SOCIETY

Lund University

Optical potentials and knockout reactions from chiral interactions Andrea Idini

"Recent advances and challenges in the description of nuclear reactions at the limit of stability"

Why optical potentials?

- Optical potentials reduce many-body complexity decoupling structure contribution and reactions dynamics.
- Often fitted on elastic scattering data (locally or globally)
- A microscopic model is difficult but worth it

Dickhoff, Charity, Mahzoon, JPG44, 033001 (2017)

Koning, Delaroche, NPA713, 231 (2002)

Dyson Equation

$$
g_{\alpha \beta}(\omega)=g_{\alpha \beta}^{0}(\omega)+\sum_{\gamma \delta} g_{\alpha \gamma}^{0}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) g_{\delta \beta}(\omega)
$$

Faddeev RPA

Källén-Lehmann spectral representation

$$
\begin{aligned}
& H(A)=T-T_{c . m .}(A+1)+V+W \\
& g_{\alpha, \beta}(E, \Gamma)=\sum_{n} \frac{\left\langle\Psi_{0}^{A}\right| c_{\alpha}\left|\Psi_{n}^{A+1}\right\rangle\left\langle\Psi_{n}^{A+1}\right| c_{\beta}^{\dagger}\left|\Psi_{0}^{A}\right\rangle}{\left.E-E_{n}^{A+1}+E_{0}^{A}\right\rangle i \Gamma} \text { Overlaps of } \\
& +\sum_{i} \frac{\left\langle\psi_{0}^{A}\right| c_{\alpha}^{\dagger}\left|\Psi_{n}^{A-1}\right\rangle\left\langle\Psi_{n}^{A-1}\right| c_{\beta}\left|\Psi_{0}^{A}\right\rangle}{E-E_{0}^{A}+E_{i}^{A-1}-i \Gamma}, \\
& \text { Excited states calculated from Dyson A-1 states } \\
&
\end{aligned}
$$

Nucleon elastic scattering

*Mahaux \& Sartor, Adv. Nucl. Phys. 20 (1991), Escher \& Jennings PRC66:034313 (2002)

- Solve Dyson equation in HO Space, find $\quad \Sigma_{n, n^{\prime}}^{l, j *}(E)$
- diagonalize in full continuum momentum space $\Sigma^{l, j *}\left(k, k^{\prime}, E\right)$

$$
\frac{k^{2}}{2 m} \psi_{l, j}(k)+\int d k^{\prime} k^{\prime 2}\left(\Sigma^{l, j *}\left(k, k^{\prime}, E\right)\right) \psi_{l, j}\left(k^{\prime}\right)=\mathrm{E} \psi_{l, j}(k)
$$

RESULTS

SRG-N ${ }^{3}$ LO, $\quad \Lambda=2.66 \mathrm{fm}^{-1}$
$n+{ }^{16} \mathrm{O}$ (g.s.)

_ _ _ Navràtil, Roth, Quaglioni,
PRC82, 034609 (2010)

$\mathrm{NNLO}_{\text {sat }}$
$n+{ }^{16} 0($ g.s. $+e x c)$

Using the ab initio optical potential for neutron elastic scattering on Oxygen

Overlap function

$$
\Psi_{i}(r)=\sqrt{A} \int d r_{1} \nLeftarrow r_{i} d r_{A} \Phi_{(A-1)}^{+}\left(r_{1}, \ldots r_{r_{i}}, r_{A-1}\right) \Phi_{(A)}^{+}\left(r_{1}, \ldots, r_{A}\right)
$$

Proton particle-hole gap

$$
{ }^{13} \mathrm{~N},{ }^{15} \mathrm{~F} \quad{ }^{15} \mathrm{~N},{ }^{17} \mathrm{~F} \quad{ }^{21} \mathrm{~N},{ }^{23} \mathrm{~F} \quad{ }^{23} \mathrm{~N},{ }^{25} \mathrm{~F}
$$

EM results from A. Cipollone PRC92, 014306 (2015)

Knockout Spectroscopic Factors

$$
\frac{k^{2}}{2 m} \psi_{l, j}(k)+\int d k^{\prime}{k^{\prime 2}}^{2}\left(\Sigma^{l, j *}\left(k, k^{\prime}, E\right)\right) \psi_{l, j}\left(k^{\prime}\right)=\mathrm{E} \psi_{l, j}(k)
$$

$S F=\left.\left|\left\langle\Phi_{n}^{(A-1)}\right| \Phi_{\text {g.s. }}^{A}\right)\right|^{2} \quad$ Calculated from overlap wavefunctions

open circles neutrons, closed protons

Overlap wavefunctions

Collaboration with C. Bertulani

$$
\begin{aligned}
& \text { cross section calculation } \\
& \text { for different wavefunctions } \\
& \left(\sigma_{G F}-\sigma_{W S}\right) / \sigma_{W S} \\
& \text { Collaboration with C. Bertulani }
\end{aligned}
$$

Conclusions and Perspectives

- We are developing an interesting tool to study nuclear reactions effectively.
We have defined a non-local generalized optical potential corresponding to nuclear self energy.
- Spectroscopic Factors from ab-initio overlap wavefunctions differ from effective wood saxon. These do not seem to depend much on proton-neutron asymmetry

«lmaginary» Parameter

Why Green's Functions?

Dyson Equation

$$
\begin{aligned}
& \text { Dyson Equation } \\
& g_{\alpha \beta}(\omega)=g_{\alpha \beta}^{0}(\omega)+\sum_{\gamma \delta} g_{\alpha \gamma}^{0}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) g_{\delta \beta}(\omega) \|=\boldsymbol{\Lambda}+\sum^{\star}
\end{aligned}
$$

Equation of motion

$\left(E+\frac{\hbar^{2}}{2 m} \nabla_{r}^{2}\right) G\left(\mathbf{r}, \mathbf{r}^{\prime} ; E\right)-\int d \mathbf{r}^{\prime \prime} \sum\left(\mathbf{r}, \mathbf{r}^{\prime \prime} ; E\right) G\left(\mathbf{r}^{\prime \prime}, \mathbf{r}^{\prime} ; E\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)$
Corresponding Hamiltonian

$$
\mathcal{H}_{\mathcal{M}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{\hbar^{2}}{2 m} \nabla_{r}^{2} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)+\Sigma\left(\mathbf{r}, \mathbf{r}^{\prime} ; E+i \boldsymbol{\epsilon}\right)
$$

Σ corresponds to the Feshbach's generalized optical potential

${ }^{16} \mathrm{O}$ neutron propagator

Volume integrals

$$
\left.J_{W}^{\ell}(E)=4 \pi \int d r r^{2} \int d r^{\prime} r^{\prime 2} \operatorname{Im} \Sigma_{0}^{\ell}(r, r) E\right)
$$

$$
J_{V}^{\ell}(E)=4 \pi \int d r r^{2} \int d r^{\prime} r^{\prime 2} \operatorname{Re} \Sigma_{0}^{\ell}\left(r, r^{\prime} ; E\right)
$$

S. Waldecker et al. PRC84, 034616(2011)
$\mathrm{NNLO}_{\text {sat }}$ neutron comparison

Ca isotopes

neutron and proton volume integrals of self energies.

Ca isotopes

neutron volume integrals of self energies.

${ }^{16} \mathrm{O}$ and ${ }^{24} \mathrm{O}$

