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Poor resolution : 
Resonance or 
enhancement ? 

A.A. Korsheninnikov et al, 
PRC 53(’96)R537  ; PRL 
78(97)2317

Excitation energy 

E/A ~ 70 MeV

E* = 1.3 ±0.1 MeV,

Γ = 0.75 ± 0.6 MeV FWHM ~ 1.5 MeV
Resolution

T. Nakamura et al, PRL 96 (2006)252502 

11Li+208Pb 9Li+n+n

Non-resonant peak or 
Resonance ?

E*~ 0.65 MeV
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Soft dipole resonance in 11Li excitation in the neutron continuum
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Oscillation of halo neutrons and core

Can the neutron-rich surface sustain a low-energy soft dipole resonance  ?

Two decades of various searches did not reach conclusive understanding  
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11Li(d,d’)    

Resonance Peak @ ~ 1.03(03) MeV

d + 9Li

Γ = 0.51(11) MeV
R. Kanungo et al., Phys. Rev. Lett. 114 (2015) 192502

E/A ~ 5 MeV

Dipole Excitation

11Li*(1.03)
DWBA:

l =  multipolarity of 
excitation

first measurement 

Isoscalar Soft Dipole Resonance Observed
(d,d’)     ΔT = 0
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11Li(p,p’)   E/A = 6 MeV
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FIG. 4. The differential cross sections of the 11Li+p
elastic scattering at 66 MeV. The blue open circles are
the experimental data from 11Li detection. The red
filled circles are from proton detection. Fitted results
with Set V and Set S are shown by the black solid line
and dotted line, respectively. The experimental angular

resolution was included in the calculations.

the observed excited state. The isoscalar excitation was
expected to be dominant in case of the present low energy
11Li(p,p′) experiment [23]. For ∆L=2 (quadrupole) and
∆L=3 (octupole), the form factors obtained in the sur-
face vibrational model [24] were used. In such models,
the nuclear shape vibrates according to quadrupole or
octupole deformations without changing the density. For
∆L=0, the breathing mode form factor was used[25]. It
changes the nuclear size and the density changes by con-
serving the number of nucleons. For∆L=1, the Harakeh-
Dieperlink form factor [26] and the Orlandini form factor
[27] were used. These form factors for ∆L=1 were intro-
duced to describe the isoscalar dipole excitations with the
r3Y1 operator. Harakeh-Dieperlink form factor is usually
used for the analysis of isoscalar giant dipole resonances
as a standard form factor. Instead, Orlandini form fac-
tor may be reasonable to inquire low-energy 1h̄ω excita-
tions, which covers a small fragment of the total sum rule
strength.

The DWBA calculations were performed for both the
optical parameters Set V and Set S. The results of the
calculations are summarized in Fig. 5. The absolute
value was normalized to fit the experimental data. The
∆L = 0, 2, 3 angular distributions show the negative
slopes at θCM ∼ 90°, which are different from the data.
Only the ∆L=1 calculations show distributions that are
in closest consistency with the data. The calculation us-
ing the volume imaginary potential provides the best fit
to the data, both in use of the Harakeh-Dieperlink and
Orlandini form factors.

From the best fit amplitude of DWBA calculations,

FIG. 5. The differential cross sections of the inelastic
scattering and the DWBA calculation for optical

potential Set V (top) and Set S (bottom). The black
dotted lines are for ∆L=0, the red solid lines are for
∆L=1 with the Harakeh-Dieperlink form factor. The
red dashed lines are for ∆L=1 with the Orlandini form
factor. The blue dashed dotted lines are for ∆L=2. The

green long-dashed lines are for ∆L=3.

the transition strength was evaluated. The transition
strength to the 0.80 MeV state was extremely large as
200 ∼ 700 of Weisskopf unit [28] and 4% ∼ 14% of the
energy weighted sum rule value, which is not expected
in the low-lying states for stable nuclei, but is consistent
with the expected cluster sum rule for the soft-dipole ex-
citation [4]. This large strength can be qualitatively
understood as the feature of the isoscalar dipole opera-
tor r3Y1 together with spatially extended neutron halo
structure. The strength enhanced by this effect is well
estimated by introducing a di-neutron weakly bound in
the square-well potential. Using extended halo distribu-
tion, it was found that the transition strength is ∼ 800
W.u., which is in the same order of magnitude as the
present experimental result. This simple model estima-
tion shows that the strength comes from the low density
halo far outside of the square-well potential.

The observed peak in the 11Li(p,p′) spectrum is
slightly lower in energy and a bit wider than the one
found in the 11Li(d,d′) experiment. Dipole transitions
from the 3/2− ground state of 11Li can leads to states
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11Li+ p→ 9Li+ n + n + p

270 J. Tanaka et al. / Physics Letters B 774 (2017) 268–272

Fig. 3. Excitation-energy spectra of 11Li(p, p′) in coincidence with 9Li at different scattering angles. The red solid lines show the fitted spectrum with a Breit–Wigner function 
folded with the excitation-energy resolution of the detector system. The original Breit–Wigner function is shown by the blue dash-dotted lines and starts at the two-neutron 
break-up threshold. The Breit–Wigner functional forms have been corrected for the detection efficiency as function of excitation energy as shown in the insets. The dotted 
lines are the results of the four-body phase-space calculations, expected as continuum spectra. The solid black curves show the total fits, i.e. sums of red solid curves and 
blue dash-dotted curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

than the mass of 9Li. On the other hand, the 9Li from the direct 
breakup of 11Li due to interaction with the proton target will in 
general not necessarily be emitted in the same direction as 11Li, 
which is determined by the four-body final-state phase space.

The obtained excitation-energy spectra with their energy-
dependent detection efficiencies are shown in Fig. 3. These efficien-
cies were calculated by taking into account both the coincidence-
gate efficiency and the coplanarity-gate efficiency resulting from 
the detector geometry and the angular spread from the decay of 
11Li to 9Li. The 11Li(p, p′) spectra at the different angles were fit-
ted to obtain the resonant energy, the width and the differential 
cross sections. A Breit–Wigner function F (Er) with an energy-
dependent width !(Er) was employed to fit the spectra assuming 
a resonant state near the particle decay threshold. The function 
F (Er) is expressed as,

F (Er) = !(Er)

(Ex − E0)2 + !2(Er)/4
, (1)

where Er is the relative energy of decay particles and E0 is the 
excitation energy of the resonant peak observed in 11Li. The re-
lationship between these variables is Ex = Es + Er , where Es is 
the 2n separation energy. The width !(Er) is a function of en-
ergy defined as !(Er) ≡ g

√
Er , where g is a fitting parameter. The 

experimental energy resolution was taken into account by fold-
ing the Breit–Wigner function with a Gaussian of σ = 170 keV, 
which was obtained from fitting the elastic scattering peak in the 
11Li excitation-energy spectrum. The peak position and the reso-
nant width were determined consistently by fitting all the spectra 
at the different scattering angles to be E0 = 0.80 ± 0.02 MeV and 
!(Er) = 1.15 ± 0.06 MeV.

Differential cross sections of the elastic scattering obtained 
from the detection of either protons or 11Li are plotted in Fig. 4. In 
addition to the statistical uncertainties of the data, the total sys-
tematic uncertainties were estimated to be ±7%. The contributions 
to the systematic uncertainties consist of 4.8% coming from the tar-
get thickness and 5.0% coming from the absolute counting of the 
incident beam.

The optical potentials were obtained from the proton elastic 
scattering data assuming the following form:

U (r) = −V v f (r, rv ,av) + 4
(

h̄
mπ c

)2 1
r

d
dr

{V so f (r, rso,aso)}l · s

+ V C (rC ) + i4as
d
dr

{W s f (r, rs,as)}
− iW w f (r, rw ,aw) (2)

Fig. 4. The differential cross sections of the 11Li+ p elastic scattering at 66 MeV. The 
blue open circles are the experimental data from 11Li detection. The red filled circles 
are from proton detection. Fitted results with Set S and Set V are shown by the 
black solid line and dotted line, respectively. The experimental angular resolution 
was included in the calculations. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

where the Woods–Saxon potential shape f (r, ri, ai) =
{

1 +
e(r−ri A1/3)/ai

}−1
was used.

The obtained optical potential parameter sets with the imagi-
nary part having only the volume term (Set V) and with only the 
surface imaginary term (Set S) are listed in Table 1.

