

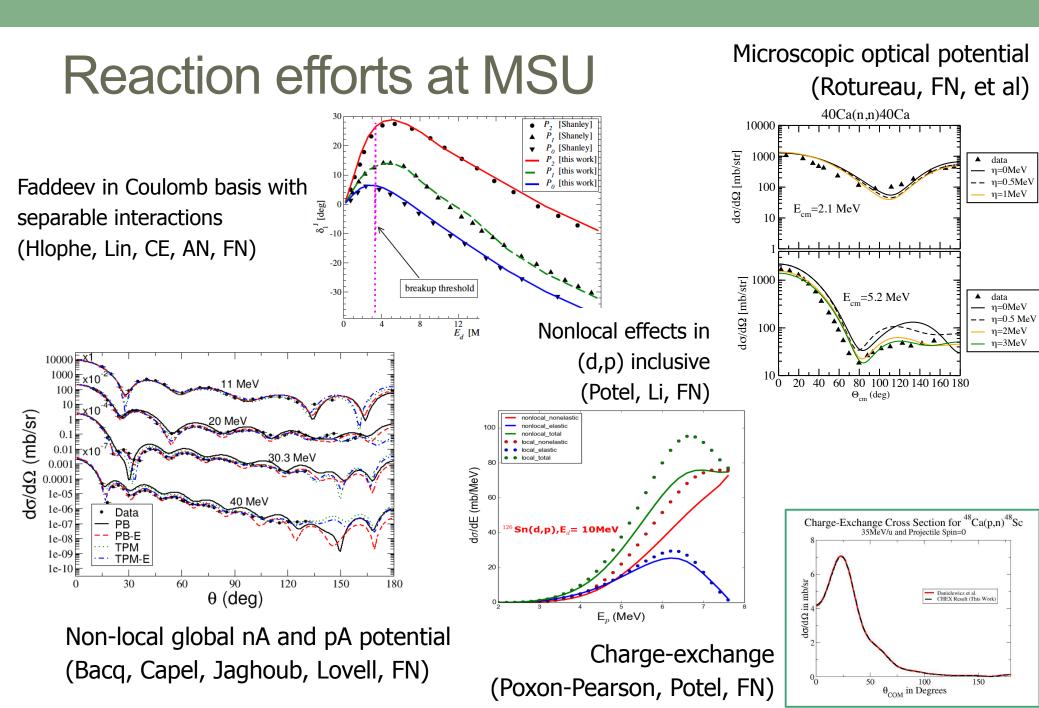
Uncertainty quantification in reaction theory

Filomena Nunes Michigan State University

> In collaboration with: Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

> > Supported by: NNSA-DOE, NSF

Trento, March 2018



Uncertainty quantification in reaction theory

Filomena Nunes Michigan State University

> In collaboration with: Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

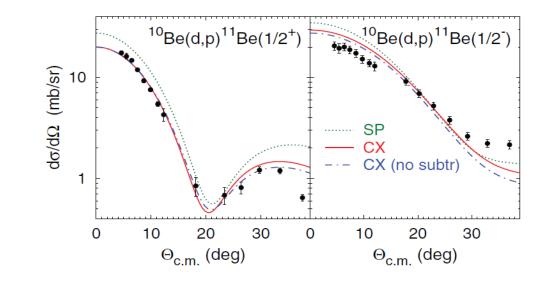
> > Supported by: NNSA-DOE, NSF

Trento, March 2018

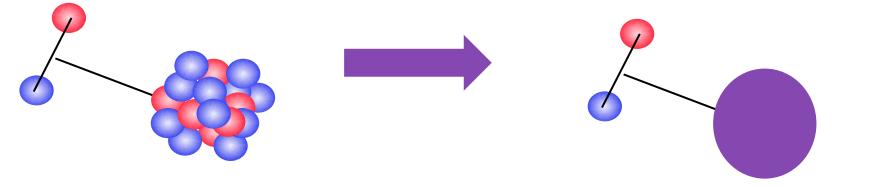
What is the nuclear physics problem: how certain are our reaction predictions?

A(d,p)B

Deuteron induced reactions typically treated as a threebody problem



Deltuva, PRC91, 024607 (2015)



What is the UQ problem:

We develop a hypothesis (model)

We confront it with reality (data)

How good is the model?

What is the UQ problem:

We develop a hypothesis (model)

DWBA or ADWA

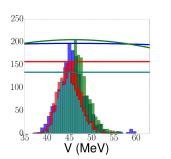
We confront it with reality (data) Introducing a function, e.g.

