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Reaction efforts at MSU Microscopic optical potential  
(Rotureau, FN, et al) 

Non-local global nA and pA potential 
(Bacq, Capel, Jaghoub, Lovell, FN) 

Charge-exchange 
(Poxon-Pearson, Potel, FN) 

Faddeev in Coulomb basis with 
separable interactions  
(Hlophe, Lin, CE, AN, FN) 

Nonlocal effects in 
(d,p) inclusive  
(Potel, Li, FN) 
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What is the nuclear physics problem: 
how certain are our reaction predictions? 

Deuteron induced 
reactions typically 
treated as a three-

body problem 

Deltuva, PRC91, 024607 (2015) 

A(d,p)B 



What is the UQ problem: 

We develop a hypothesis (model) 
 
We confront it with reality (data) 
 
 
How good is the model? 



What is the UQ problem: 

We develop a hypothesis (model) 
 
We confront it with reality (data) 

  Introducing a function, e.g. 
 
How good is the model? 

DWBA or ADWA

95% confidence bands

Constrains on the model



What is the model? 

Exact T-matrix for A(d,p)B in POST from: 
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Take first term of Born series:

DWBA 

deuteron elastic component
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What is the input from reality? 

deuteron elastic data 
(entrance channel)

proton elastic data 
(exit channel)

DWBA 



What is the model? 

Exact T-matrix for A(d,p)B in POST from: 
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Adiabatic wave approximation:

ADWA 

finite range 
adiabatic 

approximation 3B wave function expanded in 
Weinberg states 

Typically, only keep the first 
Weinberg State 

) 

Johnson and Tandy, NPA1974 



What is the input from reality? 

neutron and proton elastic data 
(entrance channel)

proton elastic data 
(exit channel)

AWBA 

) 



What are the parameters of the model? 
Optical potentials (assumed local to reduce computational time)

Parameters: 
Volume real V r a 
Volume imaginary W rW aW 
Surface imaginary Vs rs as
Spin-orbit real Vs rs as
Spin-orbit imaginary Vs rs as
Coulomb rc

VC 

WS 

V 

r (fm) 



Outline 

1.  Using uncorrelated chi2 function 
2.  Using correlated chi2 function 
3.  Using Bayes’ Theorem 
4.  Conclusions 
5.  Outlook 



Standard Chi2 minimization 
• Have n observable pairs (di,θi) that are linked by a true function, µ(θi), such that: 

•  In not knowing the true function, we create a model, m(x,θi), to describe the data 

•  In fitting the model to the observables, the goal is to minimize the residuals 

•  For uncorrelated observables 

Minimizing the residuals 

Best fit set of parameters 



Standard Chi2 minimization 

48Ca(p,p)48Ca at 12.0 MeV 

V (MeV) 

Ws (MeV) 
W

s 
(M

eV
) 

as
 (M

eV
) 



Standard Chi2 minimization 

48Ca(p,p)48Ca at 12 MeV 

48Ca(n,n)48Ca at 12 MeV 

48Ca(p,p)48Ca at 23 MeV 
48Ca(d,p)49Ca at 19.3 MeV 



Chi2 minimization 

•  Data	and	residuals	are	normally	distributed	

•  With	covariance	matrix	

•  Leads	to	the	minimization	function	

• Model is also normally distributed 

• Residuals then have the distribution 

• With covariance matrix 

•  Leads to the minimization function 

Previously:		Uncorrelated	Model	 Instead:		For	a	Correlated	Model	



Chi2 minimization: elastic scattering 

90Zr(p,p)90Zr at 12.0 MeV 

90Zr(n,n)90Zr at 10.0 MeV 

90Zr(p,p)90Zr at 23 MeV 

90Zr(d,d)90Zr at 23 MeV 



Chi2 minimization: transfer predictions 
90Zr(d,p)90Zr at 23 MeV 



Chi2 minimization: systematics 

Width(ADWA) %Width(DWBA) %



Limitations of the frequentist approach 
 
Philosophical aspects: 

•  Probability as frequency: number of events over a total number of trails 

•  A 95% confidence band means that when repeating the measurement 
many times, 95% of the times the data should fall within the band.  

•  There is no way to include UQ on events that cannot be repeated  (e.g. 
how likely is it that I will be run over by a car walking back to trento?). 

 

Practical aspects: 

•  Problem with local minima versus the global minimum 

•  Inclusion of prior knowledge comes through ranges allowed for parameters 
– potential for introducing biases 

•  What is the correct Chi2 function that includes the correct correlations in 
the theoretical model? 