The inelastic-scattering differential cross sections (empty red 
squares with error bars) were compared to DWBA predictions us-
ing the code, CHUCK3 [21]. This is shown in Fig. 5. Different form 
factors were used for different multipolarities of transition $L be-
tween the ground state and the observed excited state. The op-
tical potential for the exit channel was assumed to be the same 
as for the entrance channel. For the very low bombarding en-
ergy and the low-Z of the hydrogen target, Coulomb excitation of 
isovector dipole strength, in particular, is expected to be negligi-
ble at the backward center-of-mass angle at which measurements 
were made in this experiment. Furthermore, the isoscalar excita-
tion was expected to be dominant in case of the present low-
energy 11Li(p, p′) experiment [22]. For $L = 2 (quadrupole) and 
$L = 3 (octupole), the form factors obtained in the surface vibra-
tional model [23] were used. In such models, the nuclear shape 
vibrates according to quadrupole or octupole deformations without 
changing the density. For $L = 0, the breathing-mode form factor 
was used [24]. It changes the nuclear size and the density changes 

11Li(p,p)
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Table 1
Optical potential parameters for 11Li+p from a fit of elastic scattering.

V 0
(MeV)

r0
(fm)

a0
(fm)

W V
(MeV)

rI
(fm)

aI
(fm)

W D
(MeV)

rD
(fm)

aD
(fm)

V so
(MeV)

rso
(fm)

aso
(fm)

95.93 1.00 1.10 15.00 0.65 0.50 11.90 0.67 1.1 10.70 0.80 0.75

Fig. 3. The elastic scattering angular distribution data for 11Li(p,p)11Ligs . The curve 
shows optical model calculations with the best fit optical potential parameters.

cross section an additional 20% uncertainty from the background 
estimation is included.

Fig. 4 shows the angular distribution for the 11Li(p,d)10Li reac-
tion. The detection efficiency shown in the inset of Fig. 4 is based 
on simulation with the 10Li resonance decaying isotropically in 
its cm frame into 9Li and neutron. It includes the geometric ef-
fect of the heat shield of the target as well as the coincidence 
efficiency of d and 9Li detection for the forward θcm angles. The 
curves in Fig. 4 are DWBA calculations using FRESCO [24]. The 
exit channel optical potential was considered to be the same as 
that extracted from the 11Li(d,d) elastic scattering [25]. The sin-
gle particle form factors have a neutron bound to the proton in a 
Woods–Saxon potential. The potential is chosen to reproduce the 
binding energy, root mean square radius, and D0 of the deuteron. 
The parameters for the potential are V 0 = 165.54 MeV, r0 = 0.4 fm
and a0 = 0.6 fm. These are the quantities that affect the transfer 
cross sections. A Woods Saxon form factor has been used in DWBA 
calculations in Refs. [26,27]. A comparison of this form factor with 
a Reid Soft core potential form factor yields ∼ 5% change in spec-
troscopic factor for the 11Li(p,d)10Li reaction. 11Li is described as a 
bound state of a 10Li state + a neutron with a Woods–Saxon bind-
ing potential where the effective separation energy is = 0.98 MeV. 
The potential has a real and spin–orbit part with same geometry, 
r0 = 1.15 fm and a0 = 0.6 fm. The depth of the spin–orbit part is 
V so = 6 MeV while the depth of the real part is V 0 = 49.6 MeV for 
a 1p1/2 neutron.

In the DWBA calculations, we consider three different possibil-
ities of neutron configuration of 11Li for the resonance observed. 
The solid (red) curve (Fig. 4) shows neutron transfer with angu-
lar momentum l = 1. The distribution has same shape for transfer 
from the 1p1/2 or 1p3/2 orbital. We consider this neutron transfer 
to be dominated by transfer from the 1p1/2 for the discussion be-
low. This consideration is supported by predictions from the Tensor 
Optimized Shell Model framework that suggests only 2.5% compo-
nent of (p3/2)

2 neutrons in 11Li [28]. Neutron transfers from the 
2s1/2 orbital and 1d5/2 orbital in 11Li are shown by the dotted 
(black) and dashed (blue) curves, respectively (Fig. 4). The data 
clearly demonstrate that the resonance peak observed is associated 
with neutron transfer from the 1p1/2 orbital. The χ2

min value for 

Fig. 4. The angular distribution data for 11Li(p, d)10LiEr =0.62 MeV. The curves show 
the DWBA calculations. The solid (red) curve/dashed (blue) curve/dotted (black) 
curve represents one neutron transfer from the 1p1/2/1d5/2/2s1/2 orbital. The in-
set shows the detection efficiency.

the p-orbital is ∼ 0.8 while those for the d- and s-orbital are ∼ 4.5
and ∼ 6.7, respectively for the best fit normalization to the data. 
The magnitude of the measured cross section compared to the 
DWBA calculation provides the spectroscopic factor (S) of this con-
figuration to be 0.67 ± 0.12 with (dσ /d$)ex = S × (dσ /d$)DWBA . 
Here, the spectroscopic factor value refers to that of two neu-
trons. Assuming that the resonance peak observed includes the 
complete (1p1/2)

2 strength and hence an overlap of the 1+ and 
2+ states of 10Li, the probability fraction of the (1p1/2)

2 com-
ponent in the wavefunction of 11Li is S/2 = 0.33 ± 0.12, where 
sum of all components is unity. This is consistent with the pre-
dictions in Ref. [28]. Alternatively, if the resonance peak observed 
is only one of 1+ or 2+ states of 10Li with half the p-wave 
strength, then the total probability fraction of the 1p1/2 compo-
nent is 2 × S/2 = 0.67 ± 0.12. We consider the former case to be 
the more likely situation because the fragmentation reactions also 
report one resonance peak for the l = 1 component [14,15]. In ad-
dition, an equally strong second resonance well separated from the 
present peak and within this excitation energy range should have 
been observed in this experiment.

If all the remaining component was only (2s1/2)
2, then this 

probability fraction would be ∼ 0.67 ± 0.12. Recently, 11(2)% of 
d-wave probability has been found in the ground state of 11Li [29]. 
Therefore, considering the d-wave, the s-wave probability fraction 
could be reduced to ∼ 0.56 ± 0.12. Fragmentation studies had 
pointed to an s-wave probability fraction of 0.4 ± 0.1 [30]. The an-
gular distribution of (p,t) two-neutron transfer reaction from 11Li 
was best explained by wavefunction models with s-wave proba-
bility fraction in the range of 0.31–0.45 [31]. The small (p1/2)

2

probability observed through the 10Li resonance and hence large 
(2s1/2)

2 deduced in the present work agrees with these previ-
ous measurements. This value of the s-wave probability fraction 
deduced here is however higher than that from recent analysis 
[32] of the reaction cross section reporting an s-wave probability 
fraction of 0.33+0.03

−0.05. Such a small (2s1/2)
2 fraction would be con-

sistent only with the assumption that the resonance seen in this 
work exhibits only half of the (1p1/2)

2 strength. Calculation in a 

S p1/2( )2 = 0.67 ± 0.12
(p1/2)  %  =  33(12) %smaller than 100%, deviating from  

conventional shell picture

2s1/2

1p1/2

1p3/29Li

N = 8 shell
gap broken

N = 8 

10Li
d

p

11Li8

10Li

9Li
n

n
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10Li excitation 
spectrum

Er = 0.62±0.04 MeV
Γ = 0.33±0.07 MeV
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Fig. 2. Upper panel. Differential cross section as a function of relative-energy for
10Li (9Li +n) obtained after one-neutron knockout from 11Li. The dashed and dotted
curves correspond to a virtual s-state and a p-wave resonance, respectively. Lower
panel. Differential cross section as a function of relative energy for 12Li (11Li + n)
obtained after one-proton knockout from 14Be. The spectrum is fitted with a single
virtual s-state, shown as a full-drawn curve.

one-neutron events are assigned to a knock-out reaction where
one neutron hits the target and undergoes an intranuclear cas-
cade [12] and is typically scattered to large angles outside the
acceptance of the detector. The detected one is projectile-like and
emitted in the forward direction. Due to the high detection effi-
ciency a reliable correction for the background from two-neutron
events is done in a Monte Carlo simulation.

It was shown in Ref. [13] that the momentum transfer to the
core in the neutron knockout from 11Li is negligibly small since the
neutron binding energy is only a few hundred keV. In the proton
knockout from 14Be we are faced with a quite different situation
since the proton binding energy is around 20 MeV. In spite of the
large binding energy of the knocked out proton the survival of 11Li
(see Fig. 1) shows that the remaining system acts as a spectator
for this channel.