 $\chi^2 = \sum_{i=1}^n \left(\frac{m(\mathbf{x}; \theta_i) - d_i}{\sigma_i} \right)^2$

 $\begin{array}{c}
 10^{1} \quad \textbf{95\% confidence bands} \\
 10^{0} \quad \textbf{0} \\
 10^{-1} \quad \textbf{0} \quad \textbf{10} \quad \textbf{120} \quad \textbf{140} \quad \textbf{160} \quad \textbf{180} \\
 \theta \text{ (deg)}
\end{array}$

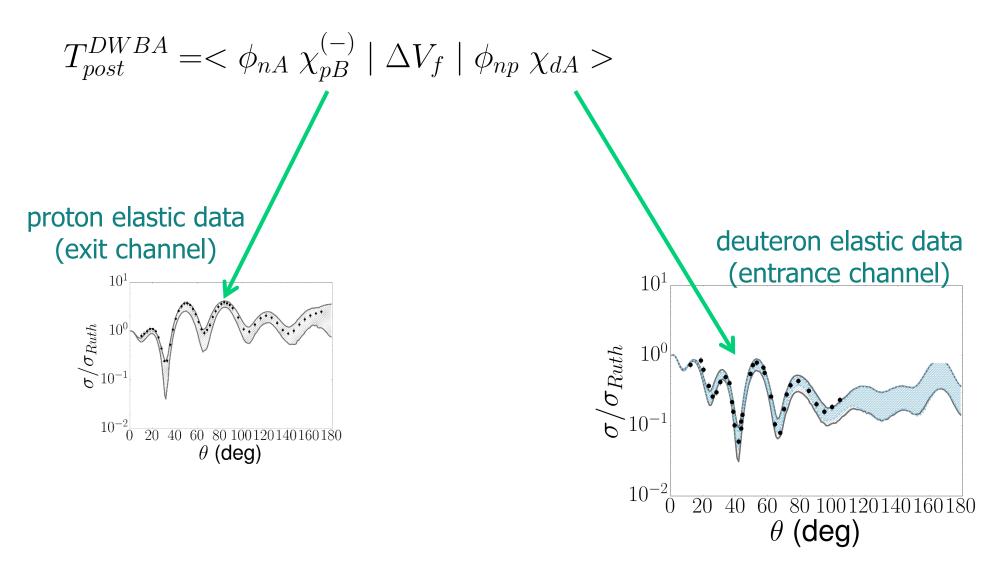
How good is the model?

Constrains on the model



What is the model?

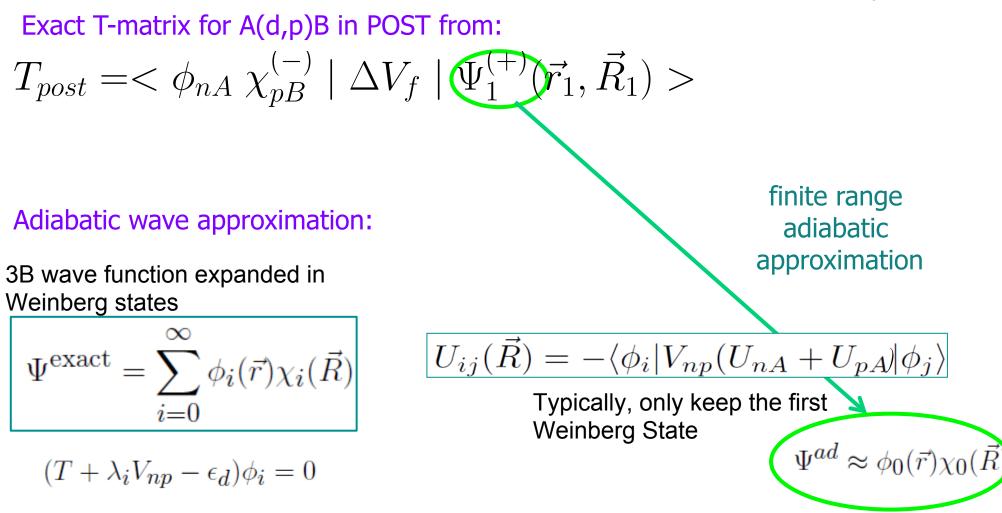
Exact T-matrix for A(d,p)B in POST from: $T_{post} = \langle \phi_{nA} \chi_{pB}^{(-)} | \Delta V_f | \Psi_1^{(+)}(\vec{r}_1, \vec{R}_1) \rangle$ deuteron elastic component Take first term of Born series: $\Psi_1^{(+)}(\vec{r_1}, \vec{R_1}) \rightarrow \phi_{np} \chi_{dA}$ $T_{post}^{DWBA} = \langle \phi_{nA} \chi_{pB}^{(-)} \mid \Delta V_f \mid \phi_{np} \chi_{dA} \rangle$

