Electromagnetic reactions from few to many-body systems

Giuseppina Orlandini

The e.m. interaction is **perturbative** compared to the nuclear **strong** interaction

Therefore the reaction cross sections are proportional to

m

 $\sigma \sim | \langle F | J_{\mu} | \rangle |^2$

- \blacksquare | F > and | I > are eigenstates of H_N
- I > is a bound state (g.s.),
- F > can be a bound or a continuum (scattering) state

J_u is the nuclear current

Start from neutrons and protons as building blocks (positions, spins, isospins)

Start from neutrons and protons as building blocks (positions, spins, isospins)

Subtract the cm motion and remain with relative coordinates

Start from neutrons and protons as building blocks (positions, spins, isospins)

Subtract the cm motion and remain with relative coordinates

Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

Start from neutrons and protons as building blocks (positions, spins, isospins)

Subtract the cm motion and remain with relative coordinates

Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

Find numerical solutions with "no approximations" or "controllable approximations" (error bars)

Start from neutrons and protons as building blocks (positions, spins, isospins)

Subtract the cm motion and remain with relative coordinates

Solve the non-relativistic quantum mechanical problem of A-interacting nucleons

Find numerical solutions with "no approximations" or "controllable approximations" (error bars)

Calculate low-energy observables and compare with experiment to test nuclear forces and provide predictions for future experiments and microscopic interpretations for older experiments

For the "ab-initio" program, as previously defined, the most interesting reactions are those at low-energy (up to ~ 50 - (100??) MeV)

| | > is in general a ground state

F > can be a bound or a continuum (scattering) state

For q (and $\omega < q$) "small" (q R --> 1)

Experimental status

Stable Nuclei

We have data on ~180 stable nuclei "Giant dipole resonances"

Unstable Nuclei

Few data "pigmy dipole resonances"

Experimental status

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Unstable Nuclei

pigmy dipole resonances

Few data

dipole strength "collective interpretation"

dipole strength "collective interpretation"

Do we see the emergence of collective modes from first principle calculations?

Reactions to continuum

Framework:

Energies in the non-relativistic regime

 Non-Relativistic Quantum Mechanics
 (including Translation, Galileian, Rotational invariances)
 [H, P_{cm}]=0 [H, R_{cm}]=0 [H, J]=0

 Degrees of freedom: total A nucleons
 ("microscopic" model)

 $\bullet H = T + V$

$$\mathbf{V} = \Sigma_{ij} \mathbf{V}_{ij} + (\Sigma_{ijk} \mathbf{V}_{ijk} + \dots)$$

Reactions to continuum perturbative (electro-weak)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$\sigma(\omega) \sim \sum_{n} |\langle n | \Theta | 0 \rangle|^{2} \qquad \delta(\omega - E_{n} + E_{0})$$

 $H | n > = E_n | n >$

Reactions to continuum

PERTURBATIVE INCLUSIVE

S (ω) represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

Channels:

Integral transform (IT)

$\Phi(\sigma) = \int d\omega K(\omega, \sigma) S(\omega)$

One IS NOT able to calculate S(ω)
(the quantity of direct physical meaning)
but IS able to calculate Φ (σ)

In order to obtain $S(\omega)$ one needs to invert the transform Problem: Sometimes the "inversion" of Φ (σ) may be problematic

$$S(\omega) = \sum_{n} |\langle n | \Theta | 0 \rangle|^2 \, \delta(\omega - E_n + E_0)$$

1) integrate in $d\omega$ using delta function

$$S(\omega) = \sum_{n} |\langle n | \Theta | 0 \rangle|^2 \, \delta(\omega - E_n + E_0)$$

1) integrate in $d\omega$ using delta function

 $\Phi(\sigma) = \sum_{n} K(E_{n}-E_{0},\sigma) < 0 | \Theta^{+} | n > < n | \Theta | 0 >$

$$S(\omega) = \sum_{n} |\langle n | \Theta | 0 \rangle|^2 \, \delta(\omega - E_n + E_0)$$

1) integrate in $d\omega$ using delta function

 $\Phi(\sigma) = \sum_{n} K(E_{n}-E_{0},\sigma) < 0 | \Theta^{+} | n > < n | \Theta | 0 >$ $= \sum_{n} < 0 | \Theta^{+} K(H-E_{0},\sigma) | n > < n | \Theta | 0 >$

$$S(\omega) = \sum_{n} |\langle n | \Theta | 0 \rangle|^2 \, \delta(\omega - E_n + E_0)$$