The 10Li and 12Li relative-energy spectra obtained from the
9Li + n and 11Li + n fragments are shown in Fig. 2. The data were
fitted with a sum of contributions from resonances with Breit–
Wigner shape

dσ

dE f n
∝ Γl(E f n)

(E f n − Er)2 + 1
4 Γl(E f n)2

, (1)

where E f n is the kinetic energy in the xLi + n two-body system
and Er the energy above the xLi + n threshold. The dependence
of the resonance width Γl(E f n) on the relative energy and on the
angular momentum was also taken into account [14].

The lowest lying state is for both 10Li and 12Li assumed to be
a virtual s-state. It was included in the fit by using the expression
given in Ref. [15]

dσ

dE f n
∝ p f n

[
1

k2 + p2
f n

]2[
cos (δ) + k

p f n
sin (δ)

]2

, (2)

with

Fig. 3. Differential cross section as a function of relative-energy for 13Li (11Li + 2n)
obtained from the one-proton knockout channel with a 304 MeV/u 14Be beam. The
dashed and dotted curves correspond to a three-body resonance and a correlated
background, respectively.

p f n cot (δ) = −1
a

+ 1
2

r0 p2
f n +O

(
p4

f n

)
.

Here δ is the s-wave phase shift, and a and r0 are the correspond-
ing scattering length and effective range parameter, respectively.
The parameter k equals

√
2µϵ , where ϵ should be closely con-

nected to the two-neutron separation energy. In order to check the
consistency of the model ϵ was used as a free parameter in the fit.
The shape of the spectrum obtained from Eq. (2) is not very sensi-
tive to the effective-range parameter and, therefore, r0 = 3 fm was
used throughout the analysis.

The scattering length a, the binding energy parameter ϵ , the
resonance energy Er and the resonance width Γl(Er) were deter-
mined from a fit using the sum of Eqs. (1) and (2) folded with the
experimental energy resolution.

3.2. Two-neutron events

The distribution of relative energy between the fragments after
sudden proton knockout might be strongly influenced by correla-
tions present in the initial bound-state wavefunction. Such initial-
state correlations manifest themselves in the experimental spec-
trum as a correlated background [16]. The experimental relative-
energy spectrum in the case when two neutrons were detected in
coincidence with a 11Li fragment is shown in Fig. 3. Its shape can
be interpreted as a low-energy resonance peak on top of a broad
correlated background.

The two-neutron data have their origin in fragmentation of 14Be
into four fragments (p + 11Li + 2n). One can, however, adopt a
three-body picture using the relative motion of 12Be + 2n in 14Be
for the system 11Li + 2n. A similar approach was employed by Ko-
rsheninnikov et al. [17] for 10He. In our case, this approximation
is valid when there is a small momentum transfer in the proton
knockout reaction from the 12Be core, leaving 11Li essentially un-
perturbed. There are two pieces of evidence that this is the case:
The first is the fact that 11Li, with its very low two-neutron separa-
tion energy, survives the knockout reaction (see Fig. 1). The second
is given by the virtual-state analysis for 12Li that reproduces the
correct two-neutron separation energy for 14Be.

The three-body correlated background was estimated as pro-
posed in Ref. [16]. In this model, the three-body bound-state wave-
function is expanded in hyperspherical harmonics. We assume the
14Be ground state to be dominated by a K = 0 term with a small
admixture of K = 2 and K = 4 components. To simplify the analy-
sis, the following parametrization of the exact calculation was used
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curves correspond to a virtual s-state and a p-wave resonance, respectively. Lower
panel. Differential cross section as a function of relative energy for 12Li (11Li + n)
obtained after one-proton knockout from 14Be. The spectrum is fitted with a single
virtual s-state, shown as a full-drawn curve.

one-neutron events are assigned to a knock-out reaction where
one neutron hits the target and undergoes an intranuclear cas-
cade [12] and is typically scattered to large angles outside the
acceptance of the detector. The detected one is projectile-like and
emitted in the forward direction. Due to the high detection effi-
ciency a reliable correction for the background from two-neutron
events is done in a Monte Carlo simulation.

It was shown in Ref. [13] that the momentum transfer to the
core in the neutron knockout from 11Li is negligibly small since the
neutron binding energy is only a few hundred keV. In the proton
knockout from 14Be we are faced with a quite different situation
since the proton binding energy is around 20 MeV. In spite of the
large binding energy of the knocked out proton the survival of 11Li
(see Fig. 1) shows that the remaining system acts as a spectator
for this channel.

The 10Li and 12Li relative-energy spectra obtained from the
9Li + n and 11Li + n fragments are shown in Fig. 2. The data were
fitted with a sum of contributions from resonances with Breit–
Wigner shape
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where E f n is the kinetic energy in the xLi + n two-body system
and Er the energy above the xLi + n threshold. The dependence
of the resonance width Γl(E f n) on the relative energy and on the
angular momentum was also taken into account [14].

The lowest lying state is for both 10Li and 12Li assumed to be
a virtual s-state. It was included in the fit by using the expression
given in Ref. [15]
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Here δ is the s-wave phase shift, and a and r0 are the correspond-
ing scattering length and effective range parameter, respectively.
The parameter k equals

√
2µϵ , where ϵ should be closely con-

nected to the two-neutron separation energy. In order to check the
consistency of the model ϵ was used as a free parameter in the fit.
The shape of the spectrum obtained from Eq. (2) is not very sensi-
tive to the effective-range parameter and, therefore, r0 = 3 fm was
used throughout the analysis.

The scattering length a, the binding energy parameter ϵ , the
resonance energy Er and the resonance width Γl(Er) were deter-
mined from a fit using the sum of Eqs. (1) and (2) folded with the
experimental energy resolution.

3.2. Two-neutron events

The distribution of relative energy between the fragments after
sudden proton knockout might be strongly influenced by correla-
tions present in the initial bound-state wavefunction. Such initial-
state correlations manifest themselves in the experimental spec-
trum as a correlated background [16]. The experimental relative-
energy spectrum in the case when two neutrons were detected in
coincidence with a 11Li fragment is shown in Fig. 3. Its shape can
be interpreted as a low-energy resonance peak on top of a broad
correlated background.

The two-neutron data have their origin in fragmentation of 14Be
into four fragments (p + 11Li + 2n). One can, however, adopt a
three-body picture using the relative motion of 12Be + 2n in 14Be
for the system 11Li + 2n. A similar approach was employed by Ko-
rsheninnikov et al. [17] for 10He. In our case, this approximation
is valid when there is a small momentum transfer in the proton
knockout reaction from the 12Be core, leaving 11Li essentially un-
perturbed. There are two pieces of evidence that this is the case:
The first is the fact that 11Li, with its very low two-neutron separa-
tion energy, survives the knockout reaction (see Fig. 1). The second
is given by the virtual-state analysis for 12Li that reproduces the
correct two-neutron separation energy for 14Be.

The three-body correlated background was estimated as pro-
posed in Ref. [16]. In this model, the three-body bound-state wave-
function is expanded in hyperspherical harmonics. We assume the
14Be ground state to be dominated by a K = 0 term with a small
admixture of K = 2 and K = 4 components. To simplify the analy-
sis, the following parametrization of the exact calculation was used
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Fig. 3. Energy-integrated angular differential cross section for the 11Li(p, d)10Li re-
action at 5.7 MeV/u. The lines are the results of DWBA calculations populating the 
p1/2 orbitals in 10Li, using four different 11Li models: P1I (blue solid), P2I (red 
solid), P3 (magenta dashed) and P4 (green dashed). The cross section for neutrons 
transferred from the s1/2 orbitals is also shown, for P1I, in the blue dotted line. Ex-
perimental data are from Ref. [21]. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

ponent, so experimental data are compared only with the cross 
section corresponding to neutrons transferred from the p1/2 or-
bitals. Here we must remark that no fitting to the data has been 
performed, since the spectroscopic factor is given by the p-wave 
content in the three-body calculation. Our calculations provide 
absolute cross sections, in contrast to the theoretical curves in 
Ref. [21] and previous works in which the cross sections are renor-
malized to fit the experimental data and extract spectroscopic 
factors. The results for P1I and P3 give the best agreement with 
the experimental data, while the shape of all four calculations 
is rather similar in spite of the different structure properties of 
the 11Li ground state. This seems to portray the energy-integrated 
angular distribution as an observable dependent mostly on the an-
gular momentum of the extracted neutron and its weight in the 
ground-state of 11Li. Note that the experimental data have been 
measured at angles for which the s1/2 contribution is minimal, as 
shown in Fig. 3, where the s-wave contribution corresponding to 
the model P1I is presented. This may explain why in our energy 
distribution the contribution from s waves is quite important at 
low energies, while experimentally there is no direct sign of this 
effect.

