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Importance Nucleons are composite objects. The nuclear 
interaction is complex by nature. 

Chiral effective field theory offer a consistent
framework to organize the interaction 
between nucleons.

Constrained to provide an accurate description of 
the A=2 and A=3 systems.

Predictions for nuclear structure and dynamic 
(A>3).

• Yet uncompleted… 
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Importance

Constrained to provide an accurate description of 
the A=2, A=3 and A=4 or A>3 systems?

Predictions for nuclear structure and dynamic 
(A>3).

• Yet uncompleted… 

B. D. Carlsson et. al. 
PRX6 (2016)

E. Epelbaum, et al.
PRL115 (2015) 
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Bare potential

𝐻𝜆 = 𝑈𝜆𝐻𝑈𝜆
†

𝑑𝐻𝜆

𝑑𝜆
= −

4

𝜆5
𝜂 𝜆 , 𝐻𝜆

𝜂 𝜆 =
𝑑𝑈𝜆

𝑑𝜆
𝑈𝜆

†

In configuration interaction 
methods we need to soften 
interaction to address the hard 
core. We use the Similarity-
Renormalization-Group (SRG) 
method.

Evolved potentialEvolution with flow 

parameter l

Preserves the physics

Decouples high and low 
momentum

Induces many-body 
forces

Unitary 
transformation

Flow parameter
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E. D. Jurgenson, P. Navrátil, R. J. Furnstahl PRL103 (2009); PRC83 (2011)…

Bare potential Evolved potentialEvolution with flow 

parameter l

Preserves the physics

Decouples high and low 
momentum

Induces many-body 
forces

SRG 
NN+3N

Bare 
NN+3N



6

Evolution with flow 

parameter l

𝐻𝜆 𝜃 = 𝑈𝜆𝐻 𝜃 𝑈𝜆
𝑇

𝑑𝐻𝜆 𝜃

𝑑𝜆
= −

4

𝜆5 𝜂 𝜆 , 𝐻𝜆 𝜃

𝜂 𝜆 =
𝑑𝑈𝜆

𝑑𝜆
𝑈𝜆

𝑇

Similarity
Transformation

Consistent evolution of 
the imaginary part

Effective techniques applied to the 
non-Hermitian world.
Maybe a technical way to study 
shape and non-localities in optical 
potential ? “R. Lazauskas” 
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The complex scaling and the resonance states

Aguilar-Balslev-Combes theorem: the resonant states of the original Hamiltonian are invariant and
the non-resonant scattering states are rotated and distributed on a 2θ ray that cuts the complex
energy plane with a corresponding threshold being the rotation point.

Complex 

scaling

Half-lifeEnergy

 𝐻 𝑟, 𝜃 𝜓 𝑟, 𝜃 = 𝐸 + 𝑖Γ 𝜓 𝑟, 𝜃

 𝐻 𝜃 = 𝑒−2𝑖𝜃  𝑇 +  𝑉 𝑟𝑒 𝑖𝜃

 𝐻 𝑟 =  𝑈 𝜃  𝐻 𝑟  𝑈−1 𝜃
 𝐻 𝑟 =  𝑇 +  𝑉 𝑟

Kruppa et al. PRC89 (2014)
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The complex scaling and the resonance states

Kruppa et al. PRC89 (2014)

Complex 

scaling

 𝐻 𝜃 = 𝑒−2𝑖𝜃  𝑇 +  𝑉 𝑟𝑒 𝑖𝜃

 𝐻 𝑟 =  𝑈 𝜃  𝐻 𝑟  𝑈−1 𝜃
 𝐻 𝑟 =  𝑇 +  𝑉 𝑟

Boundary limit problem Bound state problem

Spatially extended 
but falls off 
exponentially

Known 
asymptotic

𝑈 𝜃 𝐻(𝑟)𝑈 𝜃 −1

𝜓 𝑟, 𝜃 ~
∞

𝑒−𝒌𝒓𝑠𝑖𝑛 𝜃
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B.R. Barrett, P. Navrátil, J.P. Vary, J.P. Progr. Part. Nucl. Phys. 69 (2013).

