: 1p-, 2p-, 1n-, 2n-transfer, single cex, DCE
- **Two (or more) incident energies** to study the reaction mechanism

Main goal (Holy Grail):

Extraction from measured cross-sections of "datadriven" information on NME for all the systems candidate for $0\nu\beta\beta$

Mid term goals

- Constraints to the existing theories of NMEs (nuclear wave functions)
- Model-independent comparative information on the sensitivity of half-life experiments
- Complete study of the reaction mechanism

induced by **pions** (π^{\pm} , π^{\mp}) abandoned in the 80's due to the large differences in the momentum available and lack of direct GT component in the operators

limited in the past due to low cross-sections

Connection between β -decay and Single CEX

Single β-decay strenghs are proportional to single CEX cross-sections under specific conditions

Connection between β -decay and Single CEX

For heavier projectiles: (⁷Li,⁷Be)

S. Nakayama PRC 60 (1999) 047303

 $\frac{B(GT)[(^{7}\text{Li}, 7\text{Be}); q=0]}{B(GT)_{[\beta-\text{decay}]}} = 1 \pm 0.2$

Confirmed on different nuclei: ¹¹Be, ¹²B, ¹⁵C, ¹⁹O (less accuracy)

 Microscopic and unified theory of reaction and structure is mandatory for quantitative analyses

> F. Cappuzzello et al., Nucl. Phys. A 739 (2004) 30-56 F.Cappuzzello et al. Phys.Lett B 516 (2001) 21-26 F.Cappuzzello et al. EuroPhys.Lett 65 (2004) 766-772 S.E.A.Orrigo, et al. Phys.Lett. B 633 (2006) 469-473 C.Nociforo et al. Eur.Phys.J. A 27 (2006) 283-288 M.Cavallaro Nuovo Cimento C 34 (2011) 1

 $\begin{array}{l} q\mbox{-available like ordinary β-decay} \\ (q \sim 0.01 \mbox{ fm}^{-1} \ \ \sim 2 \ MeV/c) \\ only allowed decays are possible (L = 0) \end{array}$

Single state dominance

$$G = \sum_{n} \frac{|n\rangle\langle n|}{E_n - (E_i + E_f)/2}$$

Mass number A

q-available like ordinary β -decay $(q \sim 0.01 \text{ fm}^{-1} \sim 2 \text{ MeV/c})$ only allowed decays possible (L = 0)

0νβ

β- decay

 $v_e = \overline{v}_e$

15

neutrino enters as virtual particle,

q ~ 0.5fm⁻¹ (~ 100 MeV/c)

The experiments

The LNS laboratory in Catania

INFN Laboratori Nazionali del Sud Catania

The experimental facility

MAGNEX spectrometer

F. Cappuzzello et al., Eur. Phys. J. A (2016) 52: 167

Optical characteristics	Current values
Maximum magnetic rigidity (Tm)	1.8
Solid angle (msr)	50
Momentum acceptance	-14%, +10%
Momentum dispersion (cm/%)	3.68

Good compensation of the aberrations: <u>Trajectory reconstruction</u>

Measured resolutions:

- Energy $\Delta E/E \sim 1/1000$
- Angle $\Delta\theta\sim 0.2^{o}$
- Mass $\Delta m/m \sim 1/160$

K800 Superconducting Cyclotron

- In operation since 1996.
- Accelerates from H to U ions
- Maximum energy 80 MeV/u.

The pilot experiment

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ 270 MeV

F. Cappuzzello, et al., Eur. Phys. J. A (2015) 51:145

- > $^{18}O^{7+}$ beam from Cyclotron at 270 MeV (10 pnA, 3300 μ C in 10 days)
- \rightarrow ⁴⁰Ca target 300 µg/cm²
- Ejectiles detected by the MAGNEX spectrometer $0^{\circ} < \vartheta_{lab} < 10^{\circ}$

Zero-degree measurement

Particle Identification

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ 270 MeV

The pilot experiment

 Experimental feasibility: zero-deg, resolution (500 keV), low cross-section (μb/sr) Limitations of the past HI-DCE experiments are overcome!

