Uncertainty quantification in reaction theory

Filomena Nunes
Michigan State University

In collaboration with:
Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

Reaction efforts at MSU

Microscopic optical potential (Rotureau, FN, et al)

Faddeev in Coulomb basis with separable interactions (Hlophe, Lin, CE, AN, FN)

Non-local global nA and pA potential (Bacq, Capel, Jaghoub, Lovell, FN) (d, p) inclusive (Potel, Li, FN)

Uncertainty quantification in reaction theory

Filomena Nunes
Michigan State University

In collaboration with:
Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

What is the nuclear physics problem: how certain are our reaction predictions?

A(d,p)B

Deuteron induced reactions typically treated as a threebody problem

Deltuva, PRC91, 024607 (2015)

What is the UQ problem:

We develop a hypothesis (model)

We confront it with reality (data)

How good is the model?

What is the UQ problem:

We develop a hypothesis (model)
DWBA or ADWA

We confront it with reality (data)
Introducing a function, e.g.

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

How good is the model?

Constrains on the model

${ }^{10^{1}} 95 \%$ confidence bands

What is the model?

DWBA

Exact T-matrix for $\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}$ in POST from:
$T_{p o s t}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right)>$

deuteron elastic component

Take first term of Born series: $\Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right) \rightarrow \phi_{n p} \chi_{d A}$

$$
T_{\text {post }}^{D W B A}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \phi_{n p} \chi_{d A}>
$$

What is the input from reality?

DWBA

What is the model?

ADWA

Johnson and Tandy, NPA1974
Exact T-matrix for $\mathrm{A}(\mathrm{d}, \mathrm{p}) \mathrm{B}$ in POST from:

$$
T_{p o s t}=<\phi_{n A} \chi_{p B}^{(-)}\left|\Delta V_{f}\right| \Psi_{1}^{(+)}\left(\vec{r}_{1}, \vec{R}_{1}\right)>
$$

Adiabatic wave approximation:
3B wave function expanded in Weinberg states

$$
\Psi^{\text {exact }}=\sum_{i=0}^{\infty} \phi_{i}(\vec{r}) \chi_{i}(\vec{R})
$$

$$
\left(T+\lambda_{i} V_{n p}-\epsilon_{d}\right) \phi_{i}=0
$$

finite range adiabatic approximation

$$
U_{i j}(\vec{R})=-\left\langle\phi_{i}\right| V_{n p}\left(U_{n A}+U_{p A}\right)\left|\phi_{j}\right\rangle
$$

Typically, only keep the first
Weinberg State

$$
\Psi^{a d} \approx \phi_{0}(\vec{r}) \chi_{0}(\vec{R})
$$

What is the input from reality? AWBA

$$
T^{(d, p)}=\left\langle\phi_{A n} \chi_{p}\right| V_{n p}\left|\phi_{d} \chi_{d}^{a d}\right\rangle
$$

proton elastic data

What are the parameters of the model?

Optical potentials (assumed local to reduce computational time)

$$
U(r)=V(r)+i W(r)+\left(V_{s o}(r)+i W_{s o}(r)\right)(\mathbf{l} \cdot \mathbf{s})+V_{C}(r)
$$

Parameters:

Volume real Vra
Volume imaginary $W r_{w} a_{w}$
Surface imaginary $\mathrm{V}_{\mathrm{s}} \mathrm{r}_{\mathrm{s}} \mathrm{a}_{\mathrm{s}}$
Spin-orbit real $V_{s} r_{s} a_{s}$ Spin-orbit imaginary $V_{s} r_{s} a_{s}$
 Coulomb r_{c}

Outline

1. Using uncorrelated chi2 function
2. Using correlated chi2 function
3. Using Bayes' Theorem
4. Conclusions
5. Outlook

Standard Chi2 minimization

- Have n observable pairs $\left(\mathrm{d}_{\mathrm{i}}, \theta_{\mathrm{i}}\right)$ that are linked by a true function, $\mu\left(\theta_{\mathrm{i}}\right)$, such that: $d_{i}=\mu\left(\theta_{i}\right)+\epsilon_{i}$

$$
\left[d_{1}, \ldots, d_{n}\right]^{T} \sim \mathcal{N}(\mu, \Sigma) \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)
$$