The p-wave content suggested by the present analysis (∼30%) 
is very close to the value extracted in the original analysis of the 
same data [21]. However, it is somewhat smaller than the value 
of 45% extracted from the analysis of the momentum distributions 
in the 11Li fragmentation on carbon [18]. A reanalysis of the same 
data, along with the data from Ref. [16], performed by Garrido et 
al. [38] using a 11Li three-body wave function similar to our PI 
models within a participant-spectator reaction model, suggested a 
p-wave content of about 40%. Another inert core model proposed 
by Vinh Mau and Pacheco [39], which uses a density-dependent 
pairing interaction between the halo neutrons, gave a p1/2 content 
27.6% for a separation energy of 0.375 MeV, in better agreement 
with our result. A more elaborated three-body model, including 
core tensor and pairing correlations [40], predicted 44% and 46.9% 
of 2s1/2 and 1p1/2 admixtures, respectively. Furthermore, the cal-
culation performed by Barranco and co-workers [12], describing 
the neutrons in a mean-field potential supplemented by a pairing 
interaction and the coupling to the core collective excitations, re-
sulted in 40% and 58% for 2s1/2 and 1p1/2. For the present calcula-

tions to reproduce the (p, d) experimental data, our model requires 
a smaller p-wave content that those in Refs. [12,40], thus provid-
ing a larger s-wave contribution. Other theoretical works predict 
different numbers for the s-wave and p-wave admixture [41,33]. 
Clearly, this disparity of values calls for further experimental and 
theoretical work.

It can be argued that the DWBA framework may be overly sim-
plistic to accurately describe the reaction process, since the low 
beam energy favors higher-order processes, such as initial- and 
final-state interactions. These effects are not taken into account in 
the present formalism, which might hinder the effect of the 11Li 
structure on the angular distribution. However, the agreement of 
the calculations with the experimental data is rather satisfactory, 
which could be an indication that these effects are not crucial in 
the transfer process. Moreover, some of the configurations result-
ing from these higher-order processes could be included as part 
of the non-resonant continuum responsible for the bump at high 
n–9Li energies that appears in Fig. 2 of Ref. [21]. This background 
was already subtracted from the experimental angular distribution 
shown in Fig. 3, thus reducing the degree of unsuitability of the 
DWBA formalism.

5. Summary and conclusions

To summarize, we have studied the 11Li(p, d)10Li reaction using 
the DWBA framework, computing the required ⟨11Li|10Li⟩ overlap 
functions from a three-body model calculation of the 11Li ground 
state. Our model provides absolute cross sections, in contrast to 
previous approaches. The comparison of our calculations with the 
angular distribution reported in Ref. [21] confirms the ℓ = 1 dom-
inance of this distribution. While different three-body models are 
found to explain equally well the shape of the angular distribu-
tion, we find a strong sensitivity on the p1/2-wave content, with 
the best agreement provided by a model with ∼31% for this con-
figuration. The coupling with the intrinsic spin of the 9Li core does 
not affect the overall shape of the angular distribution, but changes 
the height and width of the relative energy spectra. Experimental 
data on other reactions involving 10,11Li are to be tested against 
the same structure input to find better constraints on their prop-
erties.

The methodology employed in the present case could be use-
ful to analyze similar data involving other Borromean nuclei, such 
as 6He, 14Be or 22C. Moreover, the calculated three-body over-
laps can be also used in other reactions, such as quasifree (p, pn)
breakup processes or (d, p) reactions. Calculations of this kind are 
in progress and will be presented elsewhere.
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Fig. 4. (a) Chiral EFT for nuclear forces. (b) Improvement in neutron–proton phase shifts shown by shaded bands from cutoff variation at NLO (dashed),
N2LO (light), and N3LO (dark) compared to extractions from experiment (points) [31]. The dashed line is from the N3LO potential of Ref. [20].
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Fig. 5. (a) Differential cross section (inmb/sr) and vector analyzing power for elastic neutron–deuteron scattering at 10MeV (top) and 65MeV (bottom) at
NLO (light) and N2LO (dark) from Ref. [36]. (b) Ground-state energy of 6Li at NLO and N2LOwith bands corresponding to the⇤ variation over 500–600MeV
compared to experiment (solid line, see Ref. [36] for details).

is still considerable off-diagonal strength above k = 2 fm�1, which remains problematic for nuclear structure calculations
(and the coupled 3S1–3D1 channel is generally worse).3 One might think the solution is to simply fit with a smaller ⇤, but
then the fit worsens significantly as the truncation error grows with Q/⇤.

3 Note that the cutoff associated with the potential in Fig. 6(a) is ⇤ = 500 MeV, which might lead one to expect no strength above k ⇡ 2.5 fm�1.
However, the regulator does not sharply cut off relative momenta.

Q = pion mass
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Reaction observable brings greater sensitivity  for constraining the nuclear force
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of the (2s1=2) orbital is observed in the ground states of
14;15B [16,17]. The effect of the odd neutron in the s orbital
is found to increase the charge radius in 11Be [10]. To
understand the effect of the s orbital versus pairing and
neutron separation energy, a study of 14;15B with an odd
proton is important.
The Borromean 17B nucleus draws special interest with

discussion of it being a two-neutron halo. This stems from
measurements of a moderately narrow momentum distri-
bution [18] and a fairly large matter radius [19,20]. The
2s1=2 orbital fraction in the ground state extracted from
these measurements ranges from 0.17 to 0.89 [18–21], all
under the assumption of the 15B core being in the ground
state. However, the 15B core has a 33% to 47% probability
of being in its 5=2− excited state [22] from the neutron
removal reaction measurement in coincidence with gamma
detection.
The boron isotopes show cluster structure development

in the antisymmetrized molecular dynamics (AMD) frame-
work. The cluster structure in 11B vanishes for the neutron
closed-shell nucleus 13B and becomes prominent again
with increasing neutron number [23]. The rms matter and
proton radii predicted from AMD [24] shows an increase in
the proton radius from 13B to 17B. The relativistic mean
field calculations [25] predict a nearly constant radius with
extremely small increase between 15B and 17B.
We report here the first proton radii measurements for

12–17B from σCC using the transmission technique. In this
method, the number (Nin) of incident nuclei AZ, before the
reaction target is identified and counted. After the target,
the nuclei with the same charge Z is identified and counted
event by event (NsameZ). The σCC is obtained from a ratio of
these counts and is defined as σCC ¼ t−1lnðRTout=RTinÞ,
where R ¼ NsameZ=Nin, T in, and Tout refer to measurements
with and without the reaction target, and t is the thickness
of the target. The experiment was performed with the

fragment separator FRS [26] at GSI, Germany. Beams of
10;14–17B and 11–13B were produced by fragmentation of
22Ne and 40Ar primary beams, respectively, interacting with
a 6.3 g=cm2 thick Be target. The isotopes of interest were
separated in flight and identified using their magnetic
rigidity (Bρ), time of flight (F2 to F4), and by the energy
loss measured in a multisampling ionization chamber
(MUSIC) [27]. The σCC was measured with a
4.010 g=cm2 thick carbon reaction target placed at the
final focus (F4) (Fig. 1). The MUSIC detector after the
reaction target counts NsameZ. The Z resolution of this
detector was σ ¼ 5.1% for boron.
Information from the detectors in the experimental setup

was used to minimize and estimate the contribution of
various sources of systematic uncertainties. Beam tracking
with time-projection chamber (TPC) detectors [28] pro-
vided a definition of the beam spot size and was used to
exclude events with large incident angles. The position
measured with the TPC after the target provided a meas-
urement of the probability that ions scatter out of the
acceptance of the MUSIC. From the latter effect, we
estimate a systematic uncertainty from 0.4 to 2.2 mb for
different boron isotopes. A veto scintillator placed right in
front of the reaction target, with a hole slightly smaller than
the target area, provided the condition for rejection of
events incident on the edge of the reaction target, as well as
for those scattered by nuclear reactions in matter upstream
of it. These events are excluded from the incident beam
selection and do not contribute to our uncertainty. The
contribution of contaminants in the incident beam selection
was estimated to be ≈2.1 mb, the ratio of the contaminant
to nucleus of interest being of the order of 5 × 10−4. Other
sources of systematic uncertainties include the numerical
method used to count NsameZ from Fig. 1(c), the back-
ground from ions that undergoes a nuclear reaction within
this detector, and uncertainty in the target thickness which
was< $0.15%. The total systematic uncertainties lie in the
range from 2.6 to 3.4 mb for different isotopes.
The measured cross sections for 10B and 11B are

