Introduction	Resonance	Beta decay	Halos	11 Be(eta p)	Summary

Complementary probes of the nuclear continuum

Karsten Riisager

Aarhus University

March 8, 2018

Introduction •	Resonance	Beta decay 00000000	Halos 0000	¹¹ Be(βp) 00000000	Summary
Overview					
Overview o	f talk				

イロン イヨン イヨン イヨン

3

Introduction O	Resonance	Beta decay	Halos	¹¹ Be(βp) 00000000	Summary
The concept					
Resonance	ce character	ristics			

Classical concept from mechanics, electrical circuits ...

Here: quantum mechanical system in the continuum

- Wavefunction amplitude inside/outside nucleus
- Time delay between incoming/outgoing wave packets
- Breit-Wigner energy distribution
- Complex eigen-energy $E_0 + i\Gamma/2$
- Pole in S-matrix

All of these become problematic (at least when we wish to relate the concept to experimental data) when resonances become broader

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction O	Resonance ○●○○○○○○	Beta decay	Halos 0000	¹¹ Be(βp) 00000000	Summary
The concept					
A schemat	ic model				

p-wave neutrons in square well potential (radius a)

Simple system displaying resonances, almost analytical $(j_{\ell}(kr), y_{\ell}(kr))$

Easy to find phase shift δ_{ℓ} , this gives elastic scattering cross section

Chose wavefunction normalization as $\sin(kr + \delta_{\ell} - \ell \pi/2)/r$ for large radii r

For comparison, look also at integral $I = \int_0^a |R(r)|^2 r^2 dr$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Resonance	Beta decay	Halos	¹¹ Be(βp)	Summary
The concept			0000		00

Elastic scattering vs. overlap

ECT* workshop 5-9 March 2018 Complementary probes of the nuclear continuum

< ≣⇒

æ

Introduction	Resonance	Beta decay	Halos	¹¹ Be(βp)	Summary
	00000000				
The concept					

Elastic scattering vs. overlap

ECT* workshop 5-9 March 2018 Complementary probes of the nuclear continuum

3 1 3

Introduction O	Resonance ○○○○●○○○	Beta decay 000000000	Halos 0000	¹¹ Be(βp) 00000000	Summary
The concept					
Resonance	position				

Different ways to define the position of a resonance

- The maximum elastic cross section
- The maximum of I (essentially identical to σ_{el})
- Phase shift passes $\pi/2$ ($|e^{2i\delta_\ell}-1|$ maximal)
- R-matrix: $E_0 + \Delta E = 0$, or (equivalently) δ_R through $\pi/2$ where $\delta_\ell = \phi_\ell + \delta_R$, ϕ_ℓ hard sphere phase shift
- Maximum in other observables transfer cross section, beta-delayed particle spectrum ...

The broader the resonance, the larger the discrepancy in definitions

向下 イヨト イヨト

Introduction O	Resonance ○○○○●○○	Beta decay	Halos 0000	¹¹ Be(βp) 00000000	Summary
Example					

⁹Li elastic scattering on d

Jesper H Jensen

3

IS367 at 2.77 MeV/u and IS561 at 6.72 MeV/u

- ∢ ⊒ →

Introduction O	Resonance ○○○○○○●	Beta decay	Halos 0000	¹¹ Be(βp) 00000000	Summary
Example					
⁹ Li(d,p)					

Comparing data at 2.77 MeV/u and 6.72 MeV/u

Introduction O	Resonance	Beta decay ●○○○○○○○	Halos	¹¹ Be(βp) 00000000	Summary
Beta decay					
Reminde	r on beta-de	ecay			

$$\beta^-$$
 decay: ${}^{A}Z \rightarrow {}^{A}(Z+1) + e^- + \bar{\nu_e}$

Two categories, Fermi and Gamow-Teller

type $S_{e\nu}$ main strengthsum ruleF0IAS $\sum B_F = |Z - N|$ GT1GTGR $\sum B_{GT} = 3|N - Z|$

For neutron-rich nuclei: only expect Gamow-Teller transitions

向下 イヨト イヨト

3

Introduction ○	Resonance	Beta decay ⊙●○○○○○○○	Halos 0000	¹¹ Be(βp) 00000000	Summary
Beta decay					
Beta stre	ength in the	continuum			

Several earlier definitions, not internally consistent.

For broad resonances: R-matrix parameter squared (a la Γ), but for interfering levels no direct coupling to spectra.

Studies of sum rules by Bergman Phys Lett B44 (1973) 23 and Romo Nucl Phys A237 (1975) 275: will work with pure continuum and can be reformulated to include resonances.

This implies the GT sum rule remains valid with a continuum formulation:

$$w(E)dE = \ln 2\frac{g_A^2}{K}f(Q-E)B_{GT}(E)dE$$

Also makes life easier for the experimentalist...