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Ψ𝑁𝐶𝑆𝑀
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

No-Core Shell Model

ℏΩ

N
m

a
x

≈ 𝑒−𝛼𝑟2

Ψ𝑁𝐶𝑆𝑀𝐶
(𝐴)

=  

𝜆

𝑐𝜆  𝐴𝜆𝐽𝜋𝑇
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S. Quaglioni, P. Navrátil PRL101 (2008).

Can address bound 
and low-lying 
resonances (short 
range correlations)

NCSM/RGM
Cluster formalism for 

elastic/inelastic

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Ψ𝑁𝐶𝑆𝑀
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

Ψ𝑅𝐺𝑀
(𝐴)

=  

𝑣

 𝑑 𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣  𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

 𝑟𝐴−𝑎,𝑎

𝜓𝛼1

(𝐴−𝑎)
𝜓𝛼2

(𝑎)
𝛿( 𝑟 −  𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎
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Ψ𝑁𝐶𝑆𝑀𝐶
(𝐴)

=  

𝜆

𝑐𝜆  𝐴𝜆𝐽𝜋𝑇 +  

𝑣

 𝑑  𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣 𝑟
(𝐴−𝑎,𝑎)

S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Design to account for 
scattering states (best 
for long range 
correlations)

• The many body quantum problem is best described by the
superposition of both type of wave functions

NCSMC

Ψ𝑁𝐶𝑆𝑀
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴

Ψ𝑅𝐺𝑀
(𝐴)

=  

𝑣

 𝑑 𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣  𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

 𝑟𝐴−𝑎,𝑎

𝜓𝛼1

(𝐴−𝑎)
𝜓𝛼2

(𝑎)
𝛿( 𝑟 −  𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎
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S. Quaglioni and C. Romero-Redondo et al. PRC88 (2013); PRL113 (2014)

• Methods develop in this presentation to solve the many body
problem

Can address bound 
and low-lying 
resonances (short 
range correlations)

Design to account for 
scattering states (best 
for long range 
correlations)

Ψ𝑅𝐺𝑀
(𝐴)

=  

𝑣

 𝑑 𝑟 𝑔𝑣  𝑟  𝐴𝑣   Φ
𝑣  𝑟
(𝐴−𝑎,𝑎)

Channel 
basis

Relative wave 
function (unknown) Antisymmetrizer

Cluster expansion 
technique

 𝑟𝐴−𝑎,𝑎

𝜓𝛼1

(𝐴−𝑎)
𝜓𝛼2

(𝑎)
𝛿( 𝑟 −  𝑟𝐴−𝑎,𝑎)

(𝐴 − 𝑎)
𝑎

+  

𝑣

 𝑑  𝑥𝑑  𝑦𝑥2𝑦2𝐺𝑣  𝑥,  𝑦  𝐴𝑣   Φ𝑣  𝑥𝑦
(𝐴−𝑎1−𝑎2,𝑎1,𝑎2)

Cluster expansion 
technique

𝜓𝛼1

(𝐴−𝑎1−𝑎2)
𝜓𝛼2

(𝑎1)
𝜓𝛼3

(𝑎2)
𝛿( 𝑟 −  𝑟𝑎1,𝑎2

) ×

𝛿( 𝑟 −  𝑟𝐴−𝑎12,𝑎12
)

 𝑟𝐴−𝑎12,𝑎12

𝐴 − 𝑎1 − 𝑎2

𝑎1

 𝑟𝑎1,𝑎2

𝑎2

• Adding three-cluster degrees of freedom:

…
C. Romero-Redondo, et al. arXiv:1606.00066

Ψ𝑁𝐶𝑆𝑀
(𝐴)

=   𝐴𝜆𝐽𝜋𝑇 =  

𝛼

𝑐𝛼   𝐴𝛼𝑗𝑧
𝜋𝑡𝑧

A-body harmonic 
oscillator states

Mixing 
coefficients(unknown) Second quantization

  𝐴𝜆𝐽𝜋𝑇 𝑆𝐷𝜙00 𝑅𝑐.𝑚.
𝐴
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S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

𝐻𝑁𝐶𝑆𝑀 ℎ
ℎ 𝐻𝑅𝐺𝑀

𝑐
𝛾 = 𝐸

1𝑁𝐶𝑆𝑀 𝑔
𝑔 𝑁𝑅𝐺𝑀

𝐻𝒜
 𝑟 (𝑎 = 1)

(𝐴 − 1)

𝒜𝐻𝒜

(𝐴 − 1)