762$ 10 mb and 730$ 5 mb, respectively (open triangles
in Fig. 2). However, they do not reflect the correct σCC, as
they contain effects besides direct proton removal. This is
because 9B is a proton unbound nucleus. Hence, the one-
and two-neutron removal reactions from 10;11B, respec-
tively, that are not charge-changing reactions, result in a
change in the Z number. Therefore, for 10;11B we subtract
the one- and two-neutron removal cross sections (σ−n; σ−2n)
to the final states in the residual nucleus that are proton
unbound. The σ−n were calculated in the eikonal model
framework of the coreþ neutron model of the nucleus.
Spectroscopic factors for the relevant final states of the core
were obtained from the 10Bðp; dÞ9B and 11Bðp; dÞ10B
transfer reactions [29], which used a plane wave Born
approximation (PWBA) analysis. We consider 15% uncer-
tainty in the neutron removal cross section. The difference

FIG. 1 (color online). (a) Schematic view of the experiment
setup at the FRS with detector arrangement at the final focus F4.
Identification spectrum of (b) 17B before reaction target and
(c) Z ¼ 5 after reaction target.
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between nuclei are presented in the next section. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. The reaction cross section of 12C+12C
is tested by these formulas in a wide range of incident
energy. In Sec. III the phenomenological mean-field potential
is prescribed for generating the Slater determinant, and the
c.m. motion is removed to obtain the intrinsic density that
is used in the reaction calculation. The mean radius of the
matter distribution is compared to the empirical value. The
nuclear structure model is extended to the dynamical model
in Sec. IV. A core+n model is applied to the odd N isotopes
in Sec. IV A, where the difference in the densities between
the dynamical model and the Slater determinant is discussed.
The binding energy and the matter size of 22C are studied in the
three-body model of 20C+n+n in Sect. IV B and the densities
of the core+n+n model are presented in Sec. IV C. Section V
presents the results of reaction cross section calculations; the
cases of 12−20C in Sec. V A and the 22C+12C reaction in
Sec. V B. Summary is drawn in Sec. VI. A method of
calculation of two-particle distribution functions is given in
Appendix.

II. MODEL FOR A REACTION CROSS-SECTION
CALCULATION

In this section, we describe our reaction models for
analyzing reaction cross sections between nuclei. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. These methods are complementary to
each other for a 12C target, but only the former can be applied
for a proton target in general when a proton-nucleus optical
potential is not available. With these calculations in two ways,
we can find a reliable parametrization of the NN interaction
for a wide energy range, which is important to proceed to the
case of a proton target in our future work.

A. Glauber formalism

The reaction cross section for a projectile-target collision is
calculated by integrating the reaction probability with respect
to the impact parameter b;

σR =
∫

db(1 − |eiχ(b)|2), (1)

where the phase-shift function χ is expressed, in the Glauber
model [14], through the NN profile function #NN by

eiχ (b) = ⟨$0%0|
∏

i∈P

∏

j∈T

[1 − #NN(si − tj + b)]|$0%0⟩.

(2)

Here $0 (%0) is the intrinsic wave function of the projectile
(target) with its c.m. part being removed, si is the two-
dimensional vector of the projectile’s single-particle coordi-
nate, ri , measured from the projectile’s c.m. coordinate, and ti
is defined for the target nucleus in a similar way. The profile

function #NN is usually parameterized in the form;

#NN(b) = 1 − iα

4πβ
σ tot

NNexp
(

− b2

2β

)
, (3)

where σ tot
NN is the total cross section for NN collisions, α the

ratio of the real to the imaginary part of the NN scattering
amplitude, and β the slope parameter of the NN elastic
differential cross section.

As seen in Eq. (2), the calculation of the phase-shift function
requires a multidimensional integration. The importance of
including such higher-order terms has been known for many
years [18]. Though the integration can be performed using the
Monte Carlo technique even for sophisticated wave functions
[19], it is fairly involved in general, so it is often approximately
evaluated in the optical limit approximation (OLA) using the
intrinsic densities of the projectile (target) nuclei, ρP (ρT), as
follows:

eiχOLA(b) = exp
[

−
∫∫

drdr′ρP(r)ρT(r′)#NN(s − t + b)
]
.

(4)

Another approximation is proposed in Ref. [20] by two
(B.A.-I. and Y.S.) of the present authors to calculate the
reaction cross sections using the same input as in the OLA. The
essence of the approximation is to consider, as an intermediate
step, a phase shift function for the nucleon-nucleus scattering.
With the introduction of the profile function #NT for the
nucleon-target (NT) scattering, the phase-shift function of
OLA, Eq. (4), is replaced by χ̄ as

eiχ̄ (b) = ⟨$0|
∏

i∈P

{1 − #NT (si + b)}|$0⟩

≈ exp
[

−
∫

drρP(r)#NT (s + b)
]
. (5)

We here adopt two methods to calculate the #NT : One is to
calculate the #NT using an appropriate optical potential as
shown in the next subsection. The other is to use the Glauber
theory as

#NT (b) = 1 − ⟨%0|
∏

j∈T

[1 − #NN(b − tj )]|%0⟩

≈ 1 − exp
[

−
∫

dr′ρT(r′)#NN(b − t)
]
. (6)

Substituting this expression into Eq. (5) leads us to

eiχ̄(b) = exp
(

−
∫

drρP(r)

×
{

1 − exp
[
−

∫
dr′ρT(r′)#NN(s − t + b)

]})
. (7)

This formula is found to give better results than those of
the OLA [20,21]. Though only the leading term in the
cumulant expansion is taken into account to derive Eq. (7), this
approximation includes higher-order corrections which Eq. (4)
does not contain [21]. Because the role of the projectile and the
target is interchangeable in the calculation of the reaction cross
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between nuclei are presented in the next section. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. The reaction cross section of 12C+12C
is tested by these formulas in a wide range of incident
energy. In Sec. III the phenomenological mean-field potential
is prescribed for generating the Slater determinant, and the
c.m. motion is removed to obtain the intrinsic density that
is used in the reaction calculation. The mean radius of the
matter distribution is compared to the empirical value. The
nuclear structure model is extended to the dynamical model
in Sec. IV. A core+n model is applied to the odd N isotopes
in Sec. IV A, where the difference in the densities between
the dynamical model and the Slater determinant is discussed.
The binding energy and the matter size of 22C are studied in the
three-body model of 20C+n+n in Sect. IV B and the densities
of the core+n+n model are presented in Sec. IV C. Section V
presents the results of reaction cross section calculations; the
cases of 12−20C in Sec. V A and the 22C+12C reaction in
Sec. V B. Summary is drawn in Sec. VI. A method of
calculation of two-particle distribution functions is given in
Appendix.

II. MODEL FOR A REACTION CROSS-SECTION
CALCULATION

In this section, we describe our reaction models for
analyzing reaction cross sections between nuclei. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. These methods are complementary to
each other for a 12C target, but only the former can be applied
for a proton target in general when a proton-nucleus optical
potential is not available. With these calculations in two ways,
we can find a reliable parametrization of the NN interaction
for a wide energy range, which is important to proceed to the
case of a proton target in our future work.

A. Glauber formalism

The reaction cross section for a projectile-target collision is
calculated by integrating the reaction probability with respect
to the impact parameter b;

σR =
∫

db(1 − |eiχ(b)|2), (1)

where the phase-shift function χ is expressed, in the Glauber
model [14], through the NN profile function #NN by

eiχ(b) = ⟨$0%0|
∏

i∈P

∏

j∈T

[1 − #NN(si − tj + b)]|$0%0⟩.

(2)

Here $0 (%0) is the intrinsic wave function of the projectile
(target) with its c.m. part being removed, si is the two-
dimensional vector of the projectile’s single-particle coordi-
nate, ri , measured from the projectile’s c.m. coordinate, and ti
is defined for the target nucleus in a similar way. The profile

function #NN is usually parameterized in the form;

#NN(b) = 1 − iα

4πβ
σ tot

NNexp
(

− b2

2β

)
, (3)

where σ tot
NN is the total cross section for NN collisions, α the

ratio of the real to the imaginary part of the NN scattering
amplitude, and β the slope parameter of the NN elastic
differential cross section.

