Nuclear reactions with relativistic Nuclei - Example: Oxygen isotopes

See also: Marios talk

Recent advances and challenges in the decription of nuclear reactions at the limit of stability, Trento, ECT* 20180305-09

FAI

target

target

Current GSI accelerator facility ...

Going Neutron rich ...

P.G. Hansen, Nature 328 (1987) 476

¹¹Li with "known" structure → initial vs. final state Influence of reaction mechanism → different seed nuclei

Clustering: FMD and AV18/UCOM

ECT* - Haik Simon

Reactions with target recoil detection

Very simple system:

Direct observation of kinematical correlations →

(Cluster) spectroscopic factors ? Clean production: 4n ,⁷H, ...

Experimental Setup (kinematically complete, -2005)

Experimental Setup (initial version of proton recoil detection)

First attempt for an ALADiN/LAND experiment 2001...

ECT* - Haik Simon

R³B/LAND Setup (kinematically complete & recoil detection)

Experimental Setup (less schematic)

Nucleon-Nucleon Cross Section vs Beam Energy

ECT* - Haik Simon

Knockout Reactions vs. Quasi-free Scattering (QFS)

First attempt: 12C(p,2p)

Exclusive measurements of quasi-free proton scattering reactions in inverse and complete kinematics

V. Panin^{a,*}, J.T. Taylor^b, S. Paschalis^a, F. Wamers^{a,c}, Y. Aksyutina^c, H. Alvarez-Pol^d,

Single-Particle Strength

Independent Particle Model (IPM): Nucleons are single particles moving independently in a mean field created by all nucleons.

Reduction factor

 $R = \sigma_{exp} / \sigma_{IPM}$ relative to the IPM!

- 30-40% deviation of the single-particle strength relative to the IPM
- <u>Correlations</u>: not included in the IPM such as short-range and tensor, long-range
- \rightarrow configuration mixing
- \rightarrow high momenta

H. Dickhoff, C. Barbieri Prog. Nucl. Phys. 52, 377 (2004) NIKHEF data: L. Lapikas Nucl. Phys. A553, 297c (1993)

• NIKHEF data is limited to stable nuclei and valence proton states.

(e,e'p) reactions at NIKHEF

Quenching of Single-Particle Strength

 Latest compilation including exotic nuclei from (e,e'p), proton and neutron removal reactions

 Isospin dependency of singleparticle strength in asymmetric systems?

Quenching of single-particle strength in strongly bound states?

 \rightarrow origin unclear

 Nucleon removal reactions with exotic beams at intermediate energies are limited to surface localized reactions

- \rightarrow Reaction model?
- \rightarrow Missing correlations in SM?

Ab-initio Theory: Weak Dependence

C. Barbieri, private communication (July/2016).

Jensen et al. Phys. Rev. Lett. 107, 032501 (2011)

Disagreement with knockout experiments at intermediate energies analyzed with eikonal theory!

Oxygen Isotopic Chain

- Changing of single-particle strength with proton-neutron asymmetry
- Oxygen isotopic chain offers a large variation in isospin
- Systematic study of Oxygen isotopes via quasi-free (p,pn) & (p,2p) reactions

S393 Experiment at R³B/LAND Setup @ GSI

ECT* - Haik Simon

Incoming Beam & Outgoing Fragment Identification

Incoming Beam & Outgoing Fragment Identification

Incoming Beam & Outgoing Fragment Identification

Inclusive Cross Section & Transverse Momentum: ¹⁶O(p,2p)¹⁵N

Partial Cross Sections and Spectroscopic Factors: ¹⁶O(p,2p)¹⁵N

ECT* - Haik Simon

Inclusive Cross Sections for Projectiles ¹³⁻¹⁸O and ²¹⁻²³O

ECT* - Haik Simon

Reduction Factors from (p,2p) Cross Sections

- Weak or no dependence of single-particle strength on the isospin asymmetry
- Discrepancy to composite target results at intermediate energies
- In agreement to ab-initio GF and coupled cluster calculations as well as (e,e'p) data

S393 Experiment (p,pN) N=p,n

PHYSICAL REVIEW C 97, 024311 (2018)