通 とう ほうとう ほうど

Continue with the schematic model and "beta decay in the core", i.e. simple overlap of neutron initial and final wavefunctions

- Initial p-wave halo neutron
- Binding energy 5, 1, 0.2, 0.02 MeV (dot, dash, solid, dash-dot)
- Final state p-wave neutron
- Square well, calculate also scattering + E1-strength
- The "resonance" changes shape and position

イロト イポト イヨト イヨト

Introduction O	Resonance	Beta decay ○○○●○○○○○	Halos 0000	¹¹ Be(βp) 00000000	Summary
Simple model					
More evt	reme condi	tions			

Contributions from extra-nuclear distances affect the shape.

Could be interpreted as decay directly to continuum states.

In general both direct and resonant contributions. Not wise to attempt a separation of the two.

E1-strength: similar, but more extreme.

Introduction	Resonance	Beta decay	Halos	11 Be(eta p)	Summary					
		000000000								
Examples										
Desults										

 $^8{\rm B} \xrightarrow{\beta} {}^8{\rm Be^*} \to 2\alpha,$ corrected for beta phase space and penetrability factor

Introduction O	Resonance	Beta decay ○○○○●○○○	Halos 0000	¹¹ Be(βp) 00000000	Summary
Examples					
	- 0				

Results for ⁸B beta decay

Previously established levels are stable. "Intruder" decreases strongly with channel radius.

Decays directly to continuum ? ⁸Be(2⁺) changing structure ?

Strength

A Gad and S Vinals

- < ≣ →

A ₽

< ∃⇒

Introduction O	Resonance	Beta decay ○○○○○○●○	Halos 0000	¹¹ Be(βp) 00000000	Summary
Examples					
2018: ⁸ B	e fed via ga	ammas			

M Munch et al., submitted - 7 Li(p, γ) $\alpha\alpha$ arXiv:1802.10404

A ■

э

-

Introduction O	Resonance	Beta decay ○○○○○○●	Halos 0000	¹¹ Be(βp) 00000000	Summary					
Examples										
Desults	Des les Caullant des									

Results for ¹²N beta decay

Also effects in ¹²N decay: Unphysical parameters if upper end is described with resonances. Similar effects seen in the model case.

S. Hyldegaard

Introduction O	Resonance	Beta decay 000000000	Halos ●○○○	¹¹ Be(βp) 00000000	Summary
Main features					
Summar	, of main ha	alo features			

Adhere to: A.S. Jensen et al., Rev. Mod. Phys. 76 (2004) 215 Overview in: K. Riisager, Phys. Scr. T152 (2013) 014001

- Quantum system ! Tunneling into classically forbidden regions
- "Single-particle behaviour" \Rightarrow require clustering
- "Large" system tunneling out of short-range potential
- In nuclei: mainly one- and two-neutron ground state halos
- Example 1n halos: ¹¹Be, ^{15,19}C, ³¹Ne
- Example 2n halos: ⁶He, ¹¹Li, ¹⁴Be, ²²C

Also: I. Tanihata et al., Prog. Part. Nucl. Phys. 68 (2013) 215 T. Frederico et al., Prog. Part. Nucl. Phys. 67 (2012) 939

Introduction O	Resonance	Beta decay	Halos ○●○○	¹¹ Be(βp) 00000000	Summary
Beta decay of halo	s				
Halo sigr	natures in b	eta decay			

- Change in spatial overlap moderate effect
- $\mathcal{O} \mid c + h \rangle = (\mathcal{O} \mid c \rangle) \mid h \rangle + \mid c \rangle (\mathcal{O} \mid h \rangle)$
- Decoupling of halo and core decays ?
 - Isospin symmetry ?
 - βd, βp ...

• Useful spectroscopic information on halo composition, ¹¹Li

★ ∃ ▶ 3

→ Ξ →

Halo specific decay mode - seen in ⁶He and ¹¹Li Decays directly to continuum

R. Raabe et al., PRL 101 (08) 212501

< 🗇 > < 🖃 >

Potential model calculations by Zhukov et al., PR C52 (95) 2461 (V_C , only Coulomb) and Baye et al., PR C74 (06) 064302 (V_a , V_b)

Introduction O	Resonance	Beta decay	Halos ○○○●	¹¹ Be(βp) 00000000	Summary
Beta decay of halos					
and for ⁶	[;] He				

Several experiments, the latest with an OTPC:

One-neutron system simpler to interpret than two-neutron system. However $Q_{\beta p} = 782 \text{ keV} - S_n \text{ vs } Q_{\beta d} = 3007 \text{ keV} - S_{2n} !$

 ^{11}Be the most favourable case Baye + Tursunov, PL B696 (11) 464 with expected branching ratio 3.0 \times 10 $^{-8}$ (F + GT)

Emitted protons have energy below 255 keV \rightarrow detect daughter nucleus ^{10}Be with halflife 1.5 My ?