- In not knowing the true function, we create a model, $\mathrm{m}\left(\mathbf{x}, \theta_{\mathrm{i}}\right)$, to describe the data

$$
d_{i}=m\left(\mathbf{x}, \theta_{i}\right)+\epsilon_{i}
$$

- In fitting the model to the observables, the goal is to minimize the residuals
- For uncorrelated observables

$$
\chi^{2}=\sum_{i=1}^{n}(\underbrace{\left.\frac{m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)})^{2} \quad\left[m\left(\hat{\mathbf{x}} ; \theta_{1}\right)-d_{1}, \ldots, m\left(\mathbf{x} ; \theta_{n}\right)-d_{n}\right]^{T} \sim \mathcal{N}(0, \Sigma)
$$

Minimizing the residuals

- Pull 200 sets from this distribution and run them through the model
- Create 95% confidence bands by removing the top 2.5% and bottom 2.5% of the calculations at each angle

Standard Chi2 minimization

Standard Chi2 minimization

Chi2 minimization

Previously: Uncorrelated Model

- Data and residuals are normally distributed $\left[d_{1}, \ldots, d_{p}\right]^{T} \sim \mathcal{N}(\mu, \Sigma)$
$\left[m\left(\mathbf{x} ; \theta_{1}\right)-d_{1}, \ldots, m\left(\mathbf{x} ; \theta_{p}\right)-d_{p}\right]^{T} \sim \mathcal{N}(0, \Sigma)$
- With covariance matrix
$\Sigma_{i i}=\sigma_{i}^{2}$
- Leads to the minimization function

$$
\chi^{2}=\sum_{i=1}^{n}\left(\frac{m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}}{\sigma_{i}}\right)^{2}
$$

Instead: For a Correlated Model

- Model is also normally distributed

$$
\left[m\left(\mathbf{x} ; \theta_{1}\right), \ldots, m\left(\mathbf{x} ; \theta_{p}\right)\right]^{T} \sim \mathcal{N}\left(\mu, \mathbb{C}_{m}\right)
$$

- Residuals then have the distribution

$$
\left[m\left(\mathbf{x} ; \theta_{1}\right)-d_{1}, \ldots, m\left(\mathbf{x} ; \theta_{p}\right)-d_{p}\right]^{T} \sim \mathcal{N}\left(0, \mathbb{C}_{m}+\Sigma\right)
$$

- With covariance matrix

$$
\mathbb{C}_{m}+\Sigma
$$

- Leads to the minimization function

$$
\begin{aligned}
\chi^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(m\left(\mathbf{x} ; \theta_{i}\right)-d_{i}\right)\left(m\left(\mathbf{x} ; \theta_{j}\right)-d_{j}\right) \\
W & =\left(\mathbb{C}_{m}+\Sigma\right)^{-1}
\end{aligned}
$$

Chi2 minimization: elastic scattering

Chi2 minimization: transfer predictions

${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})^{90} \mathrm{Zr}$ at 23 MeV

Chi2 minimization: systematics

Reaction	$\mathrm{E}(\mathrm{MeV})$	Width(DWBA) \%	Width(ADWA) \%
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	19.3	8.2571	11.7164
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$	22.7	22.94803	19.00016
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{n})$	19.018	22.22602	11.84450
${ }^{116} \mathrm{Sn}(\mathrm{d}, \mathrm{p})$	46.0	33.68678	9.692527
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$	32.9	36.5096	24.00519

Limitations of the frequentist approach

Philosophical aspects:

- Probability as frequency: number of events over a total number of trails
- A 95\% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.
- There is no way to include UQ on events that cannot be repeated (e.g. how likely is it that I will be run over by a car walking back to trento?).