Quasifree (p, pN) scattering of light neutron-rich nuclei near N = 14

ECT* - Haik Simon

(p,pn) similar

Work in progress: understand differences in description

^A X	^{A-1}X	$E_{\rm c}~({\rm MeV})$	I_c^{π}	nlj	C^2S	$\sigma_{\rm sp}({\rm mb})$	$\sigma_{\rm th}({\rm mb})$	$\sigma_{\exp,F/A}(mb)$	$\sigma_{\exp,F/A}/\sigma_{ih}$	$\sigma_{\exp,Kin}(mb)$	$\sigma_{\mathrm{exp,Kin}}/\sigma_{\mathrm{th}}$
						(p, pn)					
		0.0	01	151/2	0.87	15.4					
		3.4	2^{+}_{1}	$0d_{5/2}$	2.27	12,1					
		4.6	0^{+}_{2}	181/2	0.13	15.4*					
²³ 0	22 O	4.8	3+	$0d_{5/2}$	3.37	12.1*	98.8	1		54.0 ± 10.8	0.55 ± 0.11
		5.8	1	$0p_{1/2}$	0.82	10.5					
		6.1	0-	$0p_{1/2}$	0.33	10.4					
		6.5	2^{+}_{2}	0d5/2	0.26	12.1*					
²² O	21O	0.0	5/2+	0d5/2	5.73	11.5	69.0	34.1 ± 2.0	0.49 ± 0.03	39.2 ± 2.3	0.57 ± 0.03
		1.5	1/2+	151/2	0.25	12.6					
		0.0	2-	0d5/2	1.97	12.7					
²¹ N	^{20}N	0.6	0-	151/2	0.16	14.8	72.5	44.8 ± 3.7	0.62 ± 0.05	48.5 ± 4.0	0.67 ± 0.06
		0.9	3-	0d5/2	2.98	12.7*					
		1.1	1-	$1s_{1/2}$	0,49	14.8*					
						(p, 2p)					
²³ 0	22 N	0.0	0-	0.00	0.50	6.3	12.5	-	-	4.93 ± 0.96	0.39 ± 0.08
		0.8	1	0p1/2	1.48	6.3*					
220	21 N	0.0	1/2-	0 p1/2	1.87	6.23	15.8	5.21 ± 0.36	0.32 ± 0.02	6.01 ± 0.41	0.38 ± 0.03
		1.9	3/2-	0 p3/2	0.73	6.0					
21N	²⁰ C	0.0	0+	0p1/2	0.72	6.8	7.0	2.05 ± 0.31	0.29 ± 0.04	2.27 ± 0.34	0.32 ± 0.05
		2.2	2+	0p3/2	0.33	6.5					

PHYSICAL REVIEW C 97, 024311 (2018) All data (p,2p) & (p,pn)Slope differs from knockout data Slopes differ (less) with different reaction theory input Quasifree (p, pN) scattering of light neutron-rich nuclei near N = 14

P. Díaz Fernández,^{1,2,3} H. Alvarez-Pol,^{2,3} R. Crespo,^{4,5} E. Cravo,⁶ L. Atar,⁷ A. Deltuva,⁸ T. Aumann,^{7,9} V. Avdeichikov,¹⁰

Further studies: (p,2pf)

ECT* - Haik Simon

First (p,2pf) @ SAMURAI/RIKEN

R³B/LAND Setup evolves to R³B/NeuLAND Setup + GLAD (kinematically complete)

Starting point 2016

R³B (Status Phase-0 in 2018)

All Infrastructure and magnet installed 2013-2016 Commissioning started

R³B /L3T (Si- Tracker)

On going tests @ Daresbury:

- Full inner L3T layer in working condition
- expected energy threshold of 100 keV in verification (150keV achieved)
- Test bench running, first results
- Tests with alpha-source and, subsequently, cosmic rays
- → Outer layer to be mounted and tested

L3T configuration -inner layer 6 detector ladders -outer layer 12 detector ladders (03-04/18) Double-sided micro-strip Si sensors wire bonded to a dedicated ASIC (RAL: 120'000 channels) + time stamped FPGA based readout

TDR: L3T is a deliverable for the in-kind UK contribution. TDR is not need but R3B collaboration whish the presentation to ECE of an equivalent document including performance evaluation with up-coming tests

Phase-0 experiment status : Expected a functional detector for Q2-3 /2018

R³B /NeuLAND

NeuLAND Phase 0 Ok Q2-2018

- 130 cm active depth
- 2600 channels >40% detector

NeuLAND demonstrator back from RIKEN after participation in 9 experiments, incl. studies of light exotic systems (4 n) up to EOS of heavy tin systems

simulation prediction: reconstruction efficiency of the order of 20% for 3 n, 10 % for 4 n (600 MeV, preliminary)

SAT test of in-house developed **NeuLAND electronics** underway: multichannel frontend electronic card TAMEX for highresolution time and charge measurements

CALIFA start version: Calorimeter in-flight detection for γ -rays and LCP

Start version:

Full detector:

ECT* - Haik Simon

CALIFA : Calorimeter in-flight detection for γ-rays and LCP

- Csl (TI) range between 15-22 cm long
- Packed in groups of four (VM2000 and Carbon fiber)
 - APD collecting area 10x20 mm²

CsI(TI)+LAAPD

LaBr/LaCI+PM

- LaBr 6 cm and LaCl 8 cm long
- Packed in groups (Al cane)
- PM 1.5 " diameter

 Very good ΔE/E ~ 3% @ 662 keV for γ

Good $\Delta E/E \sim 6\%$ @ 1 MeV for g

PID and E determination based on two different intrinsic times of CsI

and 2 % for p up to 320 MeV

up to 700 MeV $\Delta E/E \sim 5\%$

Background rejection

- E determination based on two different time decay of LaBr/LaCl ∆E/E ~ 5%
- Good timing
- Background rejection

Polar angle 7-20⁰

96 units

Comm: Tracking Detectors 2018/19+

Schedule and first experiments

2014 Installation of 20% detectors NeuLAND and CALIFA

2015/17	Construction and installation of detector components
2018	Commissioning of R3B setup (Cave C)
2022	Buildings ready (exp. groundbreaking 2017)
2025	Machines installed and first commissioning
2018-202x	Physics runs at GSI (Cave C) (phase 0)
202x-202x+1	Move to High-Energy Branch building
202x+1 →	Commissioning and first experiments at Super-FRS

GSI Report 2016-1

GSI Heimholtzzentrum für Schwerionenforschung GmbH Member of the Helmholtz Association

Experiments will make use of uniqueness of R³B:

- Reactions at high beam energies up to 1 GeV/nucleon
- Tracking and identification capability even for the heaviest ions
- Multi-neutron tracking capability, high-efficiency calorimeter

First experiments: e.g. (simple beam, partial sys. av.) ⁶He Core vs. halo excitation