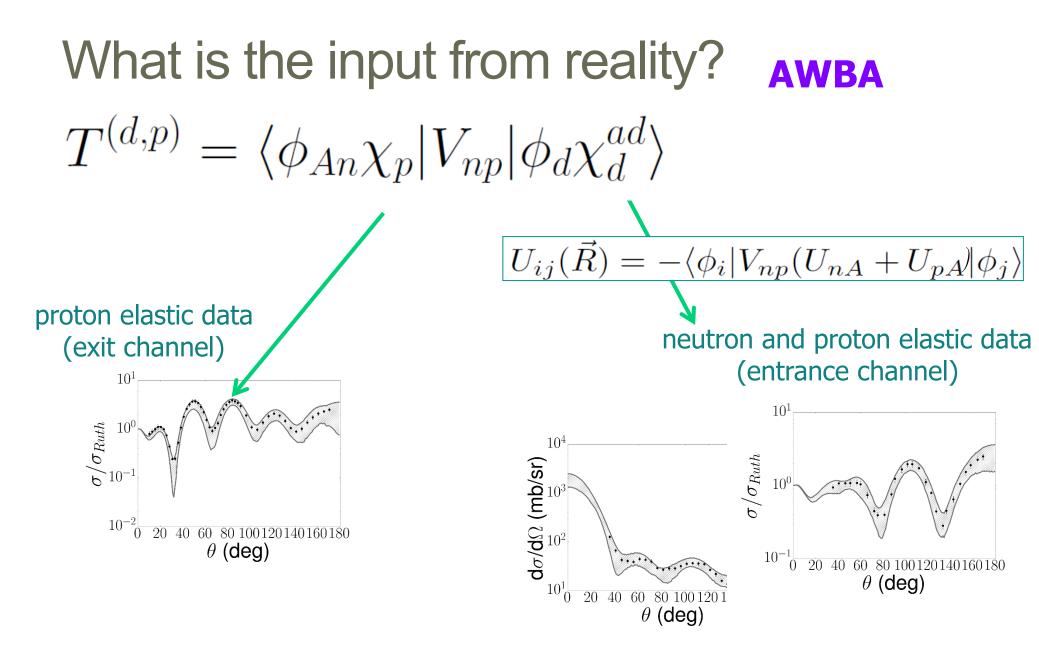


What is the model?

ADWA

Johnson and Tandy, NPA1974



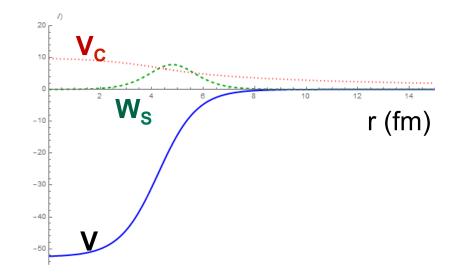


What are the parameters of the model?

Optical potentials (assumed local to reduce computational time)

$$U(r) = V(r) + iW(r) + (V_{so}(r) + iW_{so}(r))(\mathbf{l} \cdot \mathbf{s}) + V_C(r)$$

Parameters: Volume real V r a Volume imaginary W $r_W a_W$ Surface imaginary V_s r_s a_s Spin-orbit real V_s r_s a_s Spin-orbit imaginary V_s r_s a_s Coulomb r_c



Outline

- 1. Using uncorrelated chi2 function
- 2. Using correlated chi2 function
- 3. Using Bayes' Theorem
- 4. Conclusions
- 5. Outlook