As seen in Eq. (2), the calculation of the phase-shift function
requires a multidimensional integration. The importance of
including such higher-order terms has been known for many
years [18]. Though the integration can be performed using the
Monte Carlo technique even for sophisticated wave functions
[19], it is fairly involved in general, so it is often approximately
evaluated in the optical limit approximation (OLA) using the
intrinsic densities of the projectile (target) nuclei, ρP (ρT), as
follows:

eiχOLA(b) = exp
[

−
∫∫

drdr′ρP(r)ρT(r′)#NN(s − t + b)
]
.

(4)

Another approximation is proposed in Ref. [20] by two
(B.A.-I. and Y.S.) of the present authors to calculate the
reaction cross sections using the same input as in the OLA. The
essence of the approximation is to consider, as an intermediate
step, a phase shift function for the nucleon-nucleus scattering.
With the introduction of the profile function #NT for the
nucleon-target (NT) scattering, the phase-shift function of
OLA, Eq. (4), is replaced by χ̄ as

eiχ̄ (b) = ⟨$0|
∏

i∈P

{1 − #NT (si + b)}|$0⟩

≈ exp
[

−
∫

drρP(r)#NT (s + b)
]
. (5)

We here adopt two methods to calculate the #NT : One is to
calculate the #NT using an appropriate optical potential as
shown in the next subsection. The other is to use the Glauber
theory as

#NT (b) = 1 − ⟨%0|
∏

j∈T

[1 − #NN(b − tj )]|%0⟩

≈ 1 − exp
[

−
∫

dr′ρT(r′)#NN(b − t)
]
. (6)

Substituting this expression into Eq. (5) leads us to

eiχ̄(b) = exp
(

−
∫

drρP(r)

×
{

1 − exp
[
−

∫
dr′ρT(r′)#NN(s − t + b)

]})
. (7)

This formula is found to give better results than those of
the OLA [20,21]. Though only the leading term in the
cumulant expansion is taken into account to derive Eq. (7), this
approximation includes higher-order corrections which Eq. (4)
does not contain [21]. Because the role of the projectile and the
target is interchangeable in the calculation of the reaction cross
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between nuclei are presented in the next section. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. The reaction cross section of 12C+12C
is tested by these formulas in a wide range of incident
energy. In Sec. III the phenomenological mean-field potential
is prescribed for generating the Slater determinant, and the
c.m. motion is removed to obtain the intrinsic density that
is used in the reaction calculation. The mean radius of the
matter distribution is compared to the empirical value. The
nuclear structure model is extended to the dynamical model
in Sec. IV. A core+n model is applied to the odd N isotopes
in Sec. IV A, where the difference in the densities between
the dynamical model and the Slater determinant is discussed.
The binding energy and the matter size of 22C are studied in the
three-body model of 20C+n+n in Sect. IV B and the densities
of the core+n+n model are presented in Sec. IV C. Section V
presents the results of reaction cross section calculations; the
cases of 12−20C in Sec. V A and the 22C+12C reaction in
Sec. V B. Summary is drawn in Sec. VI. A method of
calculation of two-particle distribution functions is given in
Appendix.

II. MODEL FOR A REACTION CROSS-SECTION
CALCULATION

In this section, we describe our reaction models for
analyzing reaction cross sections between nuclei. A simple
formula is given in Sec. II A in the framework of the Glauber
theory, and the other method using an optical potential is
explained in Sec. II B. These methods are complementary to
each other for a 12C target, but only the former can be applied
for a proton target in general when a proton-nucleus optical
potential is not available. With these calculations in two ways,
we can find a reliable parametrization of the NN interaction
for a wide energy range, which is important to proceed to the
case of a proton target in our future work.

A. Glauber formalism

The reaction cross section for a projectile-target collision is
calculated by integrating the reaction probability with respect
to the impact parameter b;

σR =
∫

db(1 − |eiχ(b)|2), (1)

where the phase-shift function χ is expressed, in the Glauber
model [14], through the NN profile function #NN by

eiχ(b) = ⟨$0%0|
∏
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[1 − #NN(si − tj + b)]|$0%0⟩.

(2)

Here $0 (%0) is the intrinsic wave function of the projectile
(target) with its c.m. part being removed, si is the two-
dimensional vector of the projectile’s single-particle coordi-
nate, ri , measured from the projectile’s c.m. coordinate, and ti
is defined for the target nucleus in a similar way. The profile

function #NN is usually parameterized in the form;

#NN(b) = 1 − iα
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)
, (3)

where σ tot
NN is the total cross section for NN collisions, α the

ratio of the real to the imaginary part of the NN scattering
amplitude, and β the slope parameter of the NN elastic
differential cross section.

As seen in Eq. (2), the calculation of the phase-shift function
requires a multidimensional integration. The importance of
including such higher-order terms has been known for many
years [18]. Though the integration can be performed using the
Monte Carlo technique even for sophisticated wave functions
[19], it is fairly involved in general, so it is often approximately
evaluated in the optical limit approximation (OLA) using the
intrinsic densities of the projectile (target) nuclei, ρP (ρT), as
follows:

eiχOLA(b) = exp
[

−
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drdr′ρP(r)ρT(r′)#NN(s − t + b)
]
.

(4)

Another approximation is proposed in Ref. [20] by two
(B.A.-I. and Y.S.) of the present authors to calculate the
reaction cross sections using the same input as in the OLA. The
essence of the approximation is to consider, as an intermediate
step, a phase shift function for the nucleon-nucleus scattering.
With the introduction of the profile function #NT for the
nucleon-target (NT) scattering, the phase-shift function of
OLA, Eq. (4), is replaced by χ̄ as

eiχ̄ (b) = ⟨$0|
∏

i∈P

{1 − #NT (si + b)}|$0⟩

≈ exp
[

−
∫

drρP(r)#NT (s + b)
]
. (5)

We here adopt two methods to calculate the #NT : One is to
calculate the #NT using an appropriate optical potential as
shown in the next subsection. The other is to use the Glauber
theory as

#NT (b) = 1 − ⟨%0|
∏

j∈T

[1 − #NN(b − tj )]|%0⟩

≈ 1 − exp
[

−
∫

dr′ρT(r′)#NN(b − t)
]
. (6)

Substituting this expression into Eq. (5) leads us to

eiχ̄(b) = exp
(

−
∫

drρP(r)

×
{

1 − exp
[
−

∫
dr′ρT(r′)#NN(s − t + b)

]})
. (7)

This formula is found to give better results than those of
the OLA [20,21]. Though only the leading term in the
cumulant expansion is taken into account to derive Eq. (7), this
approximation includes higher-order corrections which Eq. (4)
does not contain [21]. Because the role of the projectile and the
target is interchangeable in the calculation of the reaction cross
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FIG. 1. Reaction cross sections of 12C on a 12C target calculated
with the parameters of Refs. [22,23]. The experimental data are taken
from Refs. [24–31] for the reaction cross section σR and from Ref. [13]
for the interaction cross section σI.

section, it may be possible to symmetrize Eq. (7) as follows:

eiχ̄ (b) = exp
(

− 1
2

∫
drρP(r)

×
{

1 − exp
[

−
∫

dr′ρT(r′)$NN(s − t + b)
]})

× exp
(

− 1
2

∫
dr′ρT(r′)

×
{

1 − exp
[

−
∫

drρP(r)$NN(t − s + b)
]})

. (8)

This approximation is called NTG hereafter, which stands for
the NT profile function in the Glauber model.

The parameters of $NN are taken from Refs. [22,23]. In
the latter case [23] the parameters are given for the pp and
pn collisions separately, but here we use the mean values
because the target nucleus is 12C whose proton and neutron
densities are virtually the same to good accuracy. In Fig. 1 we
compare the numerical results obtained using these parameters
with the experimental data of 12C+12C total reaction cross
sections. Here the intrinsic density of 12C is obtained from the
procedure that will be explained in the next section. It is found
that both the parameters give quite different cross sections at
100∼300A MeV. Apparently the cross sections obtained with
the parameters of Ref. [23] are too large, whereas those with
the parameters of Ref. [22] tend to be a little smaller than
experiment.

The NN profile function could be subject to change from
that of the free space especially at lower energies because of
the effects due to the Pauli blocking and the Fermi motion of
the nucleons [32]. Warner et al. studied the in-medium effect
on the reaction cross section by modifying the free σ tot

NN [33].
Takechi et al. have recently reported that taking into account
the Fermi motion leads to a significant change in the σ tot

NN
values, which is vital to reproduce the reaction cross sections
at lower energies [34].