S. Bacca et al. PRL 89 (2002) 052502 PRC 69 (2004) 057001

Aksouh, Farouk; Al-Khalili, Jim; Algora, Alejandro; Alkhasov, Georgij; Altstadt, Sebastian; Alvarez, Hector; Atar, Leyla; Audouin, Laurent; Aumann, Thomas; Pellereau, Eric; Martin, Julie-Fiona; Gorbinet, Thomas; Seddon, Dave; Kogimtzis, Mos; Avdeichikov, Vladimir; Barton, Charles; Bayram, Murat; Belier, Gilbert; Bemmerer, Daniel; Michael Bendel; Benlliure, Jose; Bertulani, Carlos; Bhattacharya, Sudeb; Christoph; Calvino, Francisco; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Cederwall, Bo; Chapman, Robert; Alexandre Charpy: Chartier, Marielle: Chatillon, Audrey: Chen, Ruofu: Christophe, Mayri: Chulkoy, Leonid: Coleman-Smith, Patrick: Cortina, Dolores: Crespo, Raquel: Csatlos, Margit; Cullen, David; Czech, Bronislaw; Danilin, Boris; Davinson, Tom; Diaz Fernandez, Paloma; Dillmann, Iris; Dominguez, Beatriz; Ducret, Jean-Eric; Duran, Ignacio; Egelhof, Peter; Elekes, Zoltan; Emling, Hans; Enders, Joachim; Eremin, Vladimir; Ershov, Sergey N.; Ershova, Olga; Eronen, Simo; Estrade, Alfredo; Faestermann, Thomas; Fedorov, Dmitri; Feldmeier, Hans; Le Fevre, Arnaud; Fomichev, Andrey; Forssen, Christian; Freeman, Sean; Freer, Martin; Friese, Juergen; Fynbo, Hans; Gacsi, Zoltan; Garrido, Eduardo; Gasparic, Igor; Gastineau, Bernard; Geissel, Hans; Gelletly, William; Genolini, B.; Gerl, Juergen; Gernhaeuser, Roman; Golovkov, Mikhail; Golubev, Pavel; Grant, Alan; Grigorenko, Leonid: Grosse, Eckart: Gulvas, Janos: Goebel, Kathrin: Gorska, Magdalena: Haas, Oliver Sebastian: Haiduc, Maria: Hasegan, Dumitru: Heftrich, Tania: Heil, Michael; Heine, Marcel; Heinz, Andreas; Ana Henriques; Hoffmann, Jan; Holl, Matthias; Hunyadi, Matyas; Ignatov, Alexander; Ignatyuk, Anatoly V.; Ilie, Cherciu Madalin; Isaak, Johann; Isaksson, Lennart; Jakobsson, Bo; Jensen, Aksel; Johansen, Jacob; Johansson, Hakan; Johnson, Ron; Jonson, Bjoern; Junghans, Arnd; Jurado, Beatriz; Jaehrling, Simon; Kailas, S.; Kalantar, Nasser; Kalliopuska, Juha; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Kezzar, Khalid; Khanzadeev, Alexei: Kissel, Robert: Kisselev, Oleg: Klimkiewicz, Adam; Kmiecik, Maria; Koerper, Daniel; Kojouharov, Ivan; Korsheninnikov, Alexei; Korten, Wolfram; Krasznahorkay, Attila; Kratz, Jens Volker; Kresan, Dima; Anatoli Krivchitch: Kroell, Thorsten: Krupko, Sergey: Kruecken, Reiner: Kulessa, Reinhard: Kurz, Nikolaus: Kuzmin, Eugenii: Labiche, Marc: Langanke, Karl-Heinz; Langer, Christoph; Lapoux, Valerie; Larsson, Kristian; Laurent, Benoit; Lazarus, Ian; Le, Xuan Chung; Leifels, Yvonne; Lemmon, Roy; Lenske, Horst; Lepine-Szily, Alinka; Leray, Sylvie; Letts, Simon: Li. Sonalin: Liang, Xiaoving: Lindberg, Simon; Lindsav, Scott; Litvinov, Yuri; Lukasik, Jerzy; Loeher, Bastian; Mahata, Kripamay; Maj, Adam; Marganiec, Justyna; Meister, Mikael; Mittig, Wolfgang; Movsesyan, Alina; Mutterer, Manfred; Muentz, Christian; Nacher, Enrique; Najafi, Ali; Nakamura, Takashi; Neff, Thomas; Nilsson, Thomas; Nociforo, Chiara; Nolan, Paul; Nolen, Jerry; Nyman, Goran; Obertelli, Alexandre; Obradors, Diego; Ogloblin, Aleksey; Oi, Makito; Palit, Rudrajvoti; Panin, Valerii; Paradela, Carlos; Paschalis, Stefanos; Pawlowski, Piotr: Petri, Marina: Pietralla, Norbert: Pietras, Ben: Pietri, Stephane: Plag, Ralf: Podolvak, Zsolt; Pollacco, Emanuel: Potlog, Mihai: Datta Pramanik, Ushasi: Prasad, Rajeshwari: Fraile Prieto, Luis Mario: Pucknell, Vic; Galaviz -Redondo, Daniel: Regan, Patrick: Reifarth, Rene: Reinhardt, Tobias: Reiter, Peter: Reimund, Fanny; Ricciardi, Maria Valentina; Richter, Achim; Rigollet, Catherine; Riisager, Karsten; Rodin, Alexander; Rossi, Dominic; Roussel-Chomaz, Patricia; Gonzalez Rozas, Yago: Rubio, Berta: Roeder, Marko: Saito, Takehiko: Salsac, Marie-Delphine: Rodriguez Sanchez, Jose Luis: Santosh, Chakraborty: Savaiols, Herve: Savran, Deniz; Scheit, Heiko; Schindler, Fabia; Schmidt, Karl-Heinz; Schmitt, Christelle; Schnorrenberger, Linda; Schrieder, Gerhard; Schrock, Philipp; Sharma, Manoj Kumar; Sherrill, Bradley; Shrivastava, Aradhana: Shulqina, Natalia: Sidorchuk, Sergey: Silva, Joel: Simenel, Cedric: Simon, Haik: Simpson, John: Singh, Pushpendra Pal: Sonnabend, Kerstin: Spohr. Klaus; Stanoiu, Mihai; Stevenson, Paul; Strachan, Jon; Streicher, Brano; Stroth, Joachim; Syndikus, Ina; Suemmerer, Klaus; Taieb, Julien; Tain, Jose L.; Tanihata, Isao; Tashenov, Stanislav; Tassan-Got, Laurent; Tengblad, Olof; Teubig, Pamela; Thies, Ronja; Togano, Yasuhiro; Tostevin, Jeffrey A.; Trautmann, Wolfgang; Tuboltsev, Yuri; Turrion, Manuela: Typel, Stefan: Udias-Moinelo, Jose: Vaagen, Jan: Velho, Paulo: Verbitskava, Elena: Veselsky, Martin: Wagner, Andreas: Walus, Wladyslaw: Wamers, Felix: Weick, Helmut; Wimmer, Christine; Winfield, John; Winkler, Martin; Woods, Phil; Xu, Hushan; Yakorev, Dmitry; Zegers, Remco; Zhang, Yu-Hu; Zhukov, Mikhail; Zieblinski, Miroslaw; Zilges, Andreas;