

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Ab initio calculations for exotic nuclei

Recent advances and challenges in the description of nuclear reactions at the limit of stability Trento - 2018/03/08

Matteo Vorabbi | TRIUMF

Collaborators: Angelo Calci, Michael Gennari, Petr Navratil (TRIUMF) Sofia Quaglioni, Michael Kruse (LLNL) Guillaume Hupin (CNRS)

Papers: arXiv:1712.05824, arXiv:1712.02879

- Exotic structure of ⁹He from the no-core shell model with continuum
 - ⁶He and ⁸He NCSM calculations
 - ⁹He NCSMC calculations
- 2. Microscopic optical potentials with nonlocal ab initio densities for intermediate energies
 - Results for stable nuclei
 - Results for ⁶He and ⁸He

Exotic structure of ⁹He

1.

The He isotopic chain

- One of the few chains accessible to both detailed theoretical and experimental studies
- ⁹He system
 - Characterized by N/Z = 3.5
 - One of the most neutron extreme systems studied so far

ole nd			¹² O	¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
		$^{10}\mathrm{N}$	$^{11}\mathrm{N}$	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	$^{14}\mathrm{N}$	$^{15}\mathrm{N}$
	⁸ C	$^{9}\mathrm{C}$	$^{10}\mathrm{C}$	¹¹ C	$^{12}\mathrm{C}$	$^{13}\mathrm{C}$	$^{14}\mathrm{C}$
	⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	¹² B	¹³ B
⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	¹¹ Be	¹² Be
⁴ Li	⁵ Li	⁶ Li	$^{7}\mathrm{Li}$	⁸ Li	⁹ Li	10 Li	11 Li
³ He	⁴ He	⁵ He	⁶ He	⁷ He	⁸ He	⁹ He	$^{10}\mathrm{He}$
² H	$^{3}\mathrm{H}$	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

 $^{1}\mathrm{H}$

The He isotopic chain

- One of the few chains accessible to both detailed theoretical and experimental studies
- ⁹He system
 - Characterized by N/Z = 3.5
 - One of the most neutron extreme systems studied so far
 - Possible candidate for a positive parity ground state
 Famous example: ¹¹Be

ole			¹² O	¹³ O	¹⁴ O	$^{15}\mathbf{O}$	¹⁶ O	
nd		$^{10}\mathrm{N}$	$^{11}\mathrm{N}$	$^{12}\mathrm{N}$	$^{13}\mathrm{N}$	$^{14}\mathbf{N}$	$^{15}\mathrm{N}$	
		⁸ C	⁹ C	¹⁰ C	¹¹ C	¹² C	$^{13}\mathbf{C}$	$^{14}\mathrm{C}$
		⁷ B	⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathbf{B}$	$^{13}\mathrm{B}$
	⁵ Be	⁶ Be	⁷ Be	⁸ Be	⁹ Be	¹⁰ Be	11 Be	¹² Be
	⁴ Li	⁵ Li	⁶ Li	⁷ Li	⁸ Li	⁹ Li	10 Li	¹¹ Li
	³ He	⁴ He	$^{5}\mathrm{He}$	⁶ He	$^{7}\mathrm{He}$	⁸ He	⁹ He	$^{10}\mathrm{He}$
	$^{2}\mathrm{H}$	³ H	$^{4}\mathrm{H}$	$^{5}\mathrm{H}$	$^{6}\mathrm{H}$			

 $^{1}\mathrm{H}$

Experimental history of ⁹He

Controversial experimental situation

From talk by Nigel Orr at ECT* (2013)

- No bound state
- Most experiments see a $1/2^{-}$ resonance at ~ 1 MeV
- Is there a $1/2^+$ resonance? Is the ground state $1/2^+$ or $1/2^-$?
 - a_0^{\sim} -10 fm (Chen et al.)
 - a_0^{\sim} -3 fm (Al Falou, et al.)
- Any higher-lying resonances?
- Recent ⁸He(p,p) measurement at TRIUMF by Rogachev: PLB **754** (2016) 323
 Found no T=5/2 resonances