Detection via Accelerator Mass Spectroscopy

Bartosz Fornal and Benjamin Grinstein (arXiv:1801.01124): Neutron decay to dark matter particle ? (Different lifetime for neutron disappearence and proton appearence.)

Could also happen in nuclei with low separation energy Marek Pfützner: ¹¹Be the most favourable case (arXiv:1803.01334)

Must compare rates for proton and ¹⁰Be production

Proton detection via Warsaw optical TPC

- 4 同 6 4 日 6 4 日 6

Introduction O	Resonance	Beta decay	Halos 0000	¹¹ Be(βp) ○○●○○○○○	Summary
Experiment					
Three att	empts				

All collections of ¹¹Be done at the ISOLDE facility at CERN.

- September 2001, $5.2(3) \times 10^{11}$ atoms, AMS at Uppsala, "upper limit" of $2.5(2.5) \times 10^{-6}$ M.J.G. Borge et al., J. Phys. G40 (2013) 035109
- December 2012, 3 samples, $1.47(14)\times10^{12}$ atoms, AMS at VERA, observation $8.3(9)\times10^{-6}$ K.R. et al., Phys. Lett. B732 (2014) 305
- $\bullet\,$ May 2015, 12 samples, up to 2.98(27) $\times\,10^{11}$ atoms, AMS at VERA

preliminary: slightly inconsistent branching ratio

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction O	Resonance	Beta decay	Halos 0000	¹¹ Be(βp) ○○●●○○○○	Summary
Experiment					
Exportmon	tal dataile				

Experimental details

- Signal appears on ¹¹Be mass
- Surpress ¹¹Li contamination
- Signal only with laser ionization (no BeH)
- Normalize via $^{11}{\rm Be}$ decay γ -rays

3

Introduction O	Resonance	Beta decay	Halos	¹¹ Be(βp) ○○○●○○○	Summary
Interpretation					
D					

Branching ratio in simple model

Simple model:

- Detached decay of halo neutron
- Simple potential (square well/Woods-Saxon)
- Discretized final state (radius 1000 fm)
- Need "resonance" to reproduce strength

Introduction	Resonance	Beta decay	Halos	¹¹ Be(βp)	Summary
				00000000	
Interpretation					

Results of the different models

Stars: simple model Curves: R-matrix (full) - displaced Breit-Wigner with alpha-decay width 0 keV and 100 keV (dashed)

Introduction O	Resonance	Beta decay ೦೦೦೦೦೦೦೦	Halos 0000	¹¹ Be(βp) ○○○○○●○	Summary
Interpretation					

Dependence on halo binding energy

Introduction O	Resonance	Beta decay	Halos	¹¹ Be(βp) ○○○○○○●	Summary			
Interpretation								
Reta strength in halo decays								

Following the earlier definition:

$$w(E)\mathrm{d}E = \ln 2\frac{g_A^2}{K}f(Q-E)B_{GT}(E)\mathrm{d}E$$

Summed observed beta strength

- For ⁶He: 0.0016 in 1 MeV \rightarrow see figure
- For ¹¹Li: 0.75 in 1.5 MeV
- For ¹¹Be: of order 1 within 0.25 MeV

Introduction O	Resonance	Beta decay	Halos 0000	¹¹ Be(βp) 00000000	Summary ●○		
Conclusions							
Final comments							

- Limitations to the resonance concept...
- Beta strength in continuum new definition
- Expect beta decay directly to continuum (at low binding)
- Indications for separate beta decays of core and halo
- Surprisingly strong beta strength for ¹¹Be(βp), indication of a (so far unseen) resonance ? - or dark decay ?
- For experimentalists: Cannot always trust R-matrix !

 $^8\text{B}(\beta\text{p})$? Would be "core decay", expect branching ratio 2.3×10^{-8}

Thanks to coworkers:

MAGISOL collaboration + Aksel S. Jensen

Introduction O	Resonance	Beta decay	Halos 0000	¹¹ Be(βp) 00000000	Summary ○●
Conclusions					
Some ref	erences				

- M.J.G. Borge et al., J. Phys. G40 (2013) 035109 ¹¹Be
- K.R., Nucl. Phys. A 925 (2014) 112 + Corrigendum N.P.A 925 (2014) 298 beta strength
- K.R., H.O.U. Fynbo, S. Hyldegaard, A.S. Jensen, Nucl. Phys. A 940 (2015) 119 – β to broad resonance
- K.R. et al., Phys. Lett. B732 (2014) 305 ¹¹Be

伺い イヨト イヨト