(𝑎 = 1)  𝑟 𝑟′ (𝑎′ = 1)

(𝐴 − 1)

𝒜
 𝑟 (𝑎 = 1)

(𝐴 − 1)

𝐸𝜆 𝛿𝜆𝜆′

Scattering matrix (and observables) from matching solutions to 
known asymptotic with microscopic R-matrix on Lagrange mesh.
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S. Baroni, P. Navrátil and S. Quaglioni PRL110 (2013); PRC93 (2013)

𝐻𝑁𝐶𝑆𝑀 ℎ
ℎ 𝐻𝑅𝐺𝑀

𝑐
𝛾 = 𝐸

1𝑁𝐶𝑆𝑀 𝑔
𝑔 𝑁𝑅𝐺𝑀

𝐻𝒜
 𝑟 (𝑎 = 1)

(𝐴 − 1)

𝐸𝜆 𝛿𝜆𝜆′

Long-range part of the kernels 
is computed on the mesh. 
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nucleon-nucleus formalism

Direct potential:

Exchange potential:

-

~1Go

~7.103 two-body states

Φ
𝑣′𝑟′
𝐽𝜋𝑇  𝐴𝑣′𝑉𝑁𝑁𝑁  𝐴𝑣 Φ𝑣 𝑟

𝐽𝜋𝑇 = 𝑉𝑁𝑁𝑁 1 −  𝑖=1
𝐴−1  𝑃𝑖𝐴

 𝑟′
(𝑎′ = 1)

(𝐴 − 1) (𝐴 − 1)

(𝑎 = 1)  𝑟

∝
SD

𝐴 − 𝑎𝛼′1𝐼′1
𝜋′1𝑇′1 𝑎†𝑎†𝑎†𝑎𝑎𝑎 𝐴 − 𝑎𝛼1𝐼1

𝜋1𝑇1 SD

∝
SD

𝐴 − 𝑎𝛼′1𝐼′1
𝜋′1𝑇′1 𝑎†𝑎†𝑎𝑎 𝐴 − 𝑎𝛼1𝐼1

𝜋1𝑇1 SD
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𝐶 − 𝐸𝐼  𝑋 = 𝑄(𝐵)

Simple for binary reacting system, 
more involved for neutral ternary 

system and extremely challenging for 
charged breakup !

𝑢𝑐(𝑟 > 𝑎) is a known asymptotic𝑢𝑐 𝑟 =  
𝑛
𝐴𝑐𝑛𝑓𝑛(𝑟)

NCSMC can be cast as Bloch-Schrödinger equation:

And solved using R-matrix, which in the eigen basis of 
𝐶 − 𝐸𝐼 reads:

𝑅𝑐𝑐′ =  

𝜆

𝛾𝜆𝑐𝛾𝜆𝑐′

𝐸𝜆 − 𝐸

0 𝑎 𝑟

External region
V =VCoul

Internal region
V =VN +VCoul

Decomposition on a Lagrange mesh.
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• Long-range coulomb problem is 
avoided.

• “Simple” to solve.
• Useful for charged breakup.

External regionInternal region
V =VN +VCoul V =VCoul

𝑢𝑐(𝑟 > 𝑎, 𝜃 ≠ 0) is ~0𝑢𝑐 𝑟, 𝜃 =  
𝑛
𝐴𝑐𝑛𝑓𝑛(𝑟, θ)

Complex scaling brings us back to Hilbert space; NCSMC will be 
solved with (two-body) Schrödinger equation

𝐻(𝜃) − 𝐸𝐼 𝜓 Θ = 0

i.e. no inhomogeneous term. Scattering observables need to 
be derived using integral relations like Green’s theorem 

𝐴 𝒌 =
𝑚

ℏ
𝐹in 𝒌𝑒𝒊𝜽 𝑉(𝜃) 𝜓(𝒌, 𝜃) − 𝜓(𝒌, 𝜃) 𝑉(𝜃) 𝐹in 𝒌𝑒𝒊𝜽

0 𝑎 𝑟
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s-shell

G. Hupin, J. Langhammer et al. PRC88 (2013); G. Hupin, S. Quaglioni and P. Navrátil, Physica Scripta

Special Edition - Nobel Prize '75 anniversary

• The convergence pattern much better 
with NCSMC

• The experimental phase-shifts are well 
reproduced.

