Nuclear structure and nuclear force probed through direct reactions of light rare isotopes

Saint Mary's University / TRIUMF

TRIUMF - ISAC/ARIEL

IRIS Reaction spectroscopy station

SMU @ TRIUMF

Program @ IRIS

Transfer Reactions(p,d)(p,t)(d,p)(d,t)Evolution of nuclear shellsExploring pairing correlationConstraining reactions rates for nucleosynthesis

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Soft dipole resonance in ¹¹Li

excitation in the neutron continuum

Two decades of various searches did not reach conclusive understanding

Can the neutron-rich surface sustain a low-energy soft dipole resonance?

A.A. Korsheninnikov et al, PRC 53('96)R537 ; PRL 78(97)2317

Non-resonant peak or Resonance ?

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Isoscalar Soft Dipole Resonance Observed

3

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

3

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

R. Kanungo

¹¹Li(p,d)¹⁰Li : in 3-body model

3

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

${}^{20}Mg(d,d')$: Search for resonance in ${}^{20}Mg$

Mass Measurement (²⁰Mg) : A=20 IMME breakdown A.T. Gallant et al., PRL 113('14) 082501

 β + Measurement (²⁰Mg) : A=20 IMME valid B.E. Glassman et al., PRC 92 ('15) 042501R

3

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

²⁰Mg(d,d') : Search for resonance in ²⁰Mg

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

²⁰Mg(d,d') : Angular Distributions

²⁰Mg

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

²⁰Mg(d,d') : Angular Distributions

²⁰Mg

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Resonance in ²⁰Mg : Theories

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

3

${}^{10}C(p,p)$: Probing the nuclear force

9

 $^{10}C(p,p) d\sigma/d\Omega$ has strong sensitivity to the nuclear force.

NNLOsat force explains shape of $d\sigma/d\Omega$ *but fails in magnitude*.

NNLOsat is better out of the 3 choices but not complete

N⁸uclear reactions at the limit of stability, Trento, March 5-9, 2018

¹¹N Resonance energies

9

3N400, N²LOsat give similar predictions for the 1/2+, 1/2- & 3/2- resonances.
 less sensitivity to the different forces

 N²LOsat in agreement with experiment would suggest this interaction is describes the nuclear force well.

incomplete view of the forces

Reaction observable brings greater sensitivity for constraining the nuclear force

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

GSI, Germany

E/A~1 GeV

Matter (\mathbf{R}_m) and Proton (\mathbf{R}_p) Radii

- Discovering neutron skin and halo
- Defining the equation of state of neutron-rich matter
- Constrain the nuclear force
- Constrain nuclear structure models

Nucleon Knockout Reactions : Momentum distribution

Nuclear Orbitals and shell structure

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

$R_m: \sigma_I$; $R_p: \sigma_{cc}$

Transmission Technique

$$N_{out} = N_{in} e^{-\sigma_I t}$$

3

σ

Sum of all interactions with the protons in a nucleus that changes the Z number. $\left[\left(\underline{N}_{z} \right)^{T} \right]$

$$\mathbf{r.}_{cc} = \frac{1}{t} \ln \left[\frac{\left(\frac{N_{sameZ}}{N_{in}} \right)_{Tout}}{\left(\frac{N_{sameZ}}{N_{in}} \right)_{Tin}} \right]$$

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

FRS @ GSI

E/A ~ 900A MeV

Glauber Model $\sigma \rightarrow R$

$$\sigma_{\mathrm{R}} = \int d\boldsymbol{b}(1 - |\mathbf{e}^{i\chi(\boldsymbol{b})}|^{2})$$
$$\mathbf{e}^{i\chi(\boldsymbol{b})} = \langle \Psi_{0}\Theta_{0}| \prod_{i\in\mathrm{P}} \prod_{j\in\mathrm{T}} [1 - \Gamma_{NN}(\boldsymbol{s}_{i} - \boldsymbol{t}_{j} + \boldsymbol{b})] |\Psi_{0}\Theta_{0}\rangle$$

Optical Limit

$$e^{i\chi_{OLA}(\boldsymbol{b})} = \exp\left[-\iint d\boldsymbol{r}d\boldsymbol{r}'\rho_{\mathrm{P}}(\boldsymbol{r})\rho_{\mathrm{T}}(\boldsymbol{r}')\Gamma_{NN}(\boldsymbol{s}-\boldsymbol{t}+\boldsymbol{b})\right]$$

Projectile Density $\rho_p = \rho_p^n + \rho_p^p$ Target Density $\rho_T = \rho_T^n + \rho_T^p$