F. Cappuzzello, et al., Eur. Phys. J. A (2015) 51:145

The pilot experiment

20

Present limitations

- Only few systems can be studied in the present condition (due to the low cross-sections)
- > An accurate job on the **theory** is mandatory

Moving towards hot-cases

- Reaction Q-values normally more negative than in the ⁴⁰Ca case
- \geq (¹⁸O,¹⁸Ne) reaction particularly advantageous, but is of $\beta^+\beta^+$ kind
- \succ Reactions of $\beta^{-}\beta^{-}$ kind are likely not as favourable as the (¹⁸O,¹⁸Ne):
 - (¹⁸Ne,¹⁸O) requires a radioactive beam
 - (²⁰Ne,²⁰O) or (¹²C,¹²Be) have smaller B(GT)
- ➢ In some cases gas or implanted target necessary (e.g. ¹³⁶Xe or ¹³⁰Xe)
- ➢ In some cases MAGNEX energy resolution not enough to separate the g.s. from the excited states in the final nucleus → Detection of γ -rays

Much higher beam current is needed

A broader view

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

The NUMEN project

NUclear Matrix Elements for Neutrinoless double beta decay

Spokespersons: F. Cappuzzello (cappuzzello@Ins.infn.it) and C. Agodi (agodi@Ins.infn.it)

C. Agodi, J. Bellone, D. Bonanno, D. Bongiovanni, V. Branchina, O. Brunasso, S. Burrello, M.P. Bussa, S. Calabrese, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D'Agostino, N. Deshmukh, C. Ferraresi, P. Finocchiaro, M. Fisichella, A. Foti, G. Gallo, H. Garcia, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, F. La Via, F. Longhitano, D. Lo Presti, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, A.D. Russo, G. Russo, G. Santagati, E. Santopinto, A. Spatafora, D. Torresi, S. Tudisco, R.I.M. Vsevolodovna, R.J. Wheadon

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Italy DISAT, Politecnico di Torino, Italy Università degli Studi di Enna "Kore", Enna, Italy CNR-IMM, Sezione di Catania, Italy Dipartimento di Fisica dell'Università di Genova, Genova, Italy

T. Borello-Lewin, P.N. de Faria, J.L. Ferreira, M.A. Guazzelli, R. Linares, J. Lubian, N. Medina, D.R. Mendes, M. Moralles, J. R. B. Oliveira, M.R.D. Rodrigues, R.B.B. Santos, V.A.B. Zagatto

Universidade de Sao Paulo, Brazil Universidade Federal Fluminense, Niteroi, Brazil Centro Universitario FEI, Sao Bernardo do Campo Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brazil

A. Pakou, O. Sgouros, G. Souliotis, V. Soukeras

University of Ioannina, Greece Hellenic Institute of Nuclear Physics, Greece National and Kapodistrian University of Athens, Athens, Greece

L. Acosta, R. Bijker, E.R. Chávez Lomelí

Instituto de Física, Universidad Nacional Autónoma de México, Mexico

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico

H. Lenske

University of Giessen, Germany I. Boztosun, A. Hacisalihoglu, S.O. Solakcı, A. Yildirin

Akdeniz University, Antalya, Turkey

N. Auerbach

School of Physics and Astronomy Tel Aviv University, Israel

H. Petrascu

IFIN-HH, Bucarest, Romania

F. Delaunay

LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, France

Z.J. Kotila

University of Jyväskylä, Jyväskylä, Finland

G. De Geronimo

Stony Brook University, US

77 Researchers25 Institutions12 countries

The **NUMEN** project

NUclear Matrix Elements for Neutrinoless double beta decay

Phase1: The experimental feasibility (completed)

Phase2: Experimental exploration of few cases (NURE), work on theory and R&D activity