Convergence with respect to the # of 4He low-lying states

n-4He scattering phase-shifts for NN+3N potential with l=2.0 fm-1.  
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• NCSMC outperforms the 

binary cluster model for all 

resonant waves.

• Good agreement of NCSMC 

with experiment.

Comparison between 
NCSM/RGM (i.e. a binary 
cluster approximation) and 
NCSMC

Two scenarii of nuclear Hamiltonians
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• Good agreement between 

the two methods.

Benchmark: scattering phase shifts NCSMC/FY

Diamonds from Faddeev-Yakubovsky
Courtesy of R. Lazauskas
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p-4He differential cross-section compared to 
experiment

p-4He differential cross-section for NN+3N.

G. Hupin, S. Quaglioni and P. Navrátil, PRC90 (2014)

Impurities, e.g. 4He

For the non-destructive 
physical, electrical and 
chemical characterization of 
materials, nuclear physics is 
routinely used for energies 
above the Rutherford 
scattering.

p-4He scattering
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0p3/2

0p1/2

Z=4 N=7

1s1/2

0s1/2

Single particle interpretation 
using nuclear shell model 

In a shell model picture, the g.s. expected to be Jπ =
 1 2−.

In reality, 11Be g.s. is Jπ =  1 2+-- parity inversion.

Very weakly bound: Eth=-0.5 MeV Halo state --
dominated by n-10Be in a S-wave.

The 1/2- state also bound -- only by 180 keV.

Can we describe 11Be in ab initio calculations?

Continuum must be included.

Does the 3N interaction play a role in the parity 
inversion? 
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NCSMC calculations including chiral 3N (N3LO NN+N2LO 3NF400)

10Be: 0+, 2+, 2+ NCSM eigenstates

11Be: ≥6 (=-1) and ≥3 (=1) NCSM eigenstates

A. Calci et al. PRL117 (2016)

Nmax

+

Continuum effects
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A. Calci et al. PRL117 (2016)

Parity inversion
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G. Hupin, J. Langhammer et al., PRC88 (2013); P. Navrátil, S. Quaglioni, G. Hupin et al., 

Phys. Scri.91 (2016) Celebrating the 1975 Nobel Prize

• The 3N interactions influence mostly 

the P waves.

• The largest splitting between P

waves is obtained with NN+3N.

n-4He scattering phase shifts

3N vs

NN “bare”

NN+3N
NN+3N-induced
expt.

Some of the shortcomings of the nuclear 
interaction can already be probed in p-shell 
nuclei through reactions.
[NN p-waves are not perfectly reproduced 
by N2LOsat ]
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102

2

5

∂
σ

∂
Ω
(θ

c
.m

.
)[
m
b

/
sr
]

0 45 90 135 180

θc.m . [deg]

N N + N N N
N N + N N N -ind
expt .

n- 4He (g.s.)

Differential cross-section at Eneutron =0.84
MeV between NN+3N-ind and NN+3N.

Comparison of the elastic cross-section 
between NN and NN+3N with 4He (g.s.)

n-4He elastic cross-section for NN+3N-induced,
NN+3N potentials compared to expt. and ENDF
evaluation.

• We obtained a better agreement with 
data when using NN+3N.

• The 3N force is constitutive to the 
reproduction of the 3/2

+ resonance.

NN+3N

NN



28

G. Hupin, S. Quaglioni and P. Navrátil, PRL114 (2015)

• Best results in a decent model space 
(Nmax=11).

• The 3D3 resonance is reproduced but 
the 3D2 and 3D1 resonance positions 
are underestimated.

• The 3N force corrects the D-wave 
resonance positions by increasing the 
spin-orbit splitting.

• There is room for improvements.

Comparison of the d-a phase-shifts with 
different interactions (Nmax=11)

d-4He(g.s.) scattering phase-shifts for NN-only, 
NN+3N-induced, NN+3N-full potential with 
l=2.0 fm-1.  

d-4He 

scattering
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4He(d,4He)d differential cross section at 
φ=30⁰

Comparison to experiment of the d-4He elastic
recoil differential cross section of NCSMC with
NN+3N potential at l=2.0 fm-1.

The 3+ resonance is missed. As 
its width is very narrow, it has 
little impact and the bulk of 
the cross-section.