Standard Chi2 minimization

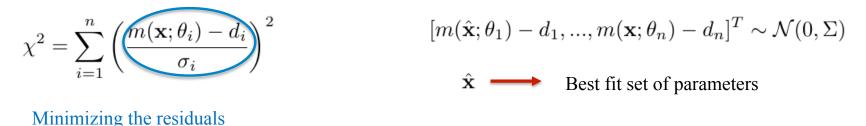
• Have n observable pairs (d_i, θ_i) that are linked by a true function, $\mu(\theta_i)$, such that: $d_i = \mu(\theta_i) + \epsilon_i$

$$[d_1, ..., d_n]^T \sim \mathcal{N}(\mu, \Sigma) \qquad \epsilon_i \sim \mathcal{N}(0, \sigma_i^2)$$

• In not knowing the true function, we create a model, $m(\mathbf{x}, \theta_i)$, to describe the data

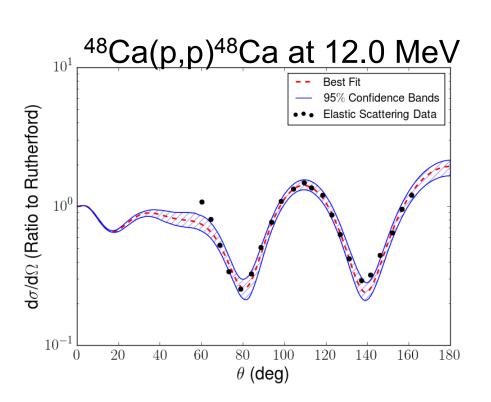
$$d_i = m(\mathbf{x}, \theta_i) + \epsilon_i$$

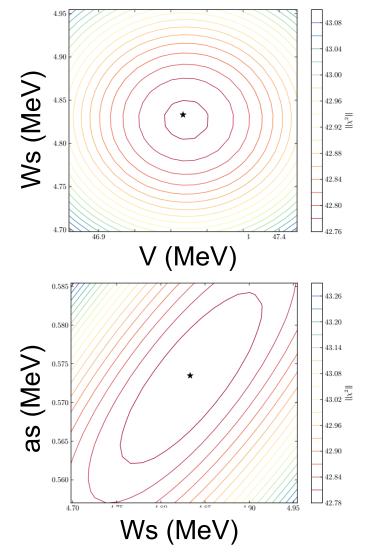
- In fitting the model to the observables, the goal is to minimize the residuals
- For uncorrelated observables

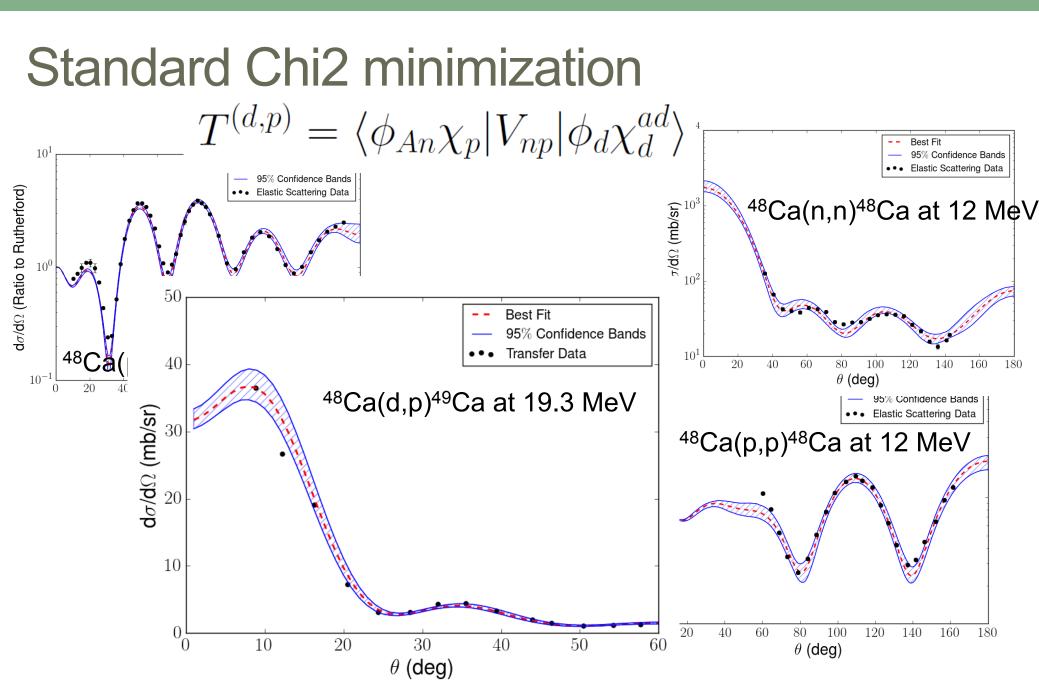


- Pull 200 sets from this distribution and run them through the model
- Create 95% confidence bands by removing the top 2.5% and bottom 2.5% of the calculations at each angle

