Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Investigation of transfer to the bound states and resonance of ¹¹Be via the ¹⁰Be(d,p) reaction using the ADWA method

A Spectroscopic Study of Halo Nucleus ¹¹Be

J. Yang^{1,2}, P. Capel^{1,3}, R. Raabe²

¹ Physique Nucléaire et Physique Quantique, Université Libre de Bruxelles, B-1050 Bruxelles

² Afdeling Kern- en Stralingsfysica, Celestijnenlaan 200d - bus 2418, 3001 Leuven

³ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

March 2018

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Physics Motivation

• Halo nuclei

(Pictures are taken from WIKIMEDIA and other websites)

How to study halo nuclei ? \rightarrow What is the property of this "halo" ? \rightarrow

Transfer reaction, elastic scattering, break up, ... Spectroscopic factor, ANC, ...

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0
Outline			

• Theoretical framework of transfer reaction

- What is transfer reaction
- Theoretical approximation

• ADWA calculation of ¹⁰Be(d,p)¹¹Be

- Influence of the description of n-¹⁰Be bound state
- ANC extraction from the peripheral part
- Conclusion and prospects

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Transfer reaction

- Transfer up to several nucleons between the projectile and target
- A powerful tool to selectively populate states with a strong single-particle character
- (d,p) reaction

Some history of deuteron stripping reaction

Ref: Pang's seminar, ect Trento, 2016

Jiecheng Yang

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

(d,p) reaction

• Mathematical description

Transition amplitude (post form)

$$T(pB, dA) = \left\langle \Phi^{(-)}(R', r') \middle| V_{post} \middle| \Psi^{(+)}(R, r) \right\rangle$$

Interaction term

$$V_{post} = V_d(r) + U_{pA}(R_c) - U_{pB}(R')$$

Differential cross section

 $\frac{d\sigma}{d\Omega} = \frac{\mu_{dA}\mu_{pB}}{(2\pi\hbar^2)^2} \frac{k_p}{k_d} |T(pB, dA)|^2$

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Final state $\Phi^{(-)}$

$$\boldsymbol{\Phi}^{(-)} = \phi_B \chi_{pB}(R') \quad \text{with } \phi_B = [S_{nA}^B]^{1/2} \phi_A \varphi_{nA}(r') + \phi_B^C$$

$$two-body \ approx \qquad P \quad A \ (P = 1)^{1/2} \phi_A \varphi_{nA}(r') + \phi_B^C$$

$$\xrightarrow{ady \ approx} \ [S^B_{nA}]^{1/2} \varphi_{nA}(r') \chi_{pB}(R')$$

• Bound-state wave function

 $\varphi_{nA}(r') \xrightarrow{r' \to \infty} b_{nlj} W_{-\eta, l+\frac{1}{2}}(2kr')/r' \xrightarrow{l=0} b_{nlj} exp(-kr')/r'$, in which b_{nlj} is the single-particle ANC (SPANC)

• Overlap function

$$[S_{nA}^B]^{1/2}\varphi_{nA} = I_{nA}^B(r') \xrightarrow{r' \to \infty} C_{lj} W_{-\eta, l+\frac{1}{2}}(2kr')/r, \text{ in which } C_{lj} \text{ is the ANC}$$

In the single-particle approach, the spectroscopic factor $S \approx S_{nA}^B$, which is always obtained by $S(\frac{d\sigma}{d\Omega})^{th} = (\frac{d\sigma}{d\Omega})^{exp}$

• Relationship between

$$C_{lj}^2 = S_{nA}^B b_{nlj}^2$$

Jiecheng Yang

Theoretical Framework	ADWA Calculation O	Calculation of (d,p) reaction	Conclusion and F	Prospects		
Theoretical Framewor	k					
3-body solution $\Psi^{(+)}$						
$\Psi^{(+)}(r,R) = \phi_{pn}(r)\chi_{dA}^{(+)}(R) + \int dk\phi_k(\varepsilon_k,r)\chi_k^{(+)}(\varepsilon_k,R) \qquad \qquad$						
			A	B(A+n)		
• DWBA		ADWA	CDCC			
$\Psi^{(+)}(r,R) \approx \phi_{pn}(r)\chi_{dA}^{(+)}(r)$	Adiab R) Replaci sta	atic approximation: ng all the continuum ites by one state	discretize continuing bin stat $\Psi^{(+)}(r,R) = \sum_{i=0} \phi_{pr}$	nuum into es $_{i,i}(r)\chi^{(+)}_{dA,i}(R)$		
U_{dA} : Omit all except elastic pairs in the 3-body wave function	art Effective d-A U _{dA}	interaction (zero-range $I_{I} = U_{nA} + U_{pA}$ Phys. Rev. C 1, 976 (1970) Three-body ec turned into Co)). Channel equa	iuation oupled- ations		

• Connection with the Faddeev formalism

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

• Comparison --- ADWA versus Other methods

Fig. ¹⁰Be(d,p)¹¹Be computed with Faddeev, CDCC and ADWA:

(a) Ed = 21.4 MeV, (b) 40.9 MeV, and (c) 71 MeV

Ref: Upadhyay PRC 85, 054621 (2012)

- a. For this reaction at low energy, ADWA is in good agreement with the CDCC and the Faddeev-type results.
- b. For the reactions on ¹⁰Be, ADWA performs just as well or even better than CDCC.