Comparison between potentials
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• The S-factor is globally well reproduced.
• The accurate reproduction (of the order of

keV) of the resonance position/width is
essential.

• Shape of a the angular distribution agrees
with recent evaluation.

S-factor: computed and data Angular distribution at 𝜃 = 0°

<10 keV

Ab initio

Adjusted to  3 2
+

resonance centroid

M. Drosg and N. Otuka, INDC(AUS)-0019 (2015). 
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S-factor: NCSMC vs binary cluster

no 5He structure

• Importance of structure of neighboring
resonances is magnified in transfer
reactions.

Structure of the 5He  3 2
+

resonance

s-shell

1p1h 
excitation

pheno

𝟓He 𝟒𝑺  𝟑 𝟐 𝑬𝒓 (𝐤𝐞𝐕) 𝚪𝒓 (𝐤𝐞𝐕)

Cluster basis (D g.s. 
only)

105 1100

Cluster basis 120 570

NCSMC (D g.s. only) 65 160

NCSMC 55 110

NCSMC-pheno 50 98

R-matrix 48 25
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Angular distribution relative to integral

• Influence of p- and d-waves in the slope

and bump of  𝜕𝜎rel
𝜕Ω, respectively.

• Overall good reproduction of data:
collision matrix is expected to be accurate.

Angular distribution relative to integral

P. Bém et al., Few-Body Syst22, 77 (1997).
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NN+3N
NN+3N-induced
expt.

• Away from the DT fusion peak, the effects
of low-lying background phase-shifts can
be seen.

• No effects of the adjustment of the  3 2
+

resonance position (i.e. NCSMC≡NCSMC-
pheno).

Differential cross section at 𝐸 > 𝐸
 3 2

+

Data [exfor]

NCSMC

Low-lying p-waves resonances

s-shell

1p1h 
excitation
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• Discretization of 2H is essential for the
reproduction of the S-factor.

• Stable behavior with respect to the
number of 2H pseudo states.

• Converged with Nmax.

Convergence wrt 2H continuum Convergence with Nmax

a g.s.
2H continuum

5He resonances

N
m

ax
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ℏΩ

•  3 2
+

resonance converges the fastest with
ℏ𝜔 = 16 MeV, understood from major
shell splitting.

• n-4He elastic scattering independent of HO
frequency and SRG flow.

Convergence of  3 2
+

resonance n-4He phase shifts

𝑵max
ℏ𝝎=𝟐𝟎 MeV

𝜦𝑺𝑹𝑮=𝟐. 𝟎 fm−𝟏

ℏ𝝎=𝟏𝟔 MeV

𝜦𝑺𝑹𝑮=𝟏. 𝟕 fm−𝟏

7 78.70% 42.29%

9 45.04% 18.85%

11 25.68% 8.41%

13 13.78% -

a g.s.
2H continuum

5He resonances



36

𝜎polar 𝜃 = 𝜎 𝜃 1 +
1

3
𝑝𝑧𝑧𝐴𝑧𝑧 +

3

2
𝑝𝑧𝑝𝑧𝑡𝐶𝑧,𝑧𝑡

Reactant spins are 
prepared in a 
configuration

• Predictions for polarized 3H  𝑑,𝑛 4He
enhancement factor and reaction rate.

• Confirmation of maximum enhancement
(𝛿 = 1.5) scenario.

• Ab initio calculation shows that 𝛿 = 1.38
can be achieved in lab.

Enhancement factor and reaction rate

G. Hupin, S. Quaglioni and P. Navrátil to be submitted
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Angular distribution in different 
polarization scenarios

𝐽 = 1
𝐽𝑧=1

𝐽 =  1 2
𝐽𝑧=  −1 2

Spin tensor properties of the deuteron 
give the angular shape.

(Same as in 3He(  𝑑,𝑝)4He)

Total cross section increased on average no effects Total cross section decreased
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Summary:

Binary cluster states and (elastic, transfer..) reactions with NN and 3N.

Three-cluster bound state and continuum with NN (and 3N).

Reasonable control over model uncertainties.

Challenging for heavier systems.

Reaction observables/complete information on the continuum to 
probe nuclear forces.

Personal questions:

How to use ab initio reactions to test approximations in reaction 
modeling ?

Effective method to study optical potential ?