Standard Chi2 minimization







Chi2 minimization

Previously: Uncorrelated Model

- Data and residuals are normally distributed $[d_1, ..., d_p]^T \sim \mathcal{N}(\mu, \Sigma)$ $[m(\mathbf{x}; \theta_1) - d_1, ..., m(\mathbf{x}; \theta_p) - d_p]^T \sim \mathcal{N}(0, \Sigma)$
- With covariance matrix

 $\Sigma_{ii} = \sigma_i^2$

Leads to the minimization function

$$\chi^2 = \sum_{i=1}^n \left(\frac{m(\mathbf{x}; \theta_i) - d_i}{\sigma_i} \right)^2$$

Instead: For a Correlated Model

- Model is also normally distributed $[m(\mathbf{x}; \theta_1), ..., m(\mathbf{x}; \theta_p)]^T \sim \mathcal{N}(\mu, \mathbb{C}_m)$
- Residuals then have the distribution $[m(\mathbf{x}; \theta_1) - d_1, ..., m(\mathbf{x}; \theta_p) - d_p]^T \sim \mathcal{N}(0, \mathbb{C}_m + \Sigma)$
- With covariance matrix

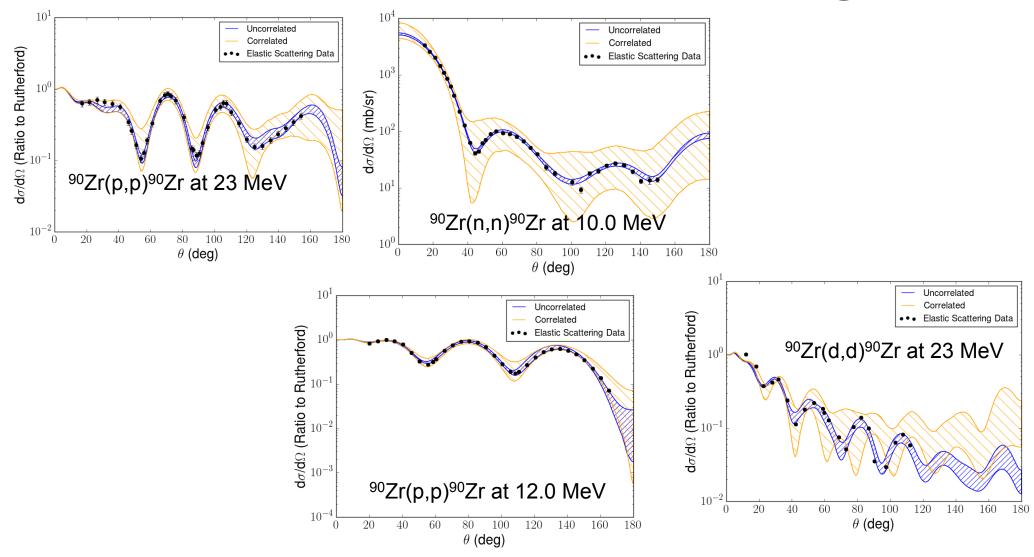
 $\mathbb{C}_m + \Sigma$

Leads to the minimization function

$$\chi^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (m(\mathbf{x}; \theta_{i}) - d_{i}) (m(\mathbf{x}; \theta_{j}) - d_{j})$$

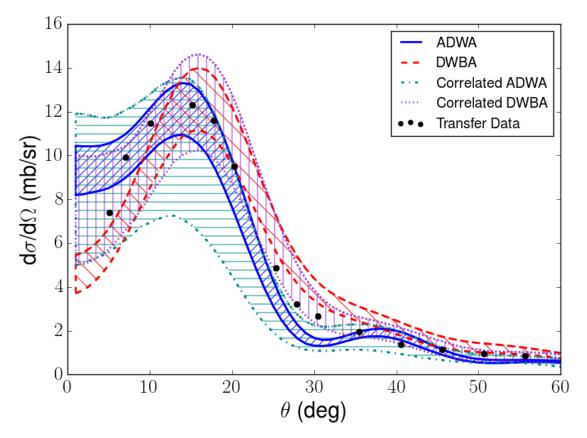
$$W = (\mathbb{C}_m + \Sigma)^{-1}$$

Chi2 minimization: elastic scattering



Chi2 minimization: transfer predictions

⁹⁰Zr(d,p)⁹⁰Zr at 23 MeV



Chi2 minimization: systematics

Reaction E (MeV)		Width(DWBA) %	Width(ADWA) %		
$^{48}Ca(d,p)$	19.3	8.2571	11.7164		
90 Zr(d,p)	22.7	22.94803	19.00016		
90 Zr(d,n)	19.018	22.22602	11.84450		
$^{116}Sn(d,p)$	46.0	33.68678	9.692527		
208 Pb(d,p)	32.9	36.5096	24.00519		