Here we take a simpler route: First, we note that the total
elastic cross section σ el

NN of the NN collision is given by

σ el
NN = 1 + α2

16πβ

(
σ tot

NN
)2 (9)

for the profile function of Eq. (3) [35]. Then, for E<
300A MeV where only the elastic scattering is energetically
possible as the pion production threshold is closed, we expect
that the relation of σ el

NN = σ tot
NN should hold from the unitarity

of the NN collision. Employing the parameters of Ref. [23]
yields σ el

NN = 17, 7, and 3 mb at E = 100, 150, and 200 MeV,
respectively, which are far smaller than the σ tot

NN values at the
corresponding energies. We, instead, choose the β value for
E < 300A MeV as

β = 1 + α2

16π
σ tot

NN (10)

to satisfy the equality of σ el
NN = σ tot

NN . For E > 300A MeV
where the equality breaks down, the β values are determined
from Eq. (9) using the experimental values of σ el

NN = 1
2 (σ el

pp +
σ el

pn) [36]. Some of the α parameters of Ref. [22] are also
modified to follow the systematics of Ref. [23].

Table I lists the parameters of the NN profile function used
in the present study. The 12C+12C reaction cross sections
calculated using these parameters are displayed by solid (NTG)
and dotted (OLA) lines in Fig. 2. We find that the modified
parameter set reproduces very well the experiment in the whole
energy region. The NTG phase shift function is found to
reproduce the cross section better than the OLA. We thus
conclude that both the calculated density of 12C and the
parameter set of $NN are qualified for a systematic analysis
of the reaction cross section of the carbon isotopes on a 12C
target.

B. Nucleon-nucleus data as a basic input

In this subsection, we briefly present a method developed in
Refs. [14,20] for describing nucleus-nucleus scattering using
an optical potential for the nucleon-nucleus elastic scattering.

TABLE I. Parameters of the NN profile function. E is the
projectile’s incident energy. Some parameters are modified
from the original values of Refs. [22,23]. See the text for
detail.

E (A MeV) σ tot
NN (fm2) α β (fm2)

30 19.6 0.87 0.685
38 14.6 0.89 0.521
40 13.5 0.9 0.486
49 10.4 0.94 0.390
85 6.1 1.37 0.349
94 5.5 1.409 0.327

100 5.295 1.435 0.322
120 4.5 1.359 0.255
150 3.845 1.245 0.195
200 3.45 0.953 0.131
325 3.03 0.305 0.075
425 3.03 0.36 0.078
550 3.62 0.04 0.125
650 4.0 −0.095 0.16
800 4.26 −0.07 0.21

1000 4.32 −0.275 0.21
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FIG. 1. Reaction cross sections of 12C on a 12C target calculated
with the parameters of Refs. [22,23]. The experimental data are taken
from Refs. [24–31] for the reaction cross section σR and from Ref. [13]
for the interaction cross section σI.

section, it may be possible to symmetrize Eq. (7) as follows:

eiχ̄ (b) = exp
(

− 1
2

∫
drρP(r)

×
{

1 − exp
[

−
∫

dr′ρT(r′)$NN(s − t + b)
]})

× exp
(

− 1
2

∫
dr′ρT(r′)

×
{

1 − exp
[

−
∫

drρP(r)$NN(t − s + b)
]})

. (8)

This approximation is called NTG hereafter, which stands for
the NT profile function in the Glauber model.

The parameters of $NN are taken from Refs. [22,23]. In
the latter case [23] the parameters are given for the pp and
pn collisions separately, but here we use the mean values
because the target nucleus is 12C whose proton and neutron
densities are virtually the same to good accuracy. In Fig. 1 we
compare the numerical results obtained using these parameters
with the experimental data of 12C+12C total reaction cross
sections. Here the intrinsic density of 12C is obtained from the
procedure that will be explained in the next section. It is found
that both the parameters give quite different cross sections at
100∼300A MeV. Apparently the cross sections obtained with
the parameters of Ref. [23] are too large, whereas those with
the parameters of Ref. [22] tend to be a little smaller than
experiment.

The NN profile function could be subject to change from
that of the free space especially at lower energies because of
the effects due to the Pauli blocking and the Fermi motion of
the nucleons [32]. Warner et al. studied the in-medium effect
on the reaction cross section by modifying the free σ tot

NN [33].
Takechi et al. have recently reported that taking into account
the Fermi motion leads to a significant change in the σ tot

NN
values, which is vital to reproduce the reaction cross sections
at lower energies [34].

Here we take a simpler route: First, we note that the total
elastic cross section σ el

NN of the NN collision is given by

σ el
NN = 1 + α2

16πβ

(
σ tot

NN
)2 (9)

for the profile function of Eq. (3) [35]. Then, for E<
300A MeV where only the elastic scattering is energetically
possible as the pion production threshold is closed, we expect
that the relation of σ el

NN = σ tot
NN should hold from the unitarity

of the NN collision. Employing the parameters of Ref. [23]
yields σ el

NN = 17, 7, and 3 mb at E = 100, 150, and 200 MeV,
respectively, which are far smaller than the σ tot

NN values at the
corresponding energies. We, instead, choose the β value for
E < 300A MeV as

β = 1 + α2

16π
σ tot

NN (10)

to satisfy the equality of σ el
NN = σ tot

NN . For E > 300A MeV
where the equality breaks down, the β values are determined
from Eq. (9) using the experimental values of σ el

NN = 1
2 (σ el

pp +
σ el

pn) [36]. Some of the α parameters of Ref. [22] are also
modified to follow the systematics of Ref. [23].

Table I lists the parameters of the NN profile function used
in the present study. The 12C+12C reaction cross sections
calculated using these parameters are displayed by solid (NTG)
and dotted (OLA) lines in Fig. 2. We find that the modified
parameter set reproduces very well the experiment in the whole
energy region. The NTG phase shift function is found to
reproduce the cross section better than the OLA. We thus
conclude that both the calculated density of 12C and the
parameter set of $NN are qualified for a systematic analysis
of the reaction cross section of the carbon isotopes on a 12C
target.

B. Nucleon-nucleus data as a basic input

In this subsection, we briefly present a method developed in
Refs. [14,20] for describing nucleus-nucleus scattering using
an optical potential for the nucleon-nucleus elastic scattering.

TABLE I. Parameters of the NN profile function. E is the
projectile’s incident energy. Some parameters are modified
from the original values of Refs. [22,23]. See the text for
detail.

E (A MeV) σ tot
NN (fm2) α β (fm2)

30 19.6 0.87 0.685
38 14.6 0.89 0.521
40 13.5 0.9 0.486
49 10.4 0.94 0.390
85 6.1 1.37 0.349
94 5.5 1.409 0.327

100 5.295 1.435 0.322
120 4.5 1.359 0.255
150 3.845 1.245 0.195
200 3.45 0.953 0.131
325 3.03 0.305 0.075
425 3.03 0.36 0.078
550 3.62 0.04 0.125
650 4.0 −0.095 0.16
800 4.26 −0.07 0.21

1000 4.32 −0.275 0.21
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FIG. 2. Comparison of the reaction cross sections of 12C on a 12C
target between theory and experiment. The input parameters for !NN

are taken from Table I in the NTG and OLA calculations, while those
for !NT are taken from the global optical potential of Ref. [37] in the
NTO calculation. At energies less than 100A MeV the correction due
to the deviation from the straight-line trajectory, though negligibly
small, is included in the NTO calculation. See the caption of Fig. 1
for the experimental data.

Denoting the NT optical potential by VNT , we define the
corresponding phase shift function χNT as

χNT (b) = − 1
h̄v

∫ ∞

−∞
dzVNT (b + zẑ), (11)

where v is the incident velocity of the NT relative motion.
Now we express the NT profile function as

!NT (b) = 1 − eiχNT (b). (12)

The substitution of Eq. (12) into Eq. (5) yields another formula
to calculate the optical phase shift function. We call this
approximation NTO, which stands for the NT formalism with
the optical potential. Similarly to NTG, the reaction cross
section given by NTO includes higher-order terms that are
missing in the reaction cross section calculated with a folding
model. In the latter model the phase shift function χf is simply
given by

eiχf (b) = exp
[
i

∫
drρP(r)χNT (b + s)

]
. (13)

The needed input for NTO is the projectile’s intrinsic
density and the optical potential VNT at a given energy. As
VNT we use the central part of the global optical potential
EDAD-fit3 (GOP) [37], which is determined by a Dirac
phenomenology. This potential, together with the other EDAD
sets, gives a good fit to p+12C elastic scattering and reaction
cross-section data in the incident energy of 30 MeV to
1 GeV. It should be noted, however, that the EDAD-fit3
potential predicts slightly smaller reaction cross sections than
experiment in the intermediate energy range of 300–400 MeV.
This would be due to the lack of data of p+12C elastic
scattering differential cross section for this energy range. We
ignore the difference between pT and nT interactions in this
study.

