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The phenomenon of quantum phase transition in nuclei can take
place in different situations depending on control parameters as
the excitation energy (i.e. the temperature in a thermodynamical
framework) or the angular momentum. But equally important are
the transitions taking place for the ground states along a chain
of isotopes (or isotones), where the control parameter is the
number of neutrons (or protons).

Order parameters systematically used in these cases are, in the
case of even-even nuclei, the energy of the first 2+ state, the
ratio £4/E2 and the magnitude of the electromagnetic E2
transition connecting ground state and the first excited 2+
state.



Basic point to discuss: how the nuclear behavior of the
pairing degree of freedom can provide an additional and
complementary clear-cut signature of the occurrence of the
phase transition in nuclear systems.

This dynamical source of information should be
complementary (but as important) to the one associated to
other properties (as energy spectra or electromagnetic
transition rates, for example)



The main road to use dynamics to study pairing effects along phase
transitions is clearly provided by the study of those processes where a
pair of particles is involved, e.g. transferred from/to another nucleus
(two-particle transfer) or ejected into the continuum (fwo-particle
break-up or
two-particle knock-out). Clearly the probabilities for such processes
must be influenced by the particle-particle correlations, but these will
depend on the specific "phase” of the system. So they will be sensitive
to any change in the status of the system, for example along an isotope
chain.



The essential quantity to characterize the system from the
pairing point of view is given by the "pairing response”, namely
all the T, values of the square of the matrix element of the
pair creation (or removal) operator

P+ =2 [a*;a*;]oo (and similarly for P-)

connecting the ground state of nucleus N with all O+ states of
hucleus A+2 (or A-2). It is often assumed that the cross
section for two-particle transfer just scale with T,,.

The traditional way to define and measure the collectivity of
pairing modes is to compare with single-particle pair
fransition densities and matrix elements to define some
“pairing” single-particle units and therefore “pairing”
enhancement factors.

Obs: We discuss here monopole T=1 pairing modes, i.e. O+states, but similar
arguments would apply to T=0 nutron-proton pairs.
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The pairing response is characterized by the pairing phase

(normal or superfluid) and by the shape phase (e.g. spherical or
deformed). Therefore it will be a clear signature of phase transitions
(in addition to the standard signatures, as E,/E,, B(E2), efc) in
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Phase transition from "normal” to “superfluid” phases:
characteristic behavior of the pair transfer matrix element
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An example of a “superfluid” nucleus (pairing rotations),

which shows a characteristic pairing response
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In a similar way pair-transfer probabilities show characteristic
behaviors in correspondence of shape phase transitions

For simplicity we move within the framework of the
Interacting Boson Model, but the results are similar within
other microscopic models

The IBM does not explicitly
use the fermion degrees of
freedom. From mapping
procedure the "form" of the
two-particle addition operator
Is simply assumed as s,
neglecting higher-order terms,
as s*s*s or [d*d*],s or [d*s*d],
etc ...
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Within the IBM the transition from sphericity to axial symmetry

can be obtained in even-even nuclei within a hamiltonian that move from
U(5) to SU(3)

H® = (1-2)ng— 4;3 Qp.Qp
~ (1-2) Cy(UPS)
4 i
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s |5 GSUP3) — 5 0073

with the boson quadrupole operator

Qs = (' x DD+ @ xH® - LL(dt x )@
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Energy surfaces E(8) y-independent for any
value of x

U(5) to O(6) transition
(varying the value of x)
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Spherical o deformed transition
(microscopic derivation)
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Stimulating problem: how the phase transition occurs in the
neighbor odd nuclei (phase transition in systems that are
a mixture of bosons and fermions)

The corresponding boson fermion (IBFM) Hamiltonian is written as
parametrized in the usual way [U(5)—SU(3)]:

H:HB+HF+VBF

NG Qpr-Qpr

Qpr = Qp + dr

H = (1 — C)"ﬁ,-d —

- ) 7 ; - ot G,)@
By 1= (81 v d)(2)+ (d’[ % 8)(2) > \/7_(01’[ ¢ d)(2) gp = ?‘_,-(_(1;- X (1-)-')‘ ,

Example: just a single-particle orbital j=9/2 coupled to the
boson core

(2)
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Single-j shell (j=9/2)
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The phase transition is in this case strongly perturbed: the odd system
shows coexistence of states where the phase transition is anticipated
or delayed with respect to the even nuclei .



Weakening of the N=40 shell. ¢’Co between spherical (?) ¢8Ni and deformed %¢Fe
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How to single out

phase transitions?
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And what about two-particle transfer cross sections as
possible signatures for shape phase transitions?



Example: L=0 pair transfer in a phase
transition from spherical to axial deformation
(from U(B) to SU(3) in algebraic language)
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Obs: fragmentation of the pairing strength in
correspondence to phase transitions along an isotope chain
(in this case chosen to take place at N=8)
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pair transfer intensities
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Another scenario of phase ftransition:

shape co-existence, for example of a sherical
and a deformed state within the same nucleus
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A simple model: along the isotope chain a sharp inversion of the structure
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As in the previous situation a clear discontinuity appears
at the critical point. However, at variance with the
previous case, the pair strength is always practically
concentrated in a single state, without the fragmentation
illustrated in the previous case



Another case: shape-coexistence with a smoother transition
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So far we have considered matrix elements of the pair operator: but
what about pair transfer cross sections?