Limitations of the frequentist approach

Philosophical aspects:

- Probability as frequency: number of events over a total number of trails
- A 95% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.
- There is no way to include UQ on events that cannot be repeated (e.g. how likely is it that I will be run over by a car walking back to trento?).

Practical aspects:

- Problem with local minima versus the global minimum
- Inclusion of prior knowledge comes through ranges allowed for parameters
 - potential for introducing biases
- What is the correct Chi2 function that includes the correct correlations in the theoretical model?

Comparing frequentist and Bayesian

- Probability as frequency
- A 95% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.

Practical aspects:

- local minima
- ranges allowed for parameters potential for introducing biases
- correlations in the theoretical model?

- Probability as degree of belief
 - Posterior distribution updates our degree of belief on the model, in light of the data
- A 95% confidence band means, given the data, what are the parameter ranges of the model for a 95% degree of belief.
 Practical aspects:
- Markov Chain Monte Carlo (MCMC) spans full space and is fully automated
- Inclusion of prior (no biases)
- Correlations automatically included
- Computationally more expensive

Bayes' theorem

P(green,red)= 5/9 x 4/9 P(red,green)= 4/9 x 5/9

P(green,red)=P(red,green)

Bayesian statistics

Thomas Bayes (1701–1761)

Bayes' Theorem

$$P(\mathcal{H}|\mathcal{D}) =$$

 $\frac{P(\mathcal{D}|\mathcal{H})P(\mathcal{H})}{P(\mathcal{D})}$

Posterior – probability that the model/parameters are correct after seeing the data

Prior – what is known about the model/ parameters before seeing the data

Likelihood – how well the model/parameters describe the data

Evidence – marginal distribution of the data given the likelihood and the prior

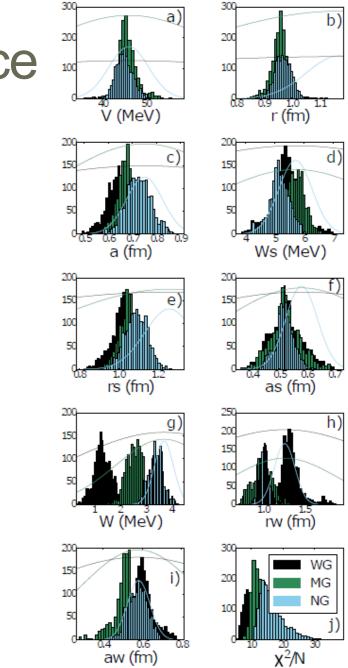
Markov Chain Monte Carlo (MCMC) $p(H_i)p(D|H_i)$

Randomly choose new parameters

 $p(H_f)p(D|H_f)$

R <

⁹⁰Zr(n,n)⁹⁰Zr at 24 MeV



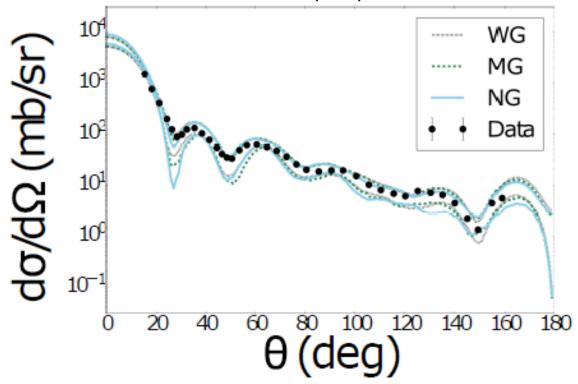
Bayesian: prior dependence

$$p(H) \propto \prod_{i=1}^{N_p} \exp\left[\frac{(x^i - x_0^i)^2}{(x_0^i)^2}\right]$$

Types of Priors: Wide (100% of original mean) Medium (50% of original mean) Narrow (10% of original mean)