Experimental history of ⁹He

From talk by Nigel Orr at ECT* (2013)

Two long-standing problems affect the physics of the ⁹He system

- 1. The existence of the $1/2^+$ state
- 2. The width of the $1/2^{-}$ state
 - Experimentally ~ 0.1 MeV
 - Theoretically ~ 1 MeV

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- *Ab initio* no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- ...with resonating group method
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

- *Ab initio* no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- ...with resonating group method
 - Bound & scattering states, reactions
 - Cluster dynamics, long-range correlations

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

- NCSMC calculations with several interactions
 - $N^2 LO_{sat} NN + 3N$
 - NN N³LO + 3N N²LO
 - SRG-N⁴LO500 NN
- Calculations with SRG-N⁴LO500 NN
 - ⁹He ~ (⁹He)_{NCSM} + (n-⁸He)_{NCSM/RGM}
 - ⁸He: 0⁺ and 2⁺ NCSM eigenstates
 - ⁹He: 4 negative-parity NCSM eigenstates
 6 positive-parity NCSM eigenstates

- Importance of large N_{max} basis:
 - SRG-N⁴LO500 NN with λ=2.4 fm⁻¹ up to N_{max} = 11 with ⁹He NCSM (m-scheme basis of 350 million)

⁶He and ⁸He NCSM ground-state energies

NCSM ground-state energies

G.s. energy [MeV]	⁴ He	⁶ He	⁸ He
NCSM	-28.36	-28.9(2)	-30.1(3)
Expt	-28.30	-29.27	-31.41

Important for subsequent NCSMC calculations

⁸ He first-excited state				
N _{max}	E _x (2 ⁺) [MeV]			
6	4.67			
10	4.22			

Phase shift convergence with SRG-N⁴LO500 NN λ =2.4 fm⁻¹

Structure of unbound ⁹He

Phase shift convergence with SRG-N⁴LO500 NN λ =2.4 fm⁻¹

Structure of unbound ⁹He

Phase shifts with SRG-N⁴LO500 NN λ =2.4 fm⁻¹

Eigenphase shifts with SRG-N⁴LO500 NN λ =2.4 fm⁻¹

Summary

TRIUMF

Robust results for **1/2**⁻ (~ 1MeV) and **3/2**⁻ (~4 MeV) **P-wave** resonances (3/2⁻ resonance in n-⁸He(2⁺) channel)

1/2⁺ S-wave with vanishing scattering length: $a_s = 0 \sim -1$ fm

No evidence for other higher lying resonances

J^{π}	NCS	MC	NCSMC-pheno		
$1/2^{-}$	$E_R = 0.69$	$\Gamma = 0.83$	$E_R = 0.68$	$\Gamma = 0.37$	
$3/2^{-}$	$E_{R} = 4.70$	$\Gamma = 0.74$	$E_R = 3.72$	$\Gamma=0.95$	

Microscopic optical potentials for intermediate energies

2.

- Lippmann-Schwinger equation for nucleon-nucleus (NA) scattering $T=V+VG_0(E)T \label{eq:constraint}$
- Separation of the LS equation $T = U + UG_0(E)PT$ $U = V + VG_0(E)QU$
- Transition operator for the elastic scattering

$$T_{\rm el} \equiv PTP = PUP + PUPG_0(E)T_{\rm el}$$

• Spectator expansion [Chinn, Elster, Thaler, Weppner, PRC 52, 1992 (1995)]

$$U = \sum_{i=1}^{A} \tau_i + \sum_{i,j\neq i}^{A} \tau_{ij} + \sum_{i,j\neq i,k\neq i,j}^{A} \tau_{ijk} + \cdots$$

Free propagatorFree HamiltonianExternal interaction $G_0(E) = (E - H_0 + i\epsilon)^{-1}$ $H_0 = h_0 + H_A$ $V = \sum_{i=1}^A v_{0i}$

