

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

Dynamics of ⁹Be in a three-cluster model

Manuela Rodríguez-Gallardo Jesús Casal and José M. Arias

Universidad de Sevilla

Trento, 8 March 2018

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

- → Motivation: weakly-bound systems
 - ⇒ The Borromean nucleus ${}^{9}\text{Be}(\alpha + \alpha + n)$
- → Pseudo-State methods to obtain the structure:
 - The analytical transformed harmonic oscillator (ATHO) method
- → What can we study for ⁹Be?
 - The reaction rate for the radiative capture $\alpha(\alpha n, \gamma)^9$ Be at T of astrophysical interest
 - Direct reactions induced by ⁹Be on a stable target using the 4b-CDCC formalism:

- $^{\circ}$ ⁹Be+²⁰⁸Pb at 44 and 38 MeV
- ⁹Be+¹²⁰Sn at 27, 28, 29.5 and 31 MeV
- → Summary and conclusions

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

<ロ> <四> <四> <四> <四> <四> <四</p>

Dynamics of ⁹Be in a three-cluster model

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国 - 《

Dynamics of ⁹Be in a three-cluster model

Dynamics of ⁹Be in a three-cluster model

Why studying ⁹Be?

Manuela Rodríguez Gallardo

 $\cdot 3/2^+$

- → ⁹Be is stable but has a small separation energy
- Breakup effects are expected to be important in reactions induced by this nucleus

(日)

Why studying ⁹Be?

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

- → ⁹Be is stable but has a small separation energy
- Breakup effects are expected to be important in reactions induced by this nucleus
- → α(αn, γ)⁹Be followed by ⁹Be(α, n)¹²C may provide an alternative path to the triple-alpha process

 $3/2^{+}$

- → This process has been linked to the r-process in type II supernovae [Langanke & Wiescher, Rep. Prog. Phys. 64 (2001) 1657]

Weakly-bound systems

in a three-cluster model Manuela Rodríguez

Dynamics of ⁹Be

Dynamics of ⁹Be

in a three-cluster

Weakly-bound systems

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Weakly-bound systems

in a three-cluster model Manuela

Dynamics of ⁹Be

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … の �

es a ce

Analytical THO (ATHO)

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

$$s(r) = \sqrt{rac{1}{2b}} \left[\left(rac{1}{r}
ight)^m + \left(rac{1}{\gamma \sqrt{r}}
ight)^m
ight]^{-rac{1}{m}}$$

→ Easier to implement
 → Flexibility in PSs distribution as function of γ/b

But, what about three-body systems?

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

 $\rightarrow \text{ The states of the system are expanded in} \\ \begin{array}{l} \text{Hyperspherical Harmonics (HH)} \\ \hline \phi_{nj\mu}(\rho,\Omega) = \sum_{\beta} R_{n\beta j}(\rho) \mathcal{Y}_{\beta j\mu}(\Omega_{5}) \\ \hline \beta \equiv K, \ell_{x}, \ell_{y}, \ell, S_{x}, j_{ab} \\ \hline \rho^{2} \equiv x^{2} + y^{2} \\ \tan \alpha = x/y \\ \hline \end{array}$

→ The hyperradial functions $R_{n\beta j}(\rho)$ are obtained with the THO method

→ The H is diagonalised in a THO basis with $i = 0, ..., i_{max}$ functions in each channel β

Application to ⁹Be

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

• $V_{n\alpha}$: GPT Phys. Lett. B32 (1070) 591 • $V_{\alpha\alpha}$: Ali-Bodmer Nucl. Phys. 80 (1966) 99 • Pauli forbidden states: repulsive central $V_{n\alpha}$ in s-wave

Energy spectrum

Energy spectrum

Dynamics of ⁹Be in a three-cluster model

Radiative capture reaction rate

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

→ The energy-averaged reaction rate for the radiative capture of 3 particles (*abc*) into a bound nucleus *A*, $a + b + c \rightarrow A + \gamma$, is given as function of *T*:

 $\langle R_{abc}(\varepsilon) \rangle(T) = \mathcal{N} (k_B T)^{-3} \int_0^\infty \varepsilon_\gamma^2 \sigma_\gamma(\varepsilon_\gamma) e^{\frac{-\varepsilon}{k_B T}} d\varepsilon$

→ The photodissociation cross section σ_{γ} can be expanded into electric and magnetic multipoles $(\mathcal{O}\lambda)$: $\sigma_{\gamma}^{(\mathcal{O}\lambda)}(\varepsilon_{\gamma}) = \frac{(2\pi)^{3}(\lambda+1)}{\lambda[(2\lambda+1)!!]^{2}} \left(\frac{\varepsilon_{\gamma}}{\hbar c}\right)^{2\lambda-1} \frac{dB(\mathcal{O}\lambda)}{d\varepsilon}$

Photodissociation cross section for ${}^{9}\text{Be} + \gamma \rightarrow \alpha + \alpha + n$

Dynamics of ⁹Be in a three-cluster model

Photodissociation cross section for ${}^{9}\text{Be}+\gamma \rightarrow \alpha + \alpha + n$

Dynamics of ⁹Be in a three-cluster model

Reaction rate for $\alpha(\alpha n, \gamma)^9$ Be

Dynamics of ⁹Be in a three-cluster model

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

 $\Psi_J^M(\vec{R},\xi) = \sum \phi_{jn}^{\mu}(\xi) \langle LM_L j\mu | JM \rangle_{\overline{R}}^{iL} Y_L^{M_L}(\widehat{R}) f_{Lnj}^J(R)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

$$\Psi_J^{\mathcal{M}}(\vec{R},\xi) = \sum \phi_{jn}^{\mu}(\xi) \langle LM_L j\mu | JM \rangle_{\overline{R}}^{\frac{jL}{R}} Y_L^{\mathcal{M}_L}(\widehat{R}) f_{Lnj}^J(R)$$