Phase3: Facility upgrade (Cyclotron, MAGNEX, beam line, ...) to work with two orders of magnitude more intense beam

Phase4: Systematic experimental campaign on all the systems with the upgraded facility

NUMEN runs – Phase 2

erc (IN

¹¹⁶Cd - ¹¹⁶Sn case

- Two experiments @ 15 MeV/A
- ➢ ¹⁸O + ¹¹⁶Sn
- ➢ ²⁰Ne + ¹¹⁶Cd

¹³⁰Te – ¹³⁰Xe case

- One experiment @ 15 MeV/A
- ➢ ²⁰Ne + ¹³⁰Te

⁷⁶Ge – ⁷⁶Se case

- One experiment @ 15 MeV/A
- ➢ ²⁰Ne + ⁷⁶Ge
- ¹⁸O + ⁷⁶Se at the end of 2018

Experimental results

DCE reaction ¹¹⁶Cd(²⁰Ne,²⁰O)¹¹⁶Sn

- \succ g.s. → g.s. transition isolated
- Absolute cross section measured
- Cross-section sensitivity (<1nb at 5σ)

Experimental results

SCE reaction ¹¹⁶Cd(²⁰Ne,²⁰F)¹¹⁶In

High level density in residual and ejectile

- Population of high multipolarity states
- Multipole decomposition analysis needed

Experimental results

	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn
Î	¹¹⁵ In	¹¹⁶ In	¹¹⁷ In ²⁰ Ne, 180
Z	¹¹⁴ Cd	¹¹⁵ Cd	¹¹⁶ Cd
'		→ N	

2p-transfer ¹¹⁶Cd(²⁰Ne,¹⁸O)¹¹⁸Sn

Cross section towards g.s. comparable with the DCE channel (12 \pm 2 nb) similar to the ⁴⁰Ca experiment

Work on the theory

- M. Colonna (INFN-LNS)
- H. Lenske (Giessen)
- E. Santopinto (INFN-Genova)
- J. Lubian (UFF)
- J. Ferreira (UFF)
- J. A. Lay (Sevilla)
- S. Burrello (INFN-LNS)
- J. Bellone (INFN-LNS)

Calculations for multi-nucleon transfer

Calculations for multi-nucleon transfer

The role of multi-nucleon transfer routes

VS

The diagonal process (experimental cross section 12 ± 2 nb)

Calculations for multi-nucleon transfer

The role of multi-nucleon transfer routes

VS

The diagonal process (experimental cross section 12 ± 2 nb)

Interplay between CEX + multi-nucleon transfer

What about double charge exchange process?

1. Double Single Charge Exchange (DSCE)

-two-step process, two uncorrelated single charge exchange,
-no correlation between the vertices
-analogies with 2vββ decay which is a is a sequential decay process where the leptons are emitted subsequently in an uncorrelated manner.

What about double charge exchange process?

2. Majorana double charge exchange (MDCE)

The two charge changing nucleons in the target (or in the projectile) are correlated through the exchange of a neutral meson \rightarrow **Short range correlations**

The upgrade of the experimental facility

Upgrade of the LNS facility

Upgrade of the LNS accelerator and beam lines

- CS accelerator current (from 100 W to 5-10 kW);
- beam transport line transmission efficiency to nearly 100%

Beam dump for the MAGNEX hall

Upgrade of MAGNEX

The Focal Plane Detector

Upgrade of MAGNEX

The Focal Plane Detector

Rate

from few kHz to MHz preserving low-pressure operation

Micro-pattern tracker low pressure and wide dynamic range

Radiation hardness

expected 10¹³ ions/cm² in 10 years activity (silicon detectors dead at 10⁹ implanted ions/cm² heavy ions not MIP!!)