The NTO calculation for 12C+12C reaction cross section
is shown by dashed line in Fig. 2. As we see, the agreement
between experiment and theory is good. The underestimation

of the cross section around 300–400A MeV is probably due
to the smaller absorption of the EDAD-fit3 potential as noted
above. An advantage of these calculations is that they are
parameter free. For the energy less than 300A MeV, the
numerical results with NTO as well as with NTG agree with
the data quite well.

At energies less than 100A MeV, the correction due to
the deviation from the straight-line trajectory was studied for
12C+12C case. We used the distance of the closest approach in
Rutherford orbit in place of the asymptotic impact parameter
[38]. This correction is found to be small. It decreases the
reaction cross section by only few percentages at 30A MeV.

For high-energy side, we note that the reaction cross section
calculated using NTO slightly decreases at 900A MeV. This
is due to the fact that the imaginary part of the GOP reaches
its deepest value at 800A MeV and then decreases by a small
amount as the energy increases.

Our results underestimate the data of the total reaction
cross sections at 870A MeV [31]. The numerical results
unexpectedly agree with the data of the interaction cross
sections at 790 and 950A MeV [13], but not with the total
reaction cross section. Because our result is quite close to the
one (σR = 865 ± 1 mb) obtained from a more sophisticated
calculation [19], the approximation that we used must be in
appropriate direction. Possible uncertainties comes from the
parameters of NN scattering amplitude and/or the data of σR
itself. To clarify the situation, a more accurate measurement
of such quantities at high energy will be useful.

If we believe the data of σR at 870A MeV, we need a steep
increase of the cross section from 400A MeV toward higher
energies to reproduce it while the energy dependence of our
results is rather weak. As one can see from Fig. 1, compared
with OLA, the NTG, which resums higher-order corrections
coming from the first cumulant as in Eq. (8), reduces the
magnitude of the cross section for the region of the energy
higher than 200A MeV, and causes a weak energy dependence
for this energy region.

In contrast to our results, a rather strong energy dependence
is obtained by Iida et al. based on the black-sphere picture of
nuclei [39]. These authors reproduce the total reaction cross
section at 870A MeV [31] as well as the data between 100
and 400A MeV due to the steep increase of the cross section.
However, they failed to reproduce the energy dependence of
low energy side, because their picture breaks down for low
energy, less than around 100A MeV.

Other works, for example, Refs. [28,33], deal with 12C+12C
reactions of wide range of incident energy and reproduce the
reaction cross section at 870A MeV. However, in the energy
of 100–400A MeV, their results agree with the old data [28],
the larger ones, not the recent smaller ones [24]. Therefore,
these theoretical results overestimate the cross sections in this
energy region, and the weak energy dependence of their results
leads to reproducing the reaction cross section at 870A MeV.

III. DENSITY WITH A SLATER DETERMINANT

Now we discuss the densities of the carbon isotopes, which
will be applied to the calculation of total reaction cross
sections.
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with better than 5% uncertainty for neutron-rich nuclei to
reach the precision achieved for stable nuclei.
The experimental determination of Δrnp is rather

challenging—in particular, for short-lived neutron-rich
nuclei, where this effect becomes most pronounced. The
supposedly cleanest probe to obtain information on Δrnp is
electron scattering. The lead radius experiment (PREX) [22],
to be performed at Jefferson Lab, will measure the parity-
violating asymmetry for 208Pb at a relatively low momentum
transfer q, which is related to the neutron radius [17]. The
intended PREX precision for the final production run of
!3% for the asymmetry translates into an uncertainty of
Δrnp of !0.06 fm, and a constraint on L to!40 MeV [17].
In this Letter, we propose to use total neutron-removal

cross sections σΔN in high-energy nuclear collisions (0.4 to
1 GeV=nucleon), with secondary beams of neutron-rich
nuclei with hydrogen and carbon targets as an alternative
method. We will show that σΔN is rather sensitive to the
neutron-skin thickness and to the slope parameter L. The
constraint will be derived similarly as for the measurement
of the asymmetry at one momentum transfer q in the case of
PREX, namely by relating σΔN calculated on the basis of
proton and neutron point densities from density functional
theory (DFT) with the corresponding L parameter of the
respective functional. The scatter of theory points will
provide an estimate of the model dependence of such an
analysis. Following the same analysis as discussed in
Ref. [17], we have concluded that this method could
potentially constrain L to !10 MeV if experiments could
provide the related observable with the corresponding
accuracy. The obvious advantage is the abundant number
of events one can accumulate in facilities using hadronic
collisions. This opens a new window of opportunity for
future experiments in high-energy radioactive beam facilities
with the purpose to reveal the neutron skin of stable and
unstable nuclear isotopes.
Before discussing the sensitivity of σΔN to L and Δrnp,

we briefly introduce our reaction model. In high-energy
collisions, the Glauber multiple scattering method has been
shown to be a reliable theoretical model to calculate the
removal of nucleons [23,24]. The cross section for the
production of a fragment ðZ;NÞ from a projectile ðZP; NPÞ
due to nucleon-nucleon collisions is given by

σ ¼
!
ZP

Z

"!
NP

N

" Z
d2b½1 − PpðbÞ&ZP−ZPZ

pðbÞ

× ½1 − PnðbÞ&NP−NPN
n ðbÞ; ð1Þ

where b is the collision impact parameter and the binomial
coefficients account for all possible combinations to select
Z protons out of the original ZP projectile protons, and
similarly for the neutrons [23,24]. The probabilities for
single nucleon survival are given by Pp for protons and Pn
for neutrons, with the probability that a proton does not
collide with the target given by [23,24]

PpðbÞ ¼
Z

dzd2sρPpðs; zÞ exp
#
−σppZT

Z
d2sρTpðb − s; zÞ

− σpnNT

Z
d2sρTnðb − s; zÞ

$
; ð2Þ

where σpp and σnp are the proton-proton (Coulomb-
removed) and proton-neutron total cross sections, obtained
from a fit of experimental data in the energy range of 10 to
5000MeVas in Eqs. (1) and (2) of Ref. [25] (see Fig. 1). The
projectile (target) proton (neutron) densities are given by
ρPðTÞnðpÞ for the proton and neutron point densities in the
projectile and in the target, respectively. They are normalized
so that

R
d3rρPðTÞnðpÞ ðrÞ ¼ 1. The expression for Pn is similar

to Eq. (2) with the replacement n ↔ p. As the nucleon-
nucleon cross sections are taken from experiment, the only
input parameters in this model are the nuclear proton and
neutron densities, which can be directly taken from density
functional theory and tested in comparison with the exper-
imental cross sections. We will concentrate on the total
neutron-removal, σΔN , charge-changing, σΔZ, and reaction
cross sections, σR ¼ σΔN þ σΔZ. These are obtained from a
sum of all corresponding fragments using Eqs. (1) and (2).
We choose the neutron-rich part of the tin isotopic chain

for our investigations and concentrate on the reactions
Snþ 12C first. For 12C, we adopt the density derived in a
model-independent analysis of elastic electron scattering
up to high q2 using the Fourier Bessel expansion [30]
and extrapolated with a Whittaker function for very large
radii. The rms radius is taken as the quoted best value with
2.478(9) fm [30]. We assume the same densities for protons
and neutrons.
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FIG. 1. Nucleon-nucleon (top) and total reaction cross sections
for 12C on 12C (bottom) as a function of beam energy. The blue
points display data from Refs. [26] (100 to 400 MeV=nucleon),
[27] (790 MeV=nucleon), and [28] (950 MeV=nucleon). Black
triangles display the result from a parameter-free eikonal calcu-
lation in the optical limit, while the red diamonds include the
effect of Pauli blocking [29].
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Predictions with NN force only (NNLOopt) are 
lower than data.

Excellent agreement with coupled cluster 
predictions using chiral NN+3N force (NNLOsat).
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Summary  

Direct reactions at low- and high- energies can reveal new features of exotic nuclei.

Nuclear force finds new constraints through direct reactions

R. Kanungo

Reactions discover and characterize nuclear halos and new shells

New Resonances are found through reaction spectroscopy

Transfer reactions
σI ,  σcc

Inelastic Scattering

Elastic Scattering
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