Coupled-channels system

$$\begin{bmatrix} -\frac{\hbar^2}{2m_r} \left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2} \right) + \varepsilon_{nj} - E \end{bmatrix} f_{Lnj}^J(R) \\ + \sum_{L'n'j'} i^{L'-L} V_{Lnj,L'n'j'}^J(R) f_{L'n'j'}^J(R) = 0$$

・ロト ・四ト ・ヨト ・ヨト ・日・ うへの

Dynamics of ⁹Be in a three-cluster model

9 Be $+^{208}$ Pb at 44MeV

Dynamics of ⁹Be in a three-cluster model

⁹Be+²⁰⁸Pb at 44MeV: multipoles

Dynamics of ⁹Be in a three-cluster model

⁹Be+²⁰⁸Pb at 38MeV

⁹Be+²⁰⁸Pb at 38MeV: resonances

⁹Be+¹²⁰Sn at TANDAR (Argentina)

Dynamics of ⁹Be in a three-cluster model

⁹Be+¹²⁰Sn at TANDAR (Argentina)

Dynamics of ⁹Be in a three-cluster model

⁹Be+¹²⁰Sn at TANDAR (Argentina)

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

New experiment at TANDAR laboratory (Buenos Aires, Argentina) in 2018/19

Simultaneous measurements for elastic and exclusive breakup 2 alphas in coincidence Collaboration theory-experiment international Argentina-Brasil-España

Comisión Nacional de Energía Atómica

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary and conclusions

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

→ We have studied the Borromean nucleus ${}^{9}\text{Be}(\alpha + \alpha + n)$ in a 3-body model

- → We have used the ATHO method to obtain the states of ⁹Be in this model
- → We reproduce very well the σ_{γ} measured for ⁹Be
- We have estimated the reaction rate for α(αn, γ)⁹Be for the T of astrophysical interest
 We find an important increase at the low-T region
- → We have applied the 4b-CDCC formalism to ⁹Be+²⁰⁸Pb,¹²⁰Sn at E around the Coulomb barrier
 - The 4b-CDCC reproduces quite well the exp. data in general but there is a discrepancy in the C-N interference region
 - rightarrow A new experiment (elastic+bu) is underway

In addition... Radiative capture reaction rate from inclusive breakup measurements

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

Direct relation at first order for
$$\left(t = \frac{1}{k_B T}\right)$$

$$\langle R_{abc}
angle(T) = \mathcal{C} t^3 e^{|\varepsilon_B|t} rac{d^2}{dt^2} \left(rac{1}{t^2} P_r(t)
ight)$$

 $t = f(E_{lab}, \theta)$: collision time

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In addition... Radiative capture reaction rate from inclusive breakup measurements

Dynamics of ⁹Be in a three-cluster model

Eiab (MeV)

5

In addition... Radiative capture reaction rate from inclusive breakup measurements

Dynamics of ⁹Be in a three-cluster model

> Manuela Rodríguez Gallardo

PAC Date :	EXP # (Do not fill in):
(PAC Date)	E

-

LETTER OF INTENT

Title: Determining the astrophysical three-body radiative capture reaction rate for 'He(2n,t)'He from inclusive Coulomb break- up measurements Spokesperson: A. M. Sánchez-Benitez Address: Dpto. Ciencias Integradas. Fac. CC. EE. Avd. Fuerzas Amadas sh CP 21007 Huelva, Spain.			
Backup Spokesperson: J. P. Fernández-García Address:			
Phone:	Fax:	Email: jpfernandez@us.es	
GANIL Scientific Coordinator: A. Chbihi			
Collaboration : Participant names, institutions, and indicate students (S), and post-doctoral fellows (PDF):			
University of Huelva, A. M. Sánchez-Benítez, University of Seville M. Rodriguez-Gallardo, J. ECT. J. Casal (POF) CSIC-Madrid, Spain M. J. G. Borge, O. Tengdi Instituto de Física-UNAM, Mexico L. Acosta, Laboratori Nazionali del Sud, INFN, Italy A. I. University of Aarhus, Demmark H. Fynbo LIP-Lisboa, Portugal D. Galaver, L. Peralta, P. GANIL, France: F. de Oliveira	I. Martel, J. A. Dueñas, J. E. Garcia-Ramos M. Arias, J. P. Fernández-Garcia, J. Góm ad, J. D. Oveja (S), S. Viñals (S) E. Chávez Pfetro, P. Figuera Teubig (S)), F. Pérez-Bernal ez-Cannacho, B. Femández (PDF), F. J. Fener (PDF)	

Photodissociation cross section: convergence in s-wave

Dynamics of ⁹Be in a three-cluster model

Radiative reaction rate: j^{π} contributions

Dynamics of ⁹Be in a three-cluster model

9 Be+ 208 Pb@60MeV: convergence in K_{max}

Dynamics of ⁹Be in a three-cluster model

⁹Be+²⁰⁸Pb@44MeV: convergence in ε_{max}

Dynamics of ⁹Be in a three-cluster model

⁹Be+²⁰⁸Pb@44MeV: convergence in i_{max}

Dynamics of ⁹Be in a three-cluster model