1) integrate in $d\omega$ using delta function

 $\Phi(\sigma) = \sum_{n} K(E_{n}-E_{0},\sigma) < 0 | \Theta^{+} | n > < n | \Theta | 0 >$ $= \sum_{n} < 0 | \Theta^{+} K(H-E_{0},\sigma) | n > < n | \Theta | 0 >$ 2) Use $\sum_{n} | n > < n | = I$ $\Phi(\sigma) = \langle 0 | \Theta^{+} K(H-E_{0},\sigma) \Theta | 0 \rangle$

$\langle 0 | \Theta^+ \mathrm{K}(\mathrm{H-E}_0,\sigma) \Theta | 0 \rangle$

The calculation of **ANY** transform seems to require, **in principle**, only the knowledge of the ground state! **However,**

 $K(H-E_{0},\sigma)$ can be quite a complicate operator.

The calculation of **ANY** transform seems to require, **in principle**, only the knowledge of the ground state! **However,**

 $K(H-E_{0},\sigma)$ can be quite a complicate operator.

So, which kernel is suitable for calculation of this?

 $\Phi(\sigma) = \langle 0 | \Theta^{+} K(H-E_{0},\sigma) \Theta | 0 \rangle$

- a "good" Kernel has to satisfy two requirements
- 1) one must be able to calculate the integral transform
- 2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

The δ -function!

What would be the "perfect" Kernel?

the delta-function!

in fact

 Φ (σ) = S (σ) = $\int \delta(\omega - \sigma)$ S(ω) d ω

... but what about a representation of the δ-function?

The Lorentzian kernel: $\sigma = \sigma_{R} + i\sigma_{T}$ σ complex! K(ω, σ) = C ($\omega - \sigma$)⁻¹ ($\omega + \sigma^*$)⁻¹ It is a representation of the **δ-Function** $(\mathbf{0})$ σ $\Phi(\sigma_{\mathbf{p}},\sigma_{\mathbf{r}}) = C \int [(\omega - \sigma_{\mathbf{p}})^2 + \sigma_{\mathbf{r}}^2]^{-1} S(\omega) d\omega$
Illustration of requirement N.1: one can calculate the integral transform

Remember!

$$\Phi(\sigma) = \int S(\omega) (\omega - \sigma)^{-1} (\omega + \sigma^*)^{-1} d\omega =$$

$$\langle 0 | \Theta^+ (H - E_0 - \sigma)^{-1} (H - E_0 - \sigma^*)^{-1} \Theta | 0 \rangle$$

main point of the LIT :

main point of the LIT :

Theorem:

The $\tilde{\Psi}$ solution is unique and has bound state asymptotic conditions \longrightarrow one can apply bound state methods

Illustration of requirement N.2: one can invert the integral transform minimizing uncertainties

Illustration of the problem of inversion:

Suppose that $K(H-E_0,\sigma) = e^{-(H-E_0)\sigma}$

Illustration of the problem of inversion:

Suppose that $K(H-E_0,\sigma) = e^{-(H-E_0)\sigma}$

Illustration of the problem of inversion:

Suppose that $K(H-E_0,\sigma) = e^{-(H-E_0)\sigma}$

 $K(H-E_0,\sigma) = Iorentzian$

 $K(H-E_0,\sigma) = lorentzian$

 $K(H-E_0,\sigma) = lorentzian$

 $K(H-E_0,\sigma) = Iorentzian$

Inversion: e.g. "regularization method" at fixed width

main point of the LIT :

Schrödinger-like equation with a source (H - E₀ - σ_{R} - i σ_{I}) | $\tilde{\Psi} > = \Theta[0>$

Theorem:

bound state methods:

$$(H - E_0 - \sigma_R - i \sigma_I) | \widetilde{\Psi} > = \Theta | 0 >$$

Represent H, $|\Psi \rangle$, $\Theta |0\rangle$ on a complete b.s. basis and invert the linear problem

A very efficient basis for few-body systems:

Hyperspherical Harmonics (HH)

[generalization to Spherical Harmonics Y Im to a 3(A-1) dimensional space]

Photodisintegration of ⁴He

Figure from Bacca and Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

Photodisintegration of ⁴He

Figure from Bacca and Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

What about many-body systems?