Comparing frequentist and Bayesian 
•  Probability as frequency  

•  A 95% confidence band means 
that when repeating the 
measurement many times, 95% of 
the times the data should fall 
within the band.  

 

Practical aspects: 

•  local minima  

•  ranges allowed for parameters – 
potential for introducing biases 

•  correlations in the theoretical 
model? 

•  Probability as degree of belief  
•  Posterior distribution updates our degree of 

belief on the model, in light of the data 

•  A 95% confidence band means, given 
the data, what are the parameter ranges 
of the model for a 95% degree of belief. 

Practical aspects: 

•  Markov Chain Monte Carlo (MCMC) spans 
full space and is fully automated 

•  Inclusion of prior (no biases) 

•  Correlations automatically included 

•  Computationally more expensive 



Bayes’ theorem 

P(green,red)= 5/9 x 4/9

P(red,green)= 4/9 x 5/9

P(green,red)=P(red,green)



Bayesian statistics 

Bayes’	Theorem	

Posterior	–	probability	that	the	model/parameters	
are	correct	after	seeing	the	data	

Prior	–	what	is	known	about	the	model/
parameters	before	seeing	the	data	

Likelihood	–	how	well	the	model/parameters	
describe	the	data	

Evidence	–	marginal	distribution	of	the	
data	given	the	likelihood	and	the	prior	

Markov Chain Monte Carlo (MCMC) 

Randomly choose 
new parameters 

Thomas Bayes (1701–1761) 



Bayesian: prior dependence 

90Zr(n,n)90Zr at 24 MeV 

Types of Priors: 
Wide (100% of original mean) 

Medium (50% of original mean) 
Narrow (10% of original mean) 



Bayesian: prior dependence 
90Zr(n,n)90Zr at 24 MeV 

Types of Priors: 
Wide (100% of original mean) 
Medium (50% of original mean) 
Narrow (10% of original mean) 

Results independent of prior. 
Data dominates over the prior.



Bayesian: optical potential 90Zr(n,n)90Zr at 10 MeV 

Correlated Chi2 
V=51.9 MeV 
r=1.16 fm 
a=0.67 fm 
Ws=4.1 MeV 
Rs=1.28 fm 
as=0.63 fm 
W=0.57 fm 
rw=1.27 fm 
aw=0.71 fm 

Uncorrelated Chi2 
V=50.6 MeV 
r=1.18 fm 
a=0.63 fm 
Ws=3.3 MeV 
Rs=1.06 fm 
as=0.80 fm 
W=0.6 fm 
rw=1.52 fm 
aw=0.57 fm 



Bayesian: elastic scattering 

90Zr(n,n)90Zr 10 MeV 



Bayesian: transfer predictions 

90Zr(d,p)90Zr at 24 MeV 



Systematics with Bayesian 



Conclusions 

•  Chi2 minimization: optical potentials obtained with correlated chi2 differ from 
uncorrelated chi2 and the correlated chi2 result in much wider confidence 
bands. 

•  Significant difference between DWBA and ADWA but uncertainty is still too 
large for data to discriminate between one or the other. 

•  Used elastic scattering to constrain OP and determine confidence bands on 
predicted transfer cross sections: compared the frequentist approach with 
Bayesian approach. 



Conclusions 

•  Developed the Bayesian machinery to explore uncertainty quantification in 
reactions (including the Markov Chain Monte Carlo): 
•  Results are independent of the prior – driven by data 
•  Bayesian approach provides a picture closer to the correlated chi2 

approach, but suggests correlations are more complex. 

•  Reducing errors bars from 10% to 5% produces a confidence band at most 
30% narrower. 

•  Used elastic scattering to constrain OP and determine confidence bands on 
predicted transfer cross sections: compared the frequentist approach with 
Bayesian approach. 



Outlook 

•  Diversify the data – currently just elastic angular distributions 
•  Include reaction/total cross sections, polarization data, other channels 
•  Principal component analysis to determine information content of data 

•  Model comparison and model mixing 

•  Parametrical uncertainties: we constrained all distorted waves in the 
problem. Still missing bound states – constrain mean field or ANC with 
other observables 



Outlook 

•  Initial work on n+A and p+A demonstrates that, when including a 
Gaussian nonlocality, elastic scattering data still calls for an energy 
dependence of the interaction. 

•  Bayesian techniques provide an avenue for a comprehensive study 

•  Importance of explicit inclusion of nonlocality calls for new global nonlocal 
potential 
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