Impulse approximation

• Optical potential operator

$$U = \sum_{i=1}^{A} t_{0i}$$

• The free NN t matrix

$$t_{0i} = v_{0i} + v_{0i}g_i t_{0i}$$

• The free NN propagator

$$g_i = \frac{1}{E - h_0 - h_i + i\epsilon}$$

• The elastic scattering amplitude

$$T_{\rm el}(\boldsymbol{k}',\boldsymbol{k};E) = U(\boldsymbol{k}',\boldsymbol{k};E) + \int d^3p \frac{U(\boldsymbol{k}',\boldsymbol{p};E) T_{\rm el}(\boldsymbol{p},\boldsymbol{k};E)}{E - E(p) + i\epsilon}$$

• The first-order optical potential

$$U(\boldsymbol{q}, \boldsymbol{K}; E) = \sum_{\alpha=n,p} \int d^{3}\boldsymbol{P} \ \eta(\boldsymbol{P}, \boldsymbol{q}, \boldsymbol{K}) t_{p\alpha} \left[\boldsymbol{q}, \frac{1}{2} \left(\frac{A+1}{A} \boldsymbol{K} - \boldsymbol{P} \right); E \right]$$
$$\times \rho_{\alpha} \left(\boldsymbol{P} - \frac{A-1}{2A} \boldsymbol{q}, \boldsymbol{P} + \frac{A-1}{2A} \boldsymbol{q} \right)$$

Momentum transfer

Total momentum

$$m{q}=m{k}'-m{k}$$

$$oldsymbol{K}=rac{1}{2}(oldsymbol{k}'-oldsymbol{k})$$

- Extension of: Navratil, PRC **70**, 014317 (2004)
- Non-local nuclear density operator

$$\rho_{\rm op} = \sum_{i=1}^{A} \delta(\boldsymbol{r} - \boldsymbol{r}_i) \delta(\boldsymbol{r}' - \boldsymbol{r}'_i)$$

- The matrix elements between a general initial and final state are obtained in the Cartesian coordinate single-particle Slater determinant basis
- Removal of the COM component is required
 - Navratil, PRC **70**, 014317 (2004)
- Recently: Burrows *et al.*, Phys. Rev. C **97**, 024325 (2018)

• Translationally invariant non-local densities

$$\begin{split} \langle A\lambda_{j}J_{j}M_{j} | \rho_{op}^{trinv}(\vec{r}-\vec{R},\vec{r}'-\vec{R}) | A\lambda_{i}J_{i}M_{i} \rangle \\ &= \left(\frac{A}{A-1}\right)^{\frac{3}{2}} \sum \frac{1}{\hat{J}_{f}} (J_{i}M_{i}Kk|J_{f}M_{f}) \\ &\times \left(M^{K}\right)_{nln'l',n_{1}l_{1}n_{2}l_{2}}^{-1} \left(Y_{l}^{*}(\widehat{\vec{r}-\vec{R}})Y_{l'}^{*}(\widehat{\vec{r}'-\vec{R}})\right)_{k}^{(K)} \\ &\times R_{n,l} \left(\sqrt{\frac{A}{A-1}} |\vec{r}-\vec{R}|\right) R_{n',l'} \left(\sqrt{\frac{A}{A-1}} |\vec{r}'-\vec{R}|\right) \\ &\times (-1)^{l_{1}+l_{2}+K+j_{2}-\frac{1}{2}} \hat{j}_{1} \hat{j}_{2} \left\{ \begin{array}{c} j_{1} & j_{2} & K \\ l_{2} & l_{1} & \frac{1}{2} \end{array} \right\} \\ &\times SD \langle A\lambda_{f}J_{f} || \left(a_{n_{1},l_{1},j_{1}}^{\dagger} \tilde{a}_{n_{2},l_{2},j_{2}}\right)^{(K)} ||A\lambda_{i}J_{i}\rangle_{SD} \end{split}$$