Practical aspects:

- Problem with local minima versus the global minimum
- Inclusion of prior knowledge comes through ranges allowed for parameters
- potential for introducing biases
- What is the correct Chi2 function that includes the correct correlations in the theoretical model?

Comparing frequentist and Bayesian

- Probability as frequency
- A 95\% confidence band means that when repeating the measurement many times, 95% of the times the data should fall within the band.

Practical aspects:

- local minima
- ranges allowed for parameters potential for introducing biases
- correlations in the theoretical model?
- Probability as degree of belief
- Posterior distribution updates our degree of belief on the model, in light of the data
- A 95\% confidence band means, given the data, what are the parameter ranges of the model for a 95% degree of belief.
Practical aspects:
- Markov Chain Monte Carlo (MCMC) spans full space and is fully automated
- Inclusion of prior (no biases)
- Correlations automatically included
- Computationally more expensive

Bayes' theorem

$P($ green,red $)=5 / 9 \times 4 / 9$
$P($ red,green $)=4 / 9 \times 5 / 9$
$\mathrm{P}($ green, red $)=\mathrm{P}($ red, green $)$

Bayesian statistics

Thomas Bayes (1701-1761)

Bayes' Theorem

$P(\mathcal{H} \mid \mathcal{D})=$
$\frac{P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})}{P(\mathcal{D})}$
Posterior - probability that the model/parameters are correct after seeing the data

Prior - what is known about the model/ parameters before seeing the data

Likelihood - how well the model/parameters describe the data

Evidence - marginal distribution of the data given the likelihood and the prior

Markov Chain Monte Carlo (MCMC) $p\left(H_{i}\right) p\left(D \mid H_{i}\right)$

Randomly choose new parameters

$$
p\left(H_{f}\right) p\left(D \mid H_{f}\right)
$$

$$
R<\frac{p\left(H_{f}\right) p\left(D \mid H_{f}\right)}{p\left(H_{i}\right) p\left(D \mid H_{i}\right)}
$$

${ }^{90} \mathrm{Zr}(\mathrm{n}, \mathrm{n})^{90} \mathrm{Zr}$ at 24 MeV

Bayesian: prior dependence

$$
p(H) \propto \prod_{i=1}^{N_{p}} \exp \left[\frac{\left(x^{i}-x_{0}^{i}\right)^{2}}{\left(x_{0}^{i}\right)^{2}}\right]
$$

Types of Priors:

Wide (100\% of original mean)
Medium (50\% of original mean)
Narrow (10\% of original mean)
Wide (100\% of original mean)
Medium (50\% of original mean)
Narrow (10\% of original mean)
Wide (100\% of original mean)
Medium (50\% of original mean)
Narrow (10\% of original mean)

Bayesian: prior dependence

Types of Priors:
Wide (100% of original mean)
Medium (50\% of original mean)
Narrow (10\% of original mean)

Results independent of prior.
Data dominates over the prior.

Bayesian: optical potential

Uncorrelated Chi2 Correlated Chi2 $\mathrm{V}=50.6 \mathrm{MeV}$ $\mathrm{r}=1.18 \mathrm{fm}$ $\mathrm{a}=0.63 \mathrm{fm}$ Ws $=3.3 \mathrm{MeV}$
Rs $=1.06 \mathrm{fm}$ as $=0.80 \mathrm{fm}$ $\mathrm{W}=0.6 \mathrm{fm}$ $\mathrm{rw}=1.52 \mathrm{fm}$ $\mathrm{aw}=0.57 \mathrm{fm}$
$\mathrm{V}=51.9 \mathrm{MeV}$ $\mathrm{r}=1.16 \mathrm{fm}$ $\mathrm{a}=0.67 \mathrm{fm}$ Ws $=4.1 \mathrm{MeV}$ $\mathrm{Rs}=1.28 \mathrm{fm}$ as $=0.63 \mathrm{fm}$ $\mathrm{W}=0.57 \mathrm{fm}$ $\mathrm{rw}=1.27 \mathrm{fm}$ $\mathrm{aw}=0.71 \mathrm{fm}$