Bayesian: prior dependence

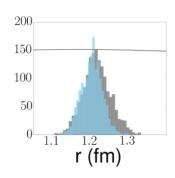
⁹⁰Zr(n,n)⁹⁰Zr at 24 MeV

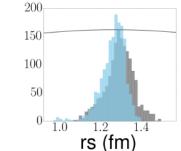


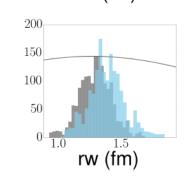
Types of Priors:

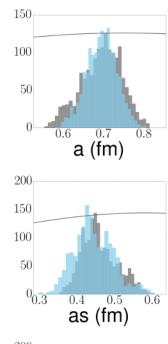
Wide (100% of original mean) Medium (50% of original mean) Narrow (10% of original mean) Results independent of prior. Data dominates over the prior.

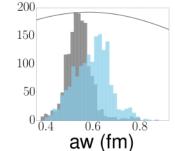
Bayesian: optical potential



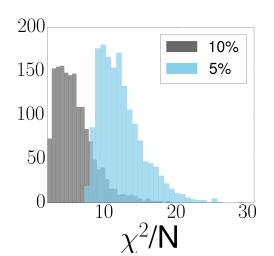






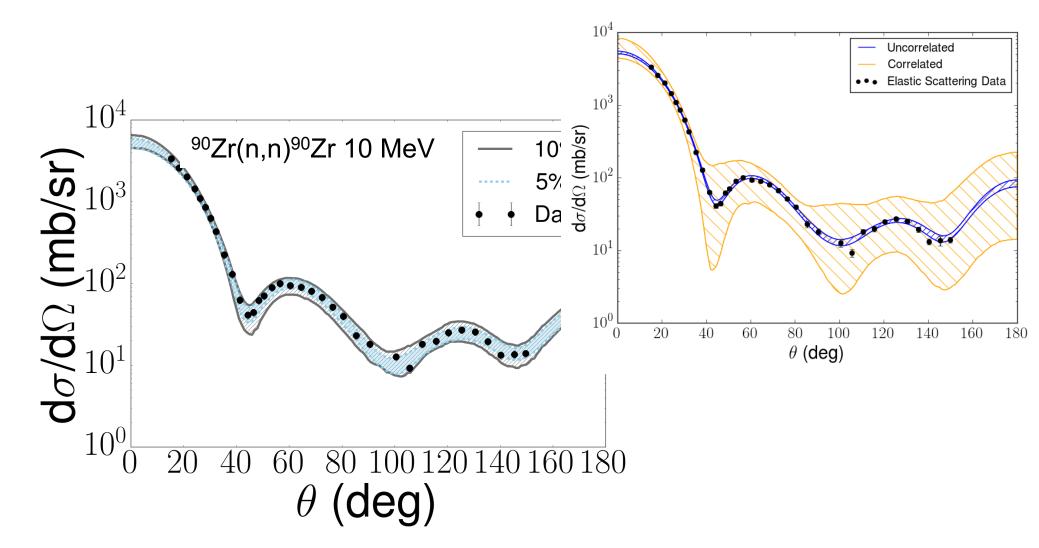


⁹⁰Zr(n,n)⁹⁰Zr at 10 MeV



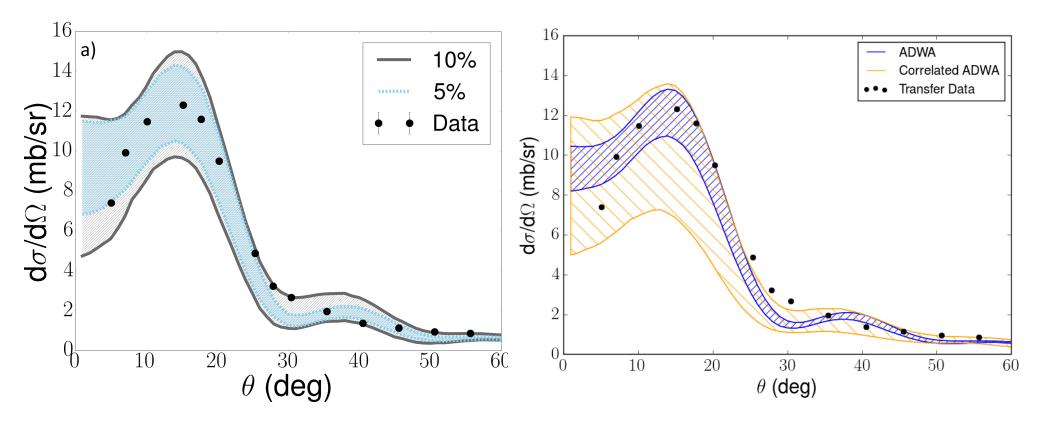
Uncorrelated Chi2 Correlated Chi2 V=50.6 MeV V=51.9 MeV r=1.18 fm r=1.16 fm a=0.63 fm a=0.67 fm Ws=3.3 MeV Ws=4.1 MeV Rs=1.06 fm Rs=1.28 fm as=0.80 fm as=0.63 fm W=0.6 fm W=0.57 fm rw=1.52 fm rw=1.27 fm aw=0.57 fm aw=0.71 fm