• Translationally invariant non-local densities

$$\begin{split} \langle A\lambda_{j}J_{j}M_{j} | \rho_{op}^{trinv}(\vec{r}-\vec{R},\vec{r}'-\vec{R}) | A\lambda_{i}J_{i}M_{i} \rangle \\ &= \left(\frac{A}{A-1}\right)^{\frac{3}{2}} \sum \frac{1}{\hat{J}_{f}} (J_{i}M_{i}Kk|J_{f}M_{f}) \\ &\times \left(M^{K}\right)_{nln'l',n_{1}l_{1}n_{2}l_{2}}^{-1} \left(Y_{l}^{*}(\widehat{\vec{r}-\vec{R}})Y_{l'}^{*}(\widehat{\vec{r}'-\vec{R}})\right)_{k}^{(K)} \\ &\times R_{n,l} \left(\sqrt{\frac{A}{A-1}} |\vec{r}-\vec{R}|\right) R_{n',l'} \left(\sqrt{\frac{A}{A-1}} |\vec{r}'-\vec{R}|\right) \\ &\times (-1)^{l_{1}+l_{2}+K+j_{2}-\frac{1}{2}} \hat{j}_{1}\hat{j}_{2} \left\{ \begin{array}{c} j_{1} & j_{2} & K \\ l_{2} & l_{1} & \frac{1}{2} \end{array} \right\} \\ &\times SD \langle A\lambda_{f}J_{f} || \left(a_{n_{1},l_{1},j_{1}}^{\dagger} \tilde{a}_{n_{2},l_{2},j_{2}}\right)^{(K)} ||A\lambda_{i}J_{i}\rangle_{SD} \end{split}$$

• Ground-state density for even-even nuclei

$$\rho(\boldsymbol{r}, \boldsymbol{r}') = \sum_{l} \rho_l(r, r') (-1)^l \frac{\sqrt{2l+1}}{4\pi} P_l(\cos \omega)$$

• Translationally invariant non-local densities

$$\langle A\lambda_{j}J_{j}M_{j} | \rho_{op}^{trinv}(\vec{r} - \vec{R}, \vec{r}' - \vec{R}) | A\lambda_{i}J_{i}M_{i} \rangle$$

$$= \left(\frac{A}{A-1}\right)^{\frac{3}{2}} \sum \frac{1}{\hat{J}_{f}} (J_{i}M_{i}Kk|J_{f}M_{f})$$

$$\times \left(M^{K}\right)_{nln'l',n_{1}l_{1}n_{2}l_{2}}^{-1} \left(Y_{l}^{*}(\widehat{\vec{r} - \vec{R}})Y_{l'}^{*}(\widehat{\vec{r}' - \vec{R}})\right)_{k}^{(K)}$$

$$\times R_{n,l} \left(\sqrt{\frac{A}{A-1}} |\vec{r} - \vec{R}|\right) R_{n',l'} \left(\sqrt{\frac{A}{A-1}} |\vec{r}' - \vec{R}|\right)$$

$$\times (-1)^{l_{1}+l_{2}+K+j_{2}-\frac{1}{2}} \hat{J}_{1} \hat{J}_{2} \left\{ \begin{array}{c} j_{1} & j_{2} & K \\ l_{2} & l_{1} & \frac{1}{2} \end{array} \right\}$$

$$Angular part$$

$$\times SD \langle A\lambda_{f}J_{f} || (a_{n_{1},l_{1},j_{1}}^{\dagger} \tilde{a}_{n_{2},l_{2},j_{2}})^{(K)} ||A\lambda_{i}J_{i}\rangle_{SD}$$

• Ground-state density for even-even nuclei

$$\rho(\boldsymbol{r}, \boldsymbol{r}') = \sum_{l} \rho_{l}(r, r') (-1)^{l} \frac{\sqrt{2l+1}}{4\pi} P_{l}(\cos \omega)$$

- Investigation of the ⁹He structure with the inclusion of the three-nucleon interaction
 - Introducing a controlled approximation for the 3N terms
- Calculation of the p+⁸He scattering process
- Improvement of optical potential
 - Inclusion of the three-nucleon interaction
 - Inclusion of medium effects
- Calculation of the (e,e'p) quasi-elastic reactions with microscopic nonlocal optical potentials