Bayesian: elastic scattering

Bayesian: transfer predictions

${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})^{90} \mathrm{Zr}$ at 24 MeV

Systematics with Bayesian

Reaction	Theory	$\theta(\mathrm{deg})$	Peak $^{*}(\mathrm{mb} / \mathrm{sr})$	SF	$\varepsilon_{95}(\%)$	$\varepsilon_{68}(\%)$
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	ADWA10	6	34.09	1.07	35.76	16.47
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	ADWA5	6	33.38	1.09	24.24	11.53
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	DWBA10	3	41.56	1.02	47.93	22.57
${ }^{48} \mathrm{Ca}(\mathrm{d}, \mathrm{p})$	DWBA5	4	40.73	1.02	42.03	22.36
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{n})$	ADWA10	31	2.16	-	44.44	17.59
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{n})$	ADWA5	31	2.13	-	20.19	9.91
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{n})$	DWBA10	31	3.04	-	38.82	21.52
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{n})$	DWBA5	30	3.15	-	26.35	13.29
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$	ADWA10	14	16.63	0.74	47.62	21.95
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$	ADWA5	14	17.94	0.69	30.88	14.99
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$	DWBA10	16	17.09	0.72	58.86	29.02
${ }^{90} \mathrm{Zr}(\mathrm{d}, \mathrm{p})$	DWBA5	16	17.41	0.71	30.61	14.26
${ }^{116} \mathrm{Sn}(\mathrm{d}, \mathrm{p})$	ADWA10	1	4.64	-	121.77	48.31
${ }^{116} \mathrm{Sn}(\mathrm{d}, \mathrm{p})$	ADWA5	1	5.93	-	101.52	55.12
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$	ADWA10	11	13.32	-	37.84	18.95
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$	ADWA5	14	13.97	-	25.48	11.42
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$	DWBA10	9	7.44	-	72.72	43.84
${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$	DWBA5	7	8.38	-	63.01	30.08

Conclusions

- Used elastic scattering to constrain OP and determine confidence bands on predicted transfer cross sections: compared the frequentist approach with Bayesian approach.
- Chi2 minimization: optical potentials obtained with correlated chi2 differ from uncorrelated chi2 and the correlated chi2 result in much wider confidence bands.
- Significant difference between DWBA and ADWA but uncertainty is still too large for data to discriminate between one or the other.

Conclusions

- Used elastic scattering to constrain OP and determine confidence bands on predicted transfer cross sections: compared the frequentist approach with Bayesian approach.
- Developed the Bayesian machinery to explore uncertainty quantification in reactions (including the Markov Chain Monte Carlo):
- Results are independent of the prior - driven by data
- Bayesian approach provides a picture closer to the correlated chi2 approach, but suggests correlations are more complex.
- Reducing errors bars from 10% to 5% produces a confidence band at most 30\% narrower.

Outlook

- Parametrical uncertainties: we constrained all distorted waves in the problem. Still missing bound states - constrain mean field or ANC with other observables
- Diversify the data - currently just elastic angular distributions
- Include reaction/total cross sections, polarization data, other channels
- Principal component analysis to determine information content of data
- Model comparison and model mixing

Outlook

- Importance of explicit inclusion of nonlocality calls for new global nonlocal potential
- Initial work on $\mathrm{n}+\mathrm{A}$ and $\mathrm{p}+\mathrm{A}$ demonstrates that, when including a Gaussian nonlocality, elastic scattering data still calls for an energy dependence of the interaction.
- Bayesian techniques provide an avenue for a comprehensive study

Thank you for your attention!

In collaboration with:
Amy Lovell, Garrett King (MSU) Stephan Wild and Jason Sarich (ANL)

Supported by: NNSA-DOE, NSF