- Radiation hard
- Heavy ions
- Working in gas environment
- Large area
- High energy resolution (2%)
- Timing resolution (few ns)
- SiC-SiC pad telescopes
- Phoswich detectors
- SiC (ΔE) + scintillator (E)

Upgrade of MAGNEX

\succ Array of scintillators for γ -rays

Measurement in coincidence with MAGNEX

New electronics

- ASIC front–end chip VMM2(3)
- Read out: new generation of FPGA and System On Module (SOM)

Radiation tolerant Targets

- Evaporation on a **Graphite backing** (good properties)
- Cooling system

Magnets upgrade

Increase of the maximum magnetic rigidity from 1.8 Tm to 2.5 Tm

A challenging program

Accelerator and beam lines: Upgrade of the Superconducting Cyclotron for high power

Detectors:

- Gas tracker for high rate heavy ions at low pressure PID wall covering a large area made of radiation hard and
- high resolution detectors (SiC) Gamma detectors

Mechanics: Beam dump for zero-degree beam downstream of the spectrometer

Targets:

For intense heavy-ion beams

- > Many **experimental facilities** for $0\nu\beta\beta$ half-life, but not for the **NME**
- Pioneering experiments shown that DCE cross sections can be suitably measured and quantitative information on 0vββ NME are not precluded
- Experimental campaign on nuclei candidates for 0vββ and work on the theory
- The upgrade for the INFN-LNS cyclotron and the MAGNEX spectrometer will allow to build a unique facility for a systematic exploration of all the nuclei candidate for 0vββ

The NUMEN collaboration

C. Agodi, J. Bellone, D. Bonanno, D. Bongiovanni, V. Branchina, O. Brunasso, S. Burrello, M.P. Bussa, S. Calabrese, L. Calabretta, A. Calanna, D. Calvo, F. Cappuzzello, D. Carbone, M. Cavallaro, M. Colonna, G. D'Agostino, N. Deshmukh, C. Ferraresi, P. Finocchiaro, M. Fisichella, A. Foti, G. Gallo, H. Garcia, G. Giraudo, V. Greco, F. Iazzi, R. Introzzi, G. Lanzalone, F. La Via, F. Longhitano, D. Lo Presti, A. Muoio, L. Pandola, F. Pinna, S. Reito, D. Rifuggiato, A.D. Russo, G. Russo, G. Santagati, E. Santopinto, A. Spatafora, D. Torresi, S. Tudisco, R.I.M. Vsevolodovna, R.J. Wheadon

Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Italy Dipartimento di Fisica e Astronomia, Università di Catania, Italy DISAT, Politecnico di Torino, Italy Università degli Studi di Enna "Kore", Enna, Italy CNR-IMM, Sezione di Catania, Italy Dipartimento di Fisica dell'Università di Genova, Genova, Italy

T. Borello-Lewin, P.N. de Faria, J.L. Ferreira, M.A. Guazzelli,R. Linares, J. Lubian, N. Medina, D.R. Mendes, M. Moralles, J.R. B. Oliveira, M.R.D. Rodrigues, R.B.B. Santos, V.A.B.Zagatto

Universidade de Sao Paulo, Brazil Universidade Federal Fluminense, Niteroi, Brazil Centro Universitario FEI, Sao Bernardo do Campo Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo, Brazil

A. Pakou, O. Sgouros, G. Souliotis, V. Soukeras

University of Ioannina, Greece Hellenic Institute of Nuclear Physics, Greece National and Kapodistrian University of Athens, Athens, Greece

L. Acosta, R. Bijker, E.R. Chávez Lomelí

Instituto de Física, Universidad Nacional Autónoma de México, Mexico

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico

H. Lenske

University of Giessen, Germany

- I. Boztosun, A. Hacisalihoglu, S.O. Solakcı, A. Yildirin *Akdeniz University, Antalya, Turkey*
- N. Auerbach

School of Physics and Astronomy Tel Aviv University, Israel

H. Petrascu

IFIN-HH, Bucarest, Romania

F. Delaunay

LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, France

Z.J. Kotila

University of Jyväskylä, Jyväskylä, Finland

G. De Geronimo Stony Brook University, US