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

+

CC Coupled-cluster theory

Accurate many-body theory with mild polynomial scaling in mass number

LIT-CC

_

An approach to many-body break-up induced reactions with a proper accounting of the continuum

Coupled-cluster theory

Many-body method that can extend the frontiers of ab-initio calculations to heavier and neutron nuclei

$$ert \psi_{_0}(ec{r_1},ec{r_2},...,ec{r_A})
angle = e^T ert \phi_{_0}(ec{r_1},ec{r_2},...,ec{r_A})
angle$$
 $T = \sum T_{(A)} \,\, ext{cluster expansion}$

Coupled-cluster theory formulation of LIT

Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle = \bar{\Theta} |\Phi_0\rangle$$

$$\begin{split} \bar{H} &= e^{-T} H e^{T} \\ \bar{\Theta} &= e^{-T} \Theta e^{T} \\ |\tilde{\Psi}_{R}\rangle &= \hat{R} |\Phi_{0}\rangle \end{split}$$

Results with implementation at CCSD level

$$T = T_1 + T_2$$
$$R = R_0 + R_1 + R_2$$

Benchmark

Validation for ⁴He

Comparison of CCSD with exact hyperspherical harmonics with NN forces at N³LO

Photonuclear reactions

Another I.T. with a different Kernel:

The Stieltjes Kernel

K(ω , σ) = (ω + σ)⁻¹

 $\sigma > 0$, real

It may be useful for a specific purpose:

In fact:

given
$$S(\omega) = \sum_{n} |\langle n|\Theta|0\rangle|^2 \,\delta(\omega - E_n + E_0)$$

Lim.
$$\Phi(\sigma) = \text{Lim.} \int S(\omega) (\omega + \sigma)^{-1} d\omega = \int \frac{S(\omega)}{\omega} d\omega = 2\alpha_{\Theta}$$

"generalized polarizability" e.g. electric polarizability, magnetic susceptibility, compressibility etc... depending on Θ

Main point of the Stieltjes Transform :

Schrödinger-like equation with a source

 $(H - E_0 + \sigma) | \tilde{\Psi} > = \Theta | 0 >$

Theorem:

The $\tilde{\Psi}$ solution is unique and has **bound state** asymptotic conditions

 $\sigma > 0$

one can apply bound state methods

bound state methods:

Represent $H, |\widetilde{\Psi} >, \Theta | 0 >$

on a complete b.s. basis

and invert the linear problem

Recent results on α_{Θ} with $\Theta = D$ (El. Dipole Polarizability)

Electric Dipole Polarizability as limit of the Stieltjes transform for $\sigma ---> 0$

b.s. expansion: Coupled Cluster (non hermitian) Lanczos diagonalization

Electric dipole polarizability

M. Miorelli et al., PRC 94 034317 (2016)

G. Hagen et al. Nature Phys. 2016

A. Ekström *et al.*, Phys. Rev. C91, 051301 (2015)

K. Hebeler et al., Phys. Rev. C83, 031301 (2011)

Interesting correlation with the proton charge radius

 $S^{D}(\omega) d\omega = 2\alpha_{D}$

Role of 3b-force

Electric dipole polarizability

M. Miorelli et al., PRC 94 034317 (2016)

Much better agreement with experimental data with 3NF
 Variation of Hamiltonian can be used to assess the theoretical error bar

Interesting correlation with the proton charge radius

 $S^{D}(\omega) d\omega = 2\alpha_{D}$

Role of 3b-force

⁴⁸Ca from first principles

⁴⁸Ca from first principles

Theory provides predictions for future experiments

International collaboration (USA/Canada/Europe/Israel) using coupled-cluster theory Hagen *et al.*, Nature Physics 12, 186 (2016)

⁴⁸Ca from first principles

Theory provides predictions for future experiments

International collaboration (USA/Canada/Europe/Israel) using coupled-cluster theory Hagen *et al.*, Nature Physics 12, 186 (2016)

⁴⁸Ca from first principles

Theory provides predictions for future experiments

International collaboration (USA/Canada/Europe/Israel) using coupled-cluster theory Hagen *et al.*, Nature Physics 12, 186 (2016)

Summary:

- The electromagnetic probe is a "clean" mean to investigate nuclear dynamics (pertubation theory is valid)
- Ab initio methods help building the bridge between QCD and nuclear phenomena: (what is the "effective" V ???)
- They are moving from the traditional few-body (A=2-4) regime to larger systems
- Integral transform methods are alternative approaches to overcome the many-body scattering problem