• *Fresco*: program developed by Ian Thompson to perform reaction calculations

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

• ¹⁰Be(d,p)¹¹Be (g.s) at different energies

Potential choice n-¹⁰Be : Woods-Saxon form d-¹⁰Be : Johnson & Tandy (CH89) n-p : Reid soft core

Rest : *CH89*

Ref: Schmitt et al, PRL 108,192701 (2012) Gomez et al, PRC 92,014613 (2015)

 Successfully reproduce the calculation results and good agreement with experimental data obtained

♦ What the reaction is sensitive to with respect to the description of the halo nucleus ¹¹Be?

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	00000	0

- Description of n-¹⁰Be: 2s1/2 \otimes ¹⁰Be(0+)
 - Nine sets of Gaussian potentials developed to help study the peripheral characteristics of the reaction

$$V(r) = -V_0 \cdot \exp \frac{-r^2}{2r_0^2}$$

	r _o (fm)	V _o (MeV)	b _{2s1/2}
V1	0.4	1314.6	0.601
V2	0.6	592.3	0.632
V3	0.8	337.8	0.664
V4	1.0	219.2	0.697
V5	1.2	154.4	0.732
V6	1.4	115.1	0.769
V7	1.6	89.3	0.807
V8	1.8	71.6	0.846
V9	2.0	58.8	0.888

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Peripheral part: 0-7deg except 0.4, 0.6fm

Calculation of ¹⁰Be(d,p)¹¹Be (g.s)

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	00000	0

• E_d = 18MeV

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	00000	0

• E_d = 15MeV

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

• E_d = 12MeV

Lowering the energy, the reaction becomes more and more peripheral, mostly at forward angles.

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

ANC extraction from peripheral part

• Extract the ANCs with the experimental data at peripheral part

 χ^2 analysis

 $\chi^{2} = \sum \frac{\left(C_{lj}^{2} \cdot (\frac{a\sigma}{d\Omega})_{i}^{th} / b_{nlj}^{2} - (\frac{a\sigma}{d\Omega})_{i}^{exp} \right)}{\delta^{2}}$

i represent all the data points in the peripheral region

 C_{li} is the ANC obtained by minimizing the χ^2

 $r_0(fm)$

Conclusion

- The peripheral area of this transfer reaction is always found at forward angles;
- When the incident energy decreases, the scaling by b_{nli}^2 works better which means the reaction exhibits a more pronounced peripheral property;
- The ANC obtained for the g.s of ¹¹Be ($C_{li}=0.785^{+0.029}_{-0.030}$ fm^{-1/2}) shows perfect agreement with the one given by ab initio calculations (0.786 $fm^{-1/2}$). Ref: PRL 117, 242501 (2016)

Jiecheng Yang

Mar 2018

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

- Description of n-¹⁰Be: 1p1/2 \otimes ¹⁰Be(0+)
 - Similar method used to study the excited state of ¹¹Be

	r _o (fm)	V _o (MeV)	b _{1p1/2}
V1	0.4	869.4	0.068
V2	0.6	387.3	0.085
V3	0.8	218.4	0.100
V4	1.0	140.2	0.114
V5	1.2	97.7	0.127
V6	1.4	72.1	0.140
V7	1.6	55.4	0.152
V8	1.8	44.0	0.165
V9	2.0	35.8	0.177

The ANC obtained for the ex.s of ¹¹Be is 0.136^{+0.005}/_{-0.005} fm^{-1/2} while the ab initio method gives 0.129 fm^{-1/2}.

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

ANC extraction from peripheral part

• Optical potentials for the entrance channel d-¹⁰Be

- a. Johnson & Tandy (CH89) pot
- b. Johnson & Tandy (KD) pot

A example at 12MeV

Conclusion

• ANC extraction is sensitive to the optical potential choice.

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Transfer to the first resonance of ¹¹Be

- Description of n-¹⁰Be: 1d5/2 \otimes ¹⁰Be(0+)
 - Bin description for the overlap function

$$\phi(\mathbf{r}) = \sqrt{\frac{2}{\pi N_p}} \int_{k_{p-1}}^{k_p} g_p(k) u_k(r) dk$$

• Relation with ANC (PRC 59.6 (1999): 3418)

 $C_{lj}^2 \propto \Gamma$

	r _o (fm)	V _o (MeV)	Г(MeV)
V1	1.0	303.86	0.0364
V2	1.2	209.29	0.0595
V3	1.4	152.22	0.0904
V4	1.6	115.14	0.1294
V5	1.8	89.67	0.1771
V6	2.0	71.42	0.2340

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	0

Variation with different energies

• Transfer to the first resonance of ¹¹Be

Theoretical Framework	ADWA Calculation	Calculation of (d,p) reaction	Conclusion and Prospects
00000	0	000000	•
Conclusion and pro	ospects		

Conclusion

- Brief review of the theoretical framework of transfer reaction
- ADWA calculation performed for ¹⁰Be(d,p)¹¹Be
- Spectroscopic study of this reaction
 - Influence of the description of n-¹⁰Be bound state
 - ANC extraction from the peripheral part
- Investigation at lower energies and forward angles for transfer reaction can ensure us the peripherality of the reaction and is the best way to obtain a reliable ANC from experimental data
 - When the incident energy decreases, the scaling by b_{nlj}^2 works better
 - The peripheral area of this transfer reaction is always found at forward angles
- The role of the γ width in the resonance can be analogous to the effect of the square of the ANC on bound states.

Thanks for your attention!