Bayesian: elastic scattering



Bayesian: transfer predictions

⁹⁰Zr(d,p)⁹⁰Zr at 24 MeV



Systematics with Bayesian

Reaction	Theory	θ (deg)	${\rm Peak}^{*}~{\rm (mb/sr)}$	\mathbf{SF}	$\varepsilon_{95}~(\%)$	ε_{68} (%)
$^{48}Ca(d,p)$	ADWA10	6	34.09	1.07	35.76	16.47
48 Ca(d,p)	ADWA5	6	33.38	1.09	24.24	11.53
48 Ca(d,p)	DWBA10	3	41.56	1.02	47.93	22.57
${}^{48}Ca(d,p)$	DWBA5	4	40.73	1.02	42.03	22.36
90 Zr(d,n)	ADWA10	31	2.16		44.44	17.59
$\rm ^{90}Zr(d,n)$	ADWA5	31	2.13		20.19	9.91
90 Zr(d,n)	DWBA10	31	3.04		38.82	21.52
90 Zr(d,n)	DWBA5	30	3.15		26.35	13.29
90 Zr(d,p)	ADWA10	14	16.63	0.74	47.62	21.95
$^{90}{ m Zr(d,p)}$	ADWA5	14	17.94	0.69	30.88	14.99
90 Zr(d,p)	DWBA10	16	17.09	0.72	58.86	29.02
$^{90}{ m Zr(d,p)}$	DWBA5	16	17.41	0.71	30.61	14.26
$^{-116}$ Sn(d,p)	ADWA10	1	4.64		121.77	48.31
116 Sn(d,p)	ADWA5	1	5.93		101.52	55.12
208 Pb(d,p)	ADWA10	11	13.32		37.84	18.95
208 Pb(d,p)	ADWA5	14	13.97		25.48	11.42
208 Pb(d,p)	DWBA10	9	7.44		72.72	43.84
208 Pb(d,p)	DWBA5	7	8.38		63.01	30.08

Conclusions

- Used elastic scattering to constrain OP and determine confidence bands on predicted transfer cross sections: compared the frequentist approach with Bayesian approach.
- Chi2 minimization: optical potentials obtained with correlated chi2 differ from uncorrelated chi2 and the correlated chi2 result in much wider confidence bands.
- Significant difference between DWBA and ADWA but uncertainty is still too large for data to discriminate between one or the other.

Conclusions

- Used elastic scattering to constrain OP and determine confidence bands on predicted transfer cross sections: compared the frequentist approach with Bayesian approach.
- Developed the Bayesian machinery to explore uncertainty quantification in reactions (including the Markov Chain Monte Carlo):
 - Results are independent of the prior driven by data
 - Bayesian approach provides a picture closer to the correlated chi2 approach, but suggests correlations are more complex.
- Reducing errors bars from 10% to 5% produces a confidence band at most 30% narrower.

Outlook

- Parametrical uncertainties: we constrained all distorted waves in the problem. Still missing bound states – constrain mean field or ANC with other observables
- Diversify the data currently just elastic angular distributions
 - Include reaction/total cross sections, polarization data, other channels
 - Principal component analysis to determine information content of data
- Model comparison and model mixing

Outlook

 Importance of explicit inclusion of nonlocality calls for new global nonlocal potential

- Initial work on n+A and p+A demonstrates that, when including a Gaussian nonlocality, elastic scattering data still calls for an energy dependence of the interaction.
- Bayesian techniques provide an avenue for a comprehensive study

Thank you for your attention!

In collaboration with: Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

Supported by: NNSA-DOE, NSF