Study of "quenching factors" for (p, pn) and (p, 2p) reactions through the Transfer to the Continuum formalism

M. Gómez-Ramos, A. M. Moro

University of Seville

March 5, 2018

(p, pN) quenching

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

⁽³⁾ Benchmarks with other reaction formalisms

- DWIA
- Faddeev

4 Results for quenching factors

(p, pN) reactions with Borromean nuclei

6 Summary

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

3 Benchmarks with other reaction formalisms

- DWIA
- Faddeev

I Results for quenching factors

(p, pN) reactions with Borromean nuclei

6 Summary

Quenching factors

Quenching factors

- SF from IPM or shell-model
- Can be related to experiment through:

$$\sigma_{\rm th} = C^2 S \times \sigma_{s.p.}$$

• Quenching of spectroscopic factors:

$$R_s = \frac{\sigma_{\rm exp}}{\sigma_{\rm th}}$$

• Related to beyond-shell-model effects (Short-range correlations)

H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004) NIKHEF data: L. Lapikas Nucl. Phys. A 553, 297c (1993)

Quenching factors

J. Tostevin & A. Gade, Phys.Rev. C 90, 057602 (2014) • Transfer reactions

F. Flavigny *et al*, Phys. Rev. Lett. 110, 122503 (2013)

Different tendencies: reaction description in question?

(p, pN) reactions

- A proton and a nucleus collide in such a way that a proton or neutron is removed and the residual nucleus remains.
- High energies ($\sim 200\text{-}400 \text{ MeV}$) to increase mean free path of nucleon in nucleus.
- Used to obtain single-particle information of nuclei.
- It is sometimes referred to as "quasifree" because the main interaction can be modelled as if it were a free collision between the incoming proton and the removed nucleon.

Momentum distributions

- Momentum distributions of residual nucleus (core)
- Inclusive measurements: Only core is measured. Integration over all angles of ejected proton and nucleon
- Shape gives information about quantum numbers of extracted nucleon
- Magnitude gives information about s.p. occupation numbers

A.M.M. PRC 92, 044605(2015)

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

3 Benchmarks with other reaction formalisms

- DWIA
- Faddeev

4 Results for quenching factors

[5] (p, pN) reactions with Borromean nuclei

6 Summary

Reaction formalism: Transfer to Continuum

• We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.

Reaction formalism: Transfer to Continuum

• We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.

Reaction formalism: Transfer to Continuum

- We consider a calculation without explicit IA, including interaction with residual nucleus in matrix element and without factorization approximation.
- Prior representation of the T-matrix for the process $p + A \rightarrow p + N + C$, approximating the exact wf $\Psi_f^{(-)}$ by a 3-body CDCC wf $\psi_{f}^{3b-CDCC(-)}$ $\mathcal{T}_{if}^{3b} = \left\langle \psi_f^{3b-CDCC(-)} | V_{pN} + U_{pC} - U_{pA} | \psi_{jlm} \chi_{pA}^{(+)} \right\rangle$ p-N continuum • p-N continuum states discretized in energy bins Deuteron included for (p, pn) $\phi_n^{j,\pi}(k_n, \vec{r'}) = \sqrt{\frac{2}{\pi N}} \int_{k}^{k_n} \phi_n^{j,\pi}(k, \vec{r'}) \mathrm{d}k$ • 3-body final state wavefunction p + AA-1 + (p+N)expanded in proton-nucleon states

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

Benchmarks with other reaction formalisms DWIA Faddeev

- Results for quenching factors
- (p, pN) reactions with Borromean nuclei
- 6 Summary

Benchmarks with other reaction formalisms DWIA

Benchmark with DWIA: ${}^{15}C(p, pn){}^{14}C @ 420 \text{ MeV/A}$

• In collaboration with K. Yoshida and K. Ogata (PRC 97 024608 (2018))

See talk by K. Yoshida

M.G.-R., A.M.M.

Benchmarks with other reaction formalisms Faddeev

Benchmark with Faddeev: ${}^{11}\text{Be}(p, pn){}^{11}\text{Be} @ 200 \text{ MeV/A} (p \text{ wave})$

• In collaboration with A. Deltuva

Benchmark with Faddeev: $^{11}\mathrm{Be}(p,pn)^{11}\mathrm{Be}$ @ 200 MeV/A (p wave) Reid93

• In collaboration with A. Deltuva

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

3 Benchmarks with other reaction formalisms

- DWIA
- Faddeev

4 Results for quenching factors

- [0] (p, pN) reactions with Borromean nuclei
- 6 Summary

Inputs of the calculation

• Nucleon-nucleon interaction: Reid93

- Bound states from Woods-Saxon
 - a = 0.7 fm
 - r_0 chosen to reproduce HF rms (SkX)

- Distorting potentials
 - Folding from Paris-Hamburg g-matrix effective interaction and HF density (SkX)
 - Phenomenological Dirac parametrization (EDAD2)

• SF obtained using WBT interaction

Experimental data

Reaction	E/A	Ref	Reaction	E/A	Ref
$^{13}O(p, 2p)$	401	1	$^{21}O(p, 2p)$	449	1
$^{14}O(p, 2p)$	351	1	$^{21}N(p,pn)$	417	2
$^{15}{\rm O}(p,2p)$	310	1	$^{21}N(p,2p)$	417	2
$^{16}O(p, 2p)$	451	1	$^{22}O(p,pn)$	414	2
$^{17}{ m O}(p,2p)$	406	1	$^{22}O(p, 2p)$	414	2
$^{18}O(p, 2p)$	368	1	$^{23}O(p,pn)$	445	2
$^{12}C(p,2p)$	398	3	$^{23}O(p,2p)$	445	2

L. Atar *et al* Phys. Rev. Lett. **120**, 052501 (2018)
 P. Díaz-Fernández *et al* Phys. Rev. C **97**, 024311 (2018)
 V. Panin *et al* Phys. Lett. B **753**, 204 (2016)

Momentum distributions

Quenching factors

Notch test

Quenching factors

Quenching factors

Quenching factors. KD potentials

- Köning-Delaroche potentials at 200 MeV
- No relativistic modifications
- WS geometry: $r_0 = 1.25 \text{ fm}$ a = 0.65 fm

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

3 Benchmarks with other reaction formalisms

- DWIA
- Faddeev

4 Results for quenching factors

(p, pN) reactions with Borromean nuclei

6 Summary

(p, pN) reactions with Borromean nuclei (in collaboration with J. Casal)

- A high-energy proton impinges on a Borromean system with two loosely bound nucleons
- The proton knocks out one nucleon, leaving the core and the other nucleon in a state with positive energy E_{N-C} (since the original nucleus was Borromean)
- $\bullet~{\rm The}~N-C$ system decays emitting a low-energy nucleon

(p, pN) reactions with Borromean nuclei

¹¹Li(p, pn)¹⁰Li^{*}: $I_{9Li} = 0 + d$ wave

M.G.-R., J. Casal, A.M.M. PLB 772, 115 (2017)

¹¹Li(p, pn)¹⁰Li^{*}: $I_{^{9}\text{Li}} = 3/2^{-}$

$^{14}\text{Be}(p,pn)^{13}\text{Be}^*$

1 Quenching and (p, pN) reactions

- Quenching factors
- Description
- Momentum distributions. Inclusive measurements

2 Reaction formalism

• Transfer to Continuum: TC

3 Benchmarks with other reaction formalisms

- DWIA
- Faddeev

4 Results for quenching factors

 $\bigcirc (p, pN)$ reactions with Borromean nuclei

6 Summary

Summary

Summary

- Transfer to Continuum (TC) developed for the study of (p, pN) reactions at high and intermediate energies.
- Benchmark with Faddeev and DWIA shows encouraging agreement
 - $\times\,$ Difference with Faddeev when using Reid93 (still unclear)
- $\bullet\,$ "Quenching factors" obtained show small dependence on ΔS
 - $\hfill\square$ Agreement with transfer experiments
 - $\hfill\square$ Disagreement with mid-energy knock out reactions
- Good agreement with published eikonal DWIA R_s for small binding energies, but increased disagreement for larger binding energies
- Overall R_s 0.7~0.8 larger than overall value for R_s for (e, e'p) with IPM 0.6~0.7
- Formalism has been extended to study Borromean nuclei: ${}^{11}\text{Li}(p, pn){}^{10}\text{Li}$ has been published and analysis of ${}^{14}\text{Be}(p, pn)$ is underway

Collaborators

- K. Yoshida
- K. Ogata
- A. Deltuva
- J. Casal
- A. Corsi

Summary

Focus on peak