NTG

$$e^{i\bar{\chi}(b)} = \exp\left(-\frac{1}{2}\int d\mathbf{r}\rho_{\rm P}(\mathbf{r}) \times \left\{1 - \exp\left[-\int d\mathbf{r}'\rho_{\rm T}(\mathbf{r}')\Gamma_{NN}(s-t+b)\right]\right\}\right) \times \exp\left(-\frac{1}{2}\int d\mathbf{r}'\rho_{\rm T}(\mathbf{r}') \times \left\{1 - \exp\left[-\int d\mathbf{r}\rho_{\rm P}(\mathbf{r})\Gamma_{NN}(t-s+b)\right]\right\}\right).$$
 W. Horiuchi et al., PRC 75, 044607 (2007)

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Glauber Model

Profile Function parameters

$$\Gamma_{NN}(\boldsymbol{b}) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{NN}^{\text{tot}} \exp\left(-\frac{\boldsymbol{b}^2}{2\beta}\right)$$

$$\sigma_{NN}^{\rm el} = \frac{1+\alpha^2}{16\pi\beta} (\sigma_{NN}^{\rm tot})^2$$

E > 300 MeV

 $\sigma_{NN} = NN$ scattering cross section $\alpha = ratio$ of Re/Im NN scattering amplitudes $\beta = slope$ parameter of NN elastic differential cross section

Uncertainties at lower energies

- Variation of σ_{NN} with energy causes uncertainty
- \bullet Effects of medium modification of σ_{NN}

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Glauber Model validity

Finite Range calculations

Agreement of Rp from σ_{cc} and e-scattering establishes the accurate determination of radii at ~ 900A MeV

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Glauber Model : σ_R

 $^{12}C+^{12}C$

W. Horiuchi et al., PRC 75, 044607 (2007)

T. Aumann et al., PRL 119, 262501 (2017)

NN scattering is not zero range

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Two-neutron halo in Be and B

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

C radii

3

R.Kanungo et al, Phys. Rev. Lett. 117 (2016) 102501

¹⁵⁻¹⁹C rapid growth of thick neutron surface

- Rp show only a small increase from ¹²C to ¹⁹C
- Excellent agreement with coupled cluster predictions using chiral NN+3N force (NNLO_{sat}).
- Predictions with NN force only (NNLO_{opt}) are lower than data.

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Proton Radii : Nuclear shell gap

3

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

N radii

Summary

Direct reactions at low- and high- energies can reveal new features of exotic nuclei.

 $\blacksquare Reactions discover and characterize nuclear halos and new shells Transfer reactions$ $<math display="inline">\sigma_{I} \ , \ \sigma_{cc}$

New Resonances are found through reaction spectroscopy

Inelastic Scattering

Nuclear force finds new constraints through direct reactions

Elastic Scattering

Nuclear reactions at the limit of stability, Trento, March 5-9, 2018

Our Team

IRIS @ TRIUMF

M. Holl, J.S. Randhawa, , A. Sanetullaev, J. Tanaka, A. Kumar, S. Ishimoto, P. Navratil, A. Calci, G.
Hagen, T. Myo, T. Suzuki, S. Quaglioni, G. Hupin, R. Roth, M. Alcorta, C. Andreoiu, H. Bidaman, V.
Bildstein, C. Burbadge, D. Burke, A.A. Chen, G. Christian, B. Davids, J. Dohet-Eraly, J. Even, J. Fallis,
J.P. Fortin, N. Galinski, A.T. Gallant, P.E. Garrett, G. Hackman, J. Henderson, B. Hadinia, G. Jansen, S.
Kaur, M. Keefe, R. Krücken, A. Laffoley, J. Lighthall, M. Moukaddam, E. McNiece, D. Miller, O.
Workman, T. Otsuka, E. Padilla Rodal, J. Purcell, T. Roger, A. Rojas, E. Rand, H. Savajols, A. Shotter, J.
Smith, I. Tanihata, I.J. Thompson, J. Turko, C. Unsworth, Z. Wang, M. Williams

FRS @ GSI

A. Estrade, S. Bagchi, S. Kaur, H. Geissel, C. Scheidenberger, I. Tanihata, F. Ameil, J. Atkinson,
D. Cortina-Gil, I. Dillmann, A. Evdokimov, F. Farinon, G. Guastella, G. Hagen, W. Horiuchi, Y. Ayyad,
G. Jansen, R. Janik, M. Kimura, R. Knöbel, J. Kurcewicz, Y. Litvinov, M. Marta, M. Mostazo,
I. Mukha, P. Navratil, C. Nociforo, H.J. Ong, S. Petri, A. Prochazka, B. Sitar, P. Strmen, Y. Suzuki,
M. Takechi, J. Tanaka, S. Terashima, J. Vargas, H. Weick, J.S. Winfield, G. Hagen, G. Jansen,