Unfortunately, at variance, for example, from low-energy one-step
Coulomb excitation, where the excitation probability is directly
proportional o the B(EL) values, the reaction mechanism associated with
pair transfer is rather complicated and the possibility of extracting
spectroscopic information on the pairing field is not obvious. The
situation is actually more complicated even with respect to other
processes (as inelastic nuclear excitation) that may need to be treated
microscopically, but where the reaction mechanism is somehow well
established.



We expect an correlation between cross sections and square of
the pair operator. But if the qualitative behavior may be clear,
the quantitative aspects require a proper treatment of the
reaction mechanism. All approaches, ranging from macroscopic
to semi-microscopic and to fully microscopic, try to reduce the
actual complexity of the problem, which is a four-body
scattering (the two cores plus the two transferred particles),
to more tractable frameworks.

Two models are most popular:
A, Successive single-particle transfer
B. Cluster transfer



A

Sequential fwo-step process: each step transfers one particle

Pairing enhancement comes from the coherent interference of the
different paths through the different infermediate states in (a-1) and (A
+1) nuclei, due to the correlations in initial and final wave functions

Basic idea: dominance of mean field, which provides the framework for
defining the single-particle content of the correlated wave functions

Expansion to second-order in the transfer potential

Simultaneus + Sequential + hot-orthogonality
(first-order) (second-order) (second-order)
this is not the these two terms may
cluster approximately cancel

contribution each other



Example with just two
components
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Example of calculation
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In this case the pairing enhancement factor in the cross section is about
a factor 2



Effect of kinematical conditions

The transfer probabilities vary strongly with the involved orbital.
In addition whether the final wave function only involves a "pure”
orbital, or whether it is correlated

IOSn(t,p)mSn

(mb/sr)

. \;

pure orbitals

p—
oI
(93

T T
1
/

/

/

correlated BCS
wave function

_-——=a

—_———

= (g,
-

® 5=0.028 ub
® 6=1.134 ub

- (Sl/z)2

5/2)
’ 6=0.473 ub
o= 1.078 ub
(h,,,,)" ©6=0.075 ub
BCS (1) 6=2.536 ub

BCS (2) 6=3.482 ub
BCS (3) 6=1.330 ub

(dy))

lllll

(e} TTTT]

OBS: The shape of the angular dlSTf‘lbUTth is T

Ode

being associated with the L=0 fransfer

%e same,



Due to kinematical conditions, the final fwo-particle cross sections
depend strongly on the microscopy and the involved single-particle
orbits, and not simply on the global “pairing strength”

(measured for example from the gap A in BCS systems)

Example: 119Sn (t,p) 112Sn (gs)

Three different BCS wave functions characterized by the
same value of A (1.2 MeV) yields different cross sections

BCS 1 BCS 2 BCS 3
e.(MeV) | Bi || e«(MeV) | Bi|l e(MeV) | Bi |
Ogzn || -0.027 | 0.75 -0.027 | 115 || -2.027 | 0.6
1ds,. || 0.882 1.13 0.118 | 0.57 0.882 | 1.02
281 12 1.330 | 0.53 0.670 | 0.33 1.330 | 0.59
Ohyyys || 2507 | 079 || 4.507 | 0.61 || 5507 | 0.46
2d3 /5 2.005 | 0.39 2.905 [ 0.26 2.905 | 0.27
o (mb) 25 3.4 1.3



We consider the same case as before, i.e. the transfer of two neutrons
from 10Sn to 1125n (O+; gs) using the reactions

(14C,120) or (180,160)

In addition to the information on the target, we need now to specify
on which orbit the particle are transferred in the projectile

In the (14C,12C) the In the (180,160) from
two neutrons are the pure d5/2 shell, or
assumed to be picked-up from a combination of

from the p1/2 shell. (d5/2)2 and (s1/2)2



If we consider the same case as before, i.e. the transfer of two neutrons
from 110Sn to 1125n (0+; gs), but using different reactions, e.g.
(14€,12C) or (180,160) the ranking of the cross sections associated to the
different orbitals changes.
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Same results shown as histograms
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B

Cluster-transfer model (suggested by the close radial correlation of the pairs)

— Initial and final cluster wave

Os functions are obtained by
taking the overlap between

the two-particle wave functions
and a Os wave function for

the relative motion

X7

Also in this case the resulting cross section depends on the specific single-particle
orbitals (via the Talmi-Moshinsky brackets), but the dependence is different
from the one associated with the sequential transfer (IIl)



The preference to either model may depend on the colliding systems and on
kinematical conditions.

The proper approach will depend on the competition between the two colliding
single-particle mean fields and the residual two-body interaction (for relatively
weak interaction the mean fields will prevail, while in the other extreme of
infinite pairing correlation the cluster structure will fake over).



Let us not forget Q-value effects

Keeping fixed any other parameter, the probability for populating
a definite final channel depends on the Q-value of the reaction.
The dependence (in first approximation a gaussian distribution
centered in the optimum Q-value) is very strong in the case of
heavy-ion induced reactions, weaker in the case of light ions.

The optimum Q-value depends on the angular momentum transfer
and on the charge of the transferred particles. In the specific
case of L=0 two-neutron transfer, the optimal Q-value is zero.



Experimental evidence

96Zpr+40Cq

Selecting final
42Ca mass partition

200

100

80

counts

0

[
4BCa |
330 MeV -

| | |

| [ |
42Ca ]
300 MeV -

| |

| | |
| *Ea .
- 290 MeV -

| HH | |

gs| © 20 40

excited
states

Total kinetic energy loss (MeV)



Playing with different combinations of projectile/target
(having different Q,,-value) one can favour different
energy windows

Example: Target 298Pb Final 21°Pb (at bombarding energy
Ecm =12 Ebar‘r‘ier)
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The width of the Q-value window increases
with the bombarding energy

Q-value cut-off factor




The pairing strength is therefore modulated by the
Q-value cut-off to yield the final two-particle cross
section



The pairing strength is therefore modulated by the Q-value cut-off to yield the

final two-particle cross section
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Two cases in more details (with full microscopic wave functions):
1. Shape phase transition in Zr isotopes

2. Possible breaking of shell closure in 32Mg (N=20)



First example: Shape phase transition in Zr isotopes

between N=58 and 60
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relevant 2-particle spectroscopic amplitudes

- 90>92gs | 92>94gs | 94>96gs | 96>98gs | 98>100gs | 98>100 (0+4) 100>102gs

d5/2 0.74 0.86 0.86 0.13 0.16 0.08
S1/2 0.10 0.08 0.10 0.90 0.0 0.16 0.05
d3/2 0.13 0.18 0.16 0.07 0.0 0.90 0.04
h11/2 0.22 0.20 0.19 0.08 0.0 0.14 0.55

\ L N
| | ! |

ds/2 S1/2 d3/2 h11/2




Cross sections for pure configurations

Zr100(t,p) Zr102 @ 20.000 MeV Q= 1.62MeV Ex= 1.25MeV

T (-0g7/z)2
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Calculation of two-particle transfer reactions using:
sequential model for the reaction mechanism
one- and two-particle spectroscopic amplitudes from the Tokyo group

A A+2 B Exp.gs.
Zl'(t,p) Zr @ 20 MeV B Theoretical
cross section at maximun around 40° Exp. O':
l ! ! ! Theor. 0':
i B Theor. 0'4
0.25
0.2
£0.15
g XC
0.1
0.05

90 92 J 96 98 100

experimental data needed
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the case of the N=20 shell and 3°Mg
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The N=20 shell seems to be washed out for Z<14
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Evolution of O+ states in N=20 isotones
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Inversion of shape (spherical and deformed)? Mixing of Op-Oh with 2p-2h?



Microscopic calculation of (t,p) cross section

Pure configurations

10

3OM9 32M9

30Mg(t,p)32Mg(g.s.) Ecm=4.9 MeV
: : : : : :
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(p3/2)°

- (d,x/z)2

2
— ()
— (p3,2)2

(d5/2)?

45

9
0 (deg)

1 1 I
0 135

OBS: The relative population for single particle transfer may be reversed
for other reactions, as (180,160), (14C,12C) etc



In the "standard” single-particle sequence with shell closure at N=20 the
transition to the ground state will involve the transfer of two particles in
the (d5/2) shell, while the transition o the excited O+ (2p-2h) involves the
(p3/2) or (f7/2). The findings of (t,p) reaction are not compatible with
shell closure at N=20.

The possible vanishing of the N=20 shell will generate an inversion (or at
least a mixing) of the Op-Oh state with the 2p-2h state. As a first simple
model we assume

—pf —00— pf
Ground state = O + [3
—0000 d3/2 —0000 d3/2
pf —00— pf
Excited state = = [3 + A
—0000 d, , —ocee d, ),

and determine the mixing coefficient O from fitting (t,p) cross section ratio



**Mg(t,p)*Mg

gs: o (d)’ + B (pf)?
0%exct =B (d)? + a (pf)?

\"/
o/
"/

0.7 p2+0.7f2 .*

0.5 p2+0.87 f2

1

0.2 “‘)‘;’/ 2
0 T . ‘ :I . | . | .
0 0.2 04 , 0.6 0.8
o

OBS: The (pf)? pair will be a combination of (f7/2)? and (p3/2)? components

$Oc2 ~ 0.75-0.80



Conclusions:

Pairing response (tested in two-particle transfer reactions but also in other
dynamical processes involving pairs of particles) gives strong constrains on
nuclear wave functions. The effect is amplified in correspondence of critical
situations associated with shape phase transitions, with "abnormal” population
of excited O+ states and weakening of the ground state transition.

Further data on two-particle transfer reactions are